
z/OS IBM

DCE
Application Development Guide:
Core Components

 SC24-5905-00

z/OS IBM

DCE
Application Development Guide:
Core Components

 SC24-5905-00

 Note

Before using this information and the product it supports, be sure to read the general information under Appendix C, “Notices”
on page 553.

First Edition (March 2001)

This edition, SC24-5905-00, applies to Version 1 Release 1 of z/OS DCE Base Services, z/OS DCE user Data Privacy (DES and
CDMF), z/OS DCE User Data Privacy (CDMF) (program number 5694-A01), and to all subsequent releases and modifications until
otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for reader's comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Information Development, Dept. G60
1701 North Street
Endicott, NY 13760-5553
United States of America

FAX (United States & Canada): 1+607+752-2327
FAX (Other Countries):

Your International Access Code +1+607+752-2327

IBMLink (United States customers only): GDLVME(PUBRCF)
Internet e-mail: pubrcf@vnet.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book

� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use the information in any way it believes appropriate
without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

The following statements are provided by the Open Software Foundation.

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

Copyright  1993, 1994 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

�  Copyright 1990, 1991 Digital Equipment Corporation
�  Copyright 1990, 1991 Hewlett-Packard Company
�  Copyright 1989, 1990, 1991 Transarc Corporation
�  Copyright 1990, 1991 Siemens Nixdorf Informationssysteme AG
�  Copyright 1990, 1991 International Business Machines Corporation
�  Copyright 1988, 1989 Massachusetts Institute of Technology
�  Copyright 1988, 1989 The Regents of the University of California

All Rights Reserved.

Printed in the U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. TITLE
TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc.

UNIX is a registered trademark of The Open Group in the United States and other countries.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.

AFS and Transarc are registered trademarks of the Transarc Corporation.

Episode is a trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.

X/Open is a trademark of The Open Group in the U.K. and other countries.

PostScript is a trademark of Adobe Systems Incorporated.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software,
the rights of the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS
Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in
paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is
submitted with "restricted rights." Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP
18-52.227-79 (April 1985) "Commercial Computer Software-Restricted Rights (April 1985)." If the contract contains the Clause at
18-52.227-74 "Rights in Data General" then the "Alternate III" clause applies.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished—All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

 iii

iv Application Development Guide: Core Components

 Contents

About This Book . xxiii
Who Should Use This Book . xxiii

DCE Application Development Environment . xxiii
Unsupported OSF DCE Functions . xxiv

How This Book Is Organized . xxv
Terminology Used in This Book . xxvi
Conventions Used in This Book . xxvii
Where to Find More Information . xxviii

Softcopy Publications . xxviii
Internet Sources . xxviii
Using LookAt to Look up Message Explanations . xxviii
Accessing Licensed Books on the Web . xxix

Chapter 1. Introduction to DCE Facilities . 3

Chapter 2. DCE Host Services . 5
Types of Applications . 5
Issues of Distributed Applications . 6
Managing a Host's Endpoint Map . 6
Binding to the dced Services . 7

Host Service Naming in Applications . 8
The dced Maintains Entry Lists . 8
Reading All of a Host Service's Data . 10
Managing Individual dced Entries . 11

Managing Host Data on a Remote Host . 14
Kinds of Host Data Stored . 14
Adding New Host Data . 15
Modifying Host Data . 16
Running Programs Automatically When Host Data Changes . 16

Controlling Servers Remotely . 18
Two States of Server Management: Configuration and Execution . 19
Configuring Servers . 19
Starting and Stopping Servers . 21
Enabling and Disabling Services of a Server . 22

Validating the Security Server . 23
Managing Server Key Tables . 23

Chapter 3. The DCE Backing Store . 27
Data in a Backing Store . 27
Using A Backing Store . 27
Header for Data . 27
The User Interface . 28
The IDL Encoding Services . 29

Encoding and Decoding in the Backing Store . 29
Conformant Arrays Not Allowed . 29

The Backing Store Routines . 30
Opening a Backing Store . 30
Closing a Backing Store . 30
Storing or Retrieving Data . 31
Freeing Data . 31

 Copyright IBM Corp. 1994, 2001 v

Making or Retrieving Headers . 31
Performing Iteration . 31
Deleting Items from a Backing Store . 32
Locking and Unlocking a Backing Store . 32

Example of Backing Store Use . 32

Chapter 4. Developing a Simple RPC Application . 39
The Remote Procedure Call Model . 39

RPC Application Code . 40
Stubs . 41
The RPC Runtime . 42
RPC Application Components Working Together . 43
Overview of DCE RPC Development Tasks . 44

Writing an Interface Definition . 45
RPC Interfaces Represent Services . 46
Generating an Interface UUID . 48
Naming the Interface . 48
Specifying Interface Attributes . 49
Import Declarations . 49
Constant Declarations . 49
Type Declarations . 49
Operation Declarations . 50

Running the IDL Compiler . 51
Writing the Client Code . 51
Writing the Server Code . 53

The greet_server.c Source Code . 53
The greet_manager.c Source Code . 56

Building the greet Programs . 56
Running the greet Programs . 57

Chapter 5. RPC Fundamentals . 59
Direct Implications of Remoteness . 59
Universal Unique Identifiers . 60
Communications Protocols . 60
Binding Information . 61

Server Binding Information . 62
Defining a Compatible Server . 63
How Clients Obtain Server Binding Information . 64
Client Binding Information for Servers . 66

Endpoints . 67
Well-Known Endpoints . 67
Dynamic Endpoints . 67

Run time Semantics . 68
Communications Failures . 70
Scalability . 70
RPC Objects . 71

Chapter 6. Basic RPC Routine Usage . 73
Overview of the Basic RPC Runtime Routines . 73
Server Initialization Using the RPC Routines . 75

Assigning Types to Objects . 76
Registering Interfaces . 77
Selecting RPC Protocol Sequences . 78
Obtaining a List of Server Binding Handles . 79

vi Application Development Guide: Core Components

Registering Endpoints . 79
Making Binding Information Accessible to Clients . 79
Listening for Calls . 81

How Clients Find Servers . 81
Searching a Namespace . 82
Using String Bindings to Obtain Binding Information . 83

Chapter 7. RPC and Other DCE Components . 85
Threads in RPC Applications . 85

RPC Threads . 87
Cancel Operations . 88
Multithreaded RPC Applications . 89

Security and RPC: Using Authenticated RPC . 91
Authentication . 91
Authorization . 93
Authenticated RPC Routines . 94

Directory Services and RPC: Using the Namespace . 96
NSI Directory Service Entries . 96
Strategies for Using Directory Service Entries . 114
The Service Model for Defining Servers . 117
The Resource Model for Defining Servers . 121

Chapter 8. DCE Data Representation Support Considerations . 129
The DCE Model . 129
Data Type Considerations for Users . 130

Floating-Point Data . 131
Integer Data . 131
Character Data . 131
Double-Byte Character Data . 136

Internationalization Considerations for DCE Applications . 136
Code Page Considerations . 138

Homogeneous Code Page Considerations . 139
Heterogeneous Code Page Considerations . 139

DCE-specific Considerations . 139
Code Page Restrictions . 139
Client Application Data Considerations . 140

Chapter 9. Writing Internationalized RPC Applications . 143
Character Sets, Code Sets, and Code Set Conversion . 143
Remote Procedure Call with Character/Code Set Interoperability . 144
Building an Application for Character and Code Set Interoperability . 147

Writing the Interface Definition File . 148
Writing the Attribute Configuration File . 149
Writing the Stub Support Routines . 150
Writing the Server Code . 153
Writing the Client Code . 159
Writing the Evaluation Routine . 163

Chapter 10. Topics in RPC Application Development . 173
Memory Management . 173

Using the Memory Management Defaults . 174
Using rpc_ss_allocate and rpc_ss_free . 174
Using Your Own Allocation and Free Routines . 175
Using Thread Handles in Memory Management . 176

 Contents vii

Guidelines for Error Handling . 176
Exceptions . 177
The fault_status Attribute . 178
The comm_status Attribute . 178
Determining Which Method to Use for Handling Exceptions . 178
Examples of Error Handling . 179

Context Handles . 180
Context Handles in the Interface . 181
Context Handles in a Server Manager . 182
Context Rundown . 190
Binding and Security Information . 191

Pipes . 192
Input Pipes . 192
Output Pipes . 194
Pipe Summary . 197

Nested Calls and Callbacks . 197
Routing Remote Procedure Calls . 199

Obtaining an Endpoint . 200
Buffering Call Requests . 205
Queuing Incoming Calls . 206
Dynamic Executor Threads . 208
Selecting a Manager . 209

Creating Portable Data Using the IDL Encoding Services . 211
Memory Management for IDL Encoding Services . 212
Buffering Styles . 212
IDL Encoding Services Handles . 213
Programming Example . 214
Performing Multiple Operations on a Single Handle . 219
Determining the Identity of an Encoding . 219

Chapter 11. Interface Definition Language . 221
The Interface Definition Language File . 221
Syntax Notation Conventions . 221

Typography . 221
Special Symbols . 222

IDL Lexical Elements . 222
Identifiers . 222
Keywords . 222
Punctuation Characters . 222
White Space . 223
Case Sensitivity . 223

IDL versus C . 223
Declarations . 224
Data Types . 224
Attributes . 224

Interface Definition Structure . 224
Interface Definition Header . 224
Interface Definition Body . 225

Overview of IDL Attributes . 225
Interface Definition Header Attributes . 226

The uuid Attribute . 226
The version Attribute . 226
The endpoint Attribute . 227
The exceptions Attribute . 228

viii Application Development Guide: Core Components

The pointer_default Attribute . 229
The local Attribute . 229
Rules for Using Interface Definition Header Attributes . 229
Examples of Interface Definition Header Attributes . 230

Import Declarations . 230
Constant Declarations . 230

Integer Constants . 231
Boolean Constants . 231
Character Constants . 231
String Constants . 231
NULL Constants . 232

Type Declarations . 232
Type Attributes . 232
Base Type Specifiers . 232
Constructed Type Specifiers . 234
Predefined Type Specifiers . 234
Type Declarator . 234

Operation Declarations . 234
Operation Attributes . 235
Operation Attributes: idempotent, broadcast, and maybe . 235
Operation Attributes: Memory Management . 236

Parameter Declarations . 236
Basic Data Types . 237

Integer Types . 237
Floating-Point Types . 238
The char Type . 238
The boolean Type . 238
The byte Type . 239
The void Type . 239
The handle_t Type . 239
The error_status_t Type . 239
International Characters . 240

Constructed Data Types . 240
Structures . 240
Unions . 241
Enumerations . 244
Pipes . 244
Arrays . 247
Strings . 253
Pointers . 254
Customized Handles . 267
Context Handles . 268

Associating a Data Type with a Transmitted Type . 273
IDL Grammar Synopsis . 275

Chapter 12. Attribute Configuration Language . 285
Syntax Notation Conventions . 285
Attribute Configuration File (ACF) . 285

Naming the ACF . 285
Compiling the ACF . 286
ACF Features . 286

Structure . 286
ACF Interface Header . 287
ACF Interface Body . 287

 Contents ix

The include Statement . 288
The auto_handle Attribute . 288
The explicit_handle Attribute . 289
The implicit_handle Attribute . 290
The comm_status and fault_status Attributes . 291
The code and nocode Attributes . 292
The represent_as Attribute . 293
The enable_allocate Attribute . 294
The heap Attribute . 295
The extern_exceptions Attribute . 296
The encode and decode Attributes . 296
The cs_char Attribute . 298
The cs_stag, cs_drtag, and cs_rtag Attributes . 302
The cs_tag_rtn Attribute . 303
The binding_callout Attribute . 305

Summary of Attributes . 306
ACF Grammar Synopsis . 306

Chapter 13. Introduction to Multithreaded Programming . 315
Advantages of Using Threads . 315
Software Models for Multithreaded Programming . 315

Boss/Worker Model . 316
Work Crew Model . 316
Pipelining Model . 316
Combinations of Models . 317

Potential Disadvantages with Multithreaded Programming . 317

Chapter 14. Thread Concepts and Operations . 319
Thread Operations . 319

Starting a Thread . 319
Terminating a Thread . 319
Waiting for a Thread to Terminate . 320
Deleting a Thread . 320

New Primitives . 321
Attributes Objects . 321

Creating an Attributes Object . 321
Deleting an Attributes Object . 321
Thread Attributes . 322
Mutex Attributes . 323
Condition Variable Attributes . 323

Synchronization Objects . 323
Mutexes . 323
Condition Variables . 325
Other Synchronization Methods . 327

One-Time Initialization Routines . 327
Thread-Specific Data . 327
Thread Cancelation . 328
Thread Scheduling . 329

Chapter 15. Programming with Threads . 331
Using Signals . 331

Types of Signals . 331
DCE Threads Signal Handling . 332
Alternatives to Using Signals . 333

x Application Development Guide: Core Components

Nonthreaded Libraries . 333
Working with Nonthreaded Software . 334

Changing Nonthreaded Code to Be Thread-Reentrant . 334
Avoiding Nonreentrant Software . 334

Global Lock . 335
Thread-Specific Storage . 335

Using Synchronization Objects . 335
Race Conditions . 335
Deadlocks . 336

Signaling a Condition Variable . 336

Chapter 16. Using the DCE Threads Exception-Returning Interface 337
Syntax for C . 337
Using the Exception-Returning Interface . 339
Operations on Exceptions . 339

Declaring and Initializing an Exception Object . 340
Raising an Exception . 340
Defining a Region of Code over Which Exceptions Are Caught . 340
Catching a Particular Exception or All Exceptions . 340
Defining Epilog Actions for a Block . 341
Importing a System-Defined Error Status into the Program as an Exception 341

Rules and Conventions for Modular Use of Exceptions . 342
DCE Threads Exceptions and Definitions . 343
z/OS ABENDs Caught as Exceptions . 344
Catching Specific System or User ABENDs . 346
Detecting the First Catch of an Exception . 346
Handling Unexpected Exceptions . 347

Chapter 17. DCE Threads Example . 349
Details of Program Logic and Implementation . 349
Threads Example — Searching for Prime Numbers . 351

Chapter 18. Comparing POSIX Multithreading to z/OS Multitasking 357
Types of Threads . 358
Choosing the Type of Thread . 359

Chapter 19. Migrating between UNIX System Services and DCE Threads 361
Differences between UNIX System Services and DCE Threads . 361
Choosing DCE or UNIX System Services Threads . 362
Mutexes . 362
Differences between DCE Threads and UNIX System Services Threads 362

Changes to Threads APIs . 363
Specifying Attributes Objects . 363
Call Attributes Not Supported by UNIX System Services Threads 363
Types Not Supported by UNIX System Services Threads . 364
Mutex Types . 364
Cancelability Versus Interruptibility . 364
Semantic Differences . 364
Miscellaneous Differences . 365

Chapter 20. Introduction to the Distributed Time Service API . 369
DTS Time Representation . 369

Absolute Time Representation . 369
Relative Time Representation . 372

 Contents xi

Time Structures . 373
The utc Structure . 374
The tm Structure . 375
The timespec Structure . 375
The reltimespec Structure . 376

DTS API Header Files . 376
DTS API Routine Functions . 376

Chapter 21. Time-Provider Interface . 379
General TPI Control Flow . 379

ContactProvider Procedure . 381
ServerRequestProviderTime Procedure . 382

Time-Provider Process IDL File . 382
Initializing the Time-Provider Process . 386
Time-Provider Algorithm . 388
DTS Synchronization Algorithm . 389
Running the Time-Provider Process . 389

Running a User-Written Time Provider Program . 389
Sources of Additional Information . 390

Chapter 22. DTS API Routines Programming Example . 391

Chapter 23. Overview of Security . 399
Purpose and Organization of Security Section . 399
About Authenticated RPC . 400
About the Generic Security Service API . 400
What Authentication and Authorization Mean . 400
RACF Authorization using RACF-DCE Interoperability . 401
Authentication, Authorization, and Data Protection in Brief . 401
Summary of DCE Security Services and Facilities . 403

Security Services . 403
Security Facilities . 404
Interfaces to the Login Facility . 405
Interfaces to the Extended Registry Attribute Facility . 405
Interfaces to the Extended Privilege Attribute Facility . 405
Interfaces to the Key Management Facility . 405
Interfaces to the ID Map Facility . 405
Interfaces to the Access Control List Facility . 406
Interfaces to the Password Management Facility . 406
Interfaces to RACF-DCE Interoperability . 406

Relationships Between the Security Service and DCE Applications . 407
DTS, the Cell Namespace, and Security . 407

Time and Security . 407
The Cell Namespace and the Security Namespace . 408

Using DCE Three Different Ways . 408
Using the DCE Security Services DLL . 409

Chapter 24. Authentication . 413
Background Concepts . 413

Principals . 413
Cells and Realms . 414
The Shared-Secret Authentication Protocol . 414
Protection Levels . 414
Data Encryption Mechanisms . 415

xii Application Development Guide: Core Components

A Walkthrough of the Shared Secret Authentication Protocol . 415
A Walkthrough of User Authentication . 416
A Walkthrough of DCE Application Authentication . 425
A Walkthrough of DCE Application Authentication Using GSSAPI 430

Intercell Authentication . 433
Authentication Service Surrogates . 433
Intercell Authentication by Trust Peers . 434

Chapter 25. Authorization . 435
DCE Authorization . 435

Object Types and ACL Types . 435
ACL Manager Types . 436
ACLs . 437
ACL Entries . 437
Access Checking . 440
Examples of ACL Checking . 444

Name-Based Authorization . 446

Chapter 26. GSSAPI Credentials . 447
Using Default Credentials . 447

Initiate a Security Context . 448
Accept a Security Context . 448

Creating New Credential Handles . 448
Initiating a Security Context with New Credential Handles . 448
Accepting a Security Context Using New Credential Handles . 448

Delegating Credentials . 449
Initiating a Security Context to Delegate Credentials . 449
Accepting a Security Context with Delegated Credentials . 449

Chapter 27. The Extended Privilege Attribute Application Program Interface 451
Identities of Principals in Delegation . 451

ACL Entry Types for Delegation . 452
ACL Checking for Delegation . 453

Calls to Establish Delegation Chains . 453
Types of Delegation . 453
Target and Delegate Restrictions . 454
Optional and Required Restrictions . 455
Compatibility between z/OS and Pre-OS/390 Servers and Clients 455

Calls to Extract Privilege Attribute Information . 456
Opaque Handles for sec_cred Calls . 456

Disabling Delegation . 457
Setting Extended Attributes . 457

Chapter 28. The Registry Application Program Interface . 459
Binding to a Registry Site . 459
The Registry Database . 460

Creating and Maintaining PGO Items . 460
Creating and Maintaining Accounts . 461
Registry Properties and Policies . 462
Routines to Return UNIX Structures . 463
Miscellaneous Registry Routines . 463

Chapter 29. The Extended Attribute Application Program Interfaces 465
Extended Registry Attribute API . 465

 Contents xiii

Attribute Schema . 466
Attribute Types and Instances . 466
Attribute Type Components . 466

Calls to Manipulate Schema Entries . 471
The sec_attr_schema_entry_t Data Type . 471
Creating and Managing Schema Entries . 472
Reading Schema Entries . 474
Reading the ACL Manager Types . 475

Calls to Manipulate Attribute Instances . 475
The sec_attr_t Data Type . 476
Creating and Managing Attribute Instances . 476
Reading Attribute Instances . 477
Searching for Attribute Instances . 479

The Attribute Trigger Facility . 481
Defining an Attribute Trigger/Attribute Association . 481
Trigger Binding . 482
Access Control on Attributes with Triggers . 483

Calls that Access Attribute Triggers . 484
Using sec_attr_trig_cursor_t with sec_attr_trig_query() . 484
sec_rgy_attr_trig_query() and sec_rgy_attr_trig_update() . 484
priv_attr_triq_query() . 484

The DCE Attribute API . 485
Macros to Aid Extended Attribute Programming . 486

Macros to Access Binding Fields . 486
Macros to Access Schema Entry Fields . 487
Macros to Access Attribute Instance Fields . 488
Binding Data Structure Size Calculation Macros . 490
Schema Entry Data Structure Size Calculation Macros . 490
Attribute Instance Data Structure Size Calculation Macros . 490
Binding Semantic Check Macros . 491
Schema Entry Semantic Check Macros . 492
Attribute Instance Semantic Check Macros . 492
Schema Entry Flag Set and Unset Macros . 492
Schema Trigger Entry Flag Check Macros . 493

Utilities to Use with Extended Attribute Calls . 493

Chapter 30. The Login Application Program Interface . 495
Establishing Login Contexts . 495

Validating the Login Context and Certifying the Security Server . 496
Validating the Login Context Without Certifying the Security Server 496
Example of a System Login Program . 497
Establishing the Initial Context . 497

Handling Expired Certificates of Identity . 497
Importing and Exporting Contexts . 498
Changing a Groupset . 499
Miscellaneous Login API Functions . 499

Getting the Current Context . 500
Getting Information from a Login Context . 500
Getting Group Information for Local Process Identities . 500
Releasing and Deleting a Context . 500

Chapter 31. The Key Management Application Program Interface 501
Retrieving a Key . 501
Changing a Key . 502

xiv Application Development Guide: Core Components

Automatic Key Management . 502
Deleting Expired Keys . 503
Deleting a Compromised Key . 503

Chapter 32. The Access Control List Application Program Interfaces 505
The Client-Side API . 506

Binding to an ACL . 506
ACL Editors and Browsers . 506
Testing Access . 507
Errors . 507

Guidelines for Constructing ACL Managers . 507
Extended Naming of Protected Objects . 508

The ACL Network Interface . 509
The ACL Library . 509

Chapter 33. The ID Map Application Program Interface . 515

Chapter 34. DCE Audit Service . 517
Features of the DCE Audit Service . 517
Components of DCE Audit Service . 517
DCE Audit Service Concepts . 517

Audit Clients . 518
Code Point . 518
Events . 518
Event Class . 520
Event Class Number . 520
Filters . 520
Audit Records . 521
Audit Trail File . 521

Administration and Programming in DCE Audit . 521
Programmer Tasks . 522
Administrator Tasks . 523

Chapter 35. Using the Audit API Routines . 525
Adding Audit Capability to Distributed Applications . 525

Opening the Audit Trail . 525
Initializing the Audit Records . 526
Adding Event-Specific Information . 527
Committing an Audit Record . 527
Closing an Audit Trail File . 528

Writing Audit Trail Analysis and Examination Tools . 528
Opening an Audit Trail File for Reading . 528
Reading the Desired Audit Records into a Buffer . 528
Transforming the Audit Record into Readable Text . 529
Discarding the Audit Record . 530
Closing the Audit Trail File . 530

Chapter 36. The Password Management Application Programming Interfaces 531
The Client-Side API . 532

Example of a Password Change Program . 532
The Password Management Network Interface . 533

Chapter 37. RACF-DCE Interoperability Application Programming Interfaces 535
DCE APIs . 535

 Contents xv

z/OS APIs . 535

Appendix A. POSIX-based DCE Portable Character Set . 537

Appendix B. IBM Code Pages . 541
Code Page IBM-1027 . 541
Code Page IBM-1047 . 542
Code Page IBM-037 . 543
Code Page IBM-273 . 544
Code Page IBM-277 . 545
Code Page IBM-278 . 546
Code Page IBM-280 . 547
Code Page IBM-284 . 548
Code Page IBM-285 . 549
Code Page IBM-297 . 550
Code Page IBM-500 . 551
Code Page IBM-871 . 552

Appendix C. Notices . 553
Trademarks . 554

Glossary . 557

Bibliography . 577
z/OS DCE Publications . 577
z/OS SecureWay Security Server Publications . 577
Tool Control Language Publication . 578
IBM C/C++ Language Publication . 578
z/OS DCE Application Support Publications . 578
Encina Publications . 579

Index . 581

xvi Application Development Guide: Core Components

 Figures

1. The dced Entry Lists . 9
2. Structure of an Entry . 9
3. Accessing Host Data . 12
4. The Parts of an RPC Application . 41
5. Marshalling and Unmarshalling Between ASCII and EBCDIC Data 42
6. Interrelationships During a Remote Procedure Call . 43
7. Generating Stubs . 44
8. Building a Simple Client and Server . 45
9. GREET Interface Definition . 47

10. Role of RPC Interfaces . 47
11. A Binding . 61
12. Information Used to Identify a Compatible Server . 64
13. Client Binding Information Resulting from a Remote Procedure Call 66
14. Types of Managers . 77
15. Exporting Server Binding Information . 80
16. Importing Server Binding Information . 82
17. Local Application Thread During a Procedure Call . 86
18. Server Application Thread and Multiple Call Threads . 86
19. Phases of an RPC Thread . 87
20. Concurrent Call Threads Running in Shared Address Space . 88
21. Phases of a Cancel in an RPC Thread . 89
22. A Multithreaded RPC Application Acting as Both Server and Client 90
23. NSI Attributes . 97
24. Parts of a Global Name . 99
25. Possible Information in a Server Entry . 100
26. Possible Mappings of a Group . 101
27. Possible Mappings of a Profile . 103
28. Import and Lookup Search Algorithm within a Single Entry . 109
29. Priorities Assigned on Proximity of Members . 116
30. Service Model: Interchangeable Instances on Two Hosts . 118
31. Service Model: Interchangeable Instances on One Host . 119
32. Service Model: Distinct Instances on One Host . 121
33. Resource Model: A System-Specific Application . 124
34. Resource Model: A Single Server Entry for Each Server . 125
35. Resource Model: A Separate Server Entry for Each Object . 126
36. The DCE Model for Handling Multiple Code Pages . 130
37. How SAA Latin-1 Characters are Used in DCE . 132
38. Code Page Conversions . 133
39. Restriction on DCE Client Code Set . 140
40. Phases of a Nested RPC . 198
41. Phases of a Nested RPC to a Client Address Space . 198
42. Steps in Routing Remote Procedure Calls . 200
43. Mapping Information and Corresponding Endpoint Map Elements 201
44. Decisions for Looking Up an Endpoint . 203
45. A Request Buffer at Full Capacity . 206
46. Stages of Call Routing by a Server Process . 207
47. Decisions for Selecting a Manager . 211
48. string_tree.idl Source . 262
49. string_tree_client.c Source . 263
50. string_tree_manager.c Source . 265

 Copyright IBM Corp. 1994, 2001 xvii

51. string_tree_server.c Source . 266
52. string_tree output . 267
53. Example of an IDL File That Uses a Context Handle . 272
54. Example of a Context Rundown Procedure . 273
55. Work Crew Model . 316
56. Pipelining Model . 317
57. Thread State Transitions . 319
58. Only One Thread Can Lock a Mutex . 323
59. Thread A Waits on Condition Ready, Then Wakes Up and Proceeds 325
60. Thread B Signals Condition Ready . 326
61. Syntax for Handling Exceptions . 337
62. Using the RERAISE Statement . 338
63. Example of a FINALLY statement . 339
64. Catching a Particular Exception . 341
65. An Example of an Invariant Action . 341
66. Coding Example: Setting z/OS S806 ABEND to be an Exception 345
67. Detecting the First Catch of an Exception . 347
68. Threads Example Searching . 351
69. Threading Model Overview . 358
70. ISO Format for Time Displays . 370
71. Changed ISO Format acceptable as Input . 371
72. Full Syntax for a Relative Time . 372
73. Time Period Data Element Syntax . 373
74. tm Structure Declaration . 375
75. timespec Structure Declaration . 375
76. reltimespec Structure Declaration . 376
77. DTS API Routines Shown by Functional Grouping . 377
78. DTS Time-Provider RPC Calling Sequence . 380
79. Time Service Provider Interface . 383
80. Initializing the Time-Provider Process . 387
81. An Example of a DTS Program . 392
82. Shared-Secret Authentication and DCE Authorization in Brief . 403
83. DCE Security and the DCE Application Environment . 407
84. Representational Conventions Used in Authentication Walkthrough Illustrations 416
85. Client Acquires Ticket-Granting Ticket Using Third-Party Protocol 418
86. Client Acquires Ticket-Granting Ticket Using the OSF DCE 1.0 Protocol 421
87. Client Acquires Privilege-Ticket-Granting Ticket . 423
88. Client Sets Authentication and Authorization Information . 426
89. Client Principal Makes Application Request . 427
90. Application Server Challenges Client . 428
91. Application Server Responds to Client’s Request . 429
92. Peer Applications Establish a Security Context . 431
93. Derivation of ACL Defaults . 436
94. Pseudocode to Illustrate the user_obj Entry Check . 440
95. Pseudocode for the foreign_user check . 441
96. Pseudocode for Checking Group Entries . 442
97. Pseudocode to Check the other_object Entry . 442
98. Pseudocode to Check the foreign_other Entries . 443
99. Pseudocode to Check the any_other Entry . 443
100. The sec_attr_schema_entry_t Data Type . 472
101. The sec_attr_t Data Type . 476
102. The sec_attr_bind_info_t Data Type . 482
103. Example of a System Login Program from a Privileged User ID 497
104. An Example of Handling Expired Certificates of Identity . 498

xviii Application Development Guide: Core Components

105. Removing Groups from Their Groupsets . 499
106. ACL Program Interfaces . 505
107. Protection with Extended Naming . 508
108. Event Number Formats . 519
109. Overview of the DCE Audit Service . 524
110. Usage of Password Management Facility APIs . 531
111. Code Page IBM-1027 . 541
112. Code Page IBM-1047 . 542
113. Code Page IBM-037 . 543
114. Code Page IBM-273 . 544
115. Code Page IBM-277 . 545
116. Code Page IBM-278 . 546
117. Code Page IBM-280 . 547
118. Code Page IBM-284 . 548
119. Code Page IBM-285 . 549
120. Code Page IBM-297 . 550
121. Code Page IBM-500 . 551
122. Code Page IBM-871 . 552

 Figures xix

xx Application Development Guide: Core Components

 Tables

1. API Routines for Remote Server Management . 19
2. Basic Tasks of an RPC Application . 40
3. Run time Semantics . 68
4. Basic Runtime Routines . 74
5. SAA Variant Characters . 132
6. Variant Characters — Code Point Representation . 134
7. Locales supported by z/OS DCE . 135
8. Tasks of an Internationalized RPC Application . 144
9. IDL Attributes . 225

10. Base Data Type Specifiers . 232
11. Backus-Naur Format for the Interface Definition Language . 275
12. Cross Reference of the Backus-Naur Format for the Interface Definition Language 282
13. Summary of the ACF Attributes . 306
14. Backus-Naur Format for the Attribute Configuration File Language 306
15. Cross Reference of the Backus-Naur Format for the Attribute Configuration File Language . . 309
16. DCE Threads Exceptions . 343
17. z/OS ABENDs Mapped as OSF Portable Exceptions . 345
18. Exception Dump Scenarios . 348
19. Reasons for Using DCE or UNIX System Services Threads . 361
20. Absolute Time Structures . 374
21. Relative Time Structures . 374
22. Credential Types . 447
23. Encodings and Required Data Types . 473
24. POSIX 1003.2 Portable Character Set (without Control Characters) 537

 Copyright IBM Corp. 1994, 2001 xxi

xxii Application Development Guide: Core Components

About This Book

The objective of this book is to assist you in designing, writing, compiling, linking, and running distributed
applications on the IBM z/OS operating system using z/OS DCE. The steps to develop a distributed
application using DCE services and application programming interfaces (API) are described in progressive
detail. Also discussed are the development decisions and tools that you need to consider when
developing your distributed application using z/OS DCE.

To create DCE applications that access IMS or CICS transactions, refer to z/OS DCE Application
Support Programming Guide.

Who Should Use This Book

This book assumes you are an experienced application developer or programmer with a working
knowledge of the C programming language and the z/OS operating system. You do not have to possess
prior knowledge of, or experience with, designing and writing distributed applications using the Open
Software Foundation (OSF) Distributed Computing Environment (DCE) services and APIs.

Ideally, you should be able to:

� Allocate z/OS data sets
� Edit, browse, and copy z/OS data sets and associated members
� Print data sets
� Write and submit batch jobs on z/OS
� Write, compile, link, and run C/C++ programs on z/OS
� Write and understand JCL to run on z/OS
� Understand Shell and TSO/E commands.

A good working knowledge and understanding of the following would be helpful:

� Interactive System Productivity Facility/Program Development Facility (ISPF/PDF)
� Concepts behind a distributed application
� Using the Spool Display and Search Facility (SDSF) to check on the status of your application.

Some exposure to the UNIX or AIX operating system is helpful but not essential to use this book.

You should be familiar with the concepts of the Distributed Computing Environment. If you are not, read
z/OS DCE Introduction.

DCE Application Development Environment

It is conceivable that you may develop your DCE applications on a platform other than the z/OS operating
system. Perhaps you may prefer to work on a UNIX-based workstation or a proprietary operating system.
If your goal is to ultimately run either the client or server portion of your DCE application on z/OS, ensure
that portion of your DCE application conforms to all recommendations contained in this book.

This book describes the development steps assuming you are developing your DCE applications on the
z/OS operating system. If you are developing DCE applications on the z/OS platform that are targeted to
run on another platform, consult the DCE application development documentation associated with that
platform.

 Copyright IBM Corp. 1994, 2001 xxiii

Unsupported OSF DCE Functions

The following DCE technology functions, which may be available in the Distributed Computing
Environment product from OSF or on DCE offerings from other vendors, are not supported in z/OS DCE:

� DCE Directory Services

– X/Open Data Services (XDS) function (Global Directory Service (GDS) portion)
– X/Open OSI-Abstract-Data Manipulation (XOM) function (GDS portion)

 – Global Directory

On z/OS, only CDS, XDS, and XOM access to CDS are supported. GDS, XDS, and XOM access to GDS
are not supported.

The following DCE daemon is not supported on z/OS DCE:

� DCE Security daemon

Note: Although the DCE Security daemon is not included in z/OS DCE, a security server is available
from IBM as a separately licensed program.

OSF DCE Programming Interfaces

 � pthread interfaces

– The following interfaces are not supported by z/OS DCE and return -1, errno ENOSYS:

 - pthread_attr_getinheritsched()
 - pthread_attr_getprio()
 - pthread_attr_getsched()
 - pthread_attr_setinheritsched()
 - pthread_attr_setprio()
 - pthread_attr_setsched()
 - pthread_getprio()
 - pthread_getscheduler()
 - pthread_setprio()
 - pthread_setscheduler()

– For all pthread interfaces (including mutexes, threads, condition variables and so on), the
interfaces do not accept copies of the objects as a parameter. The object returned from the
pthread interface to create the object must be used at all times.

– Unlike the OSF DCE implementation, the z/OS DCE implementation of the following functions can
raise an exception (exc_e_cpa_error) in error situations:

 - pthread_lock_global_np()
 - pthread_unlock_global_np()

– pthread_cond_timedwait() expects an absolute hardware time (that is, time-of-day clock value) for
the wait time instead of the DCE software clock time, which is what OSF/DCE expects.
pthread_get_expiration_np() returns a software adjusted time as in the OSF/DCE model, and is
used as input to pthread_cond_timedwait().

– exc_report() does not print out a message to stderr as expected. z/OS DCE uses Reliability,
Availability and Serviceability (RAS) services to log messages instead of this function.

– pthread_cond_init cannot initialize a condition variable more than once.

– pthread_mutex_init cannot initialize a mutex more than once.

 � Exceptions

xxiv Application Development Guide: Core Components

– z/OS DCE catches z/OS ABENDs in addition to the set of predefined exceptions and user defined
exceptions.

– TRY/CATCH/ENDTRY macros can raise an exc_e_insfmem exception if they cannot get enough
heap storage.

– TRY/CATCH/ENDTRY macros can raise an exc_e_uninitexc exception if they detect that the
CATCH does not specify a valid exception.

� Remote Procedure Call

The following interfaces are not supported:

 – rpc_mgmt_set_server_stack_size()

 � Security Services

The following interfaces are not supported:

 – sec_login_get_pwent()
 – sec_login_init_first()

How This Book Is Organized

This guide is divided into five major parts. The first part introduces some DCE facilities and the following
parts contain detailed information on using the various DCE components and their respective APIs that are
supported by z/OS DCE.

� Part 1, “DCE Facilities” on page 1 introduces two DCE facilities, DCE Host Services and the DCE
Backing Store. Descriptions of these facilities and how you might put these useful facilities to work in
your applications is detailed in this part.

� Part 2, “Using the DCE Remote Procedure Call APIs” on page 35 shows you how to use the Remote
Procedure Call (RPC) APIs to create DCE RPC applications. You are introduced to the RPC model
and RPC components, and shown the steps in developing an RPC application. Advanced RPC
issues, such as using the Name Service Interface and handling remote errors, are discussed. In
addition, the syntax notation conventions and language elements of the Interface Definition Language
(IDL) and Attribute Configuration Language (ACF) are described in detail.

� Part 3, “Using the DCE Threads APIs” on page 313 shows you how to increase the performance of
your distributed applications using the DCE Threads APIs. You are introduced to Threads concepts
and shown several models for multithreaded programming. In addition, you are shown how to use the
DCE Threads exception handling interface to handle abnormal conditions in your applications. A
comparison between DCE Threads concepts and z/OS multitasking is provided to help you avoid
pitfalls caused by semantic differences.

� Part 4, “Using the DCE Distributed Time Service APIs” on page 367 shows you how to use the DTS
APIs in DCE applications to convert between different time formats and representations to determine
event sequencing, duration, and scheduling. In addition, you are shown how to use external
time-provider services with the DCE Time-Provider Interface. A programming example shows you how
to use the DTS APIs.

� Part 5, “Using the DCE Security APIs” on page 395 provides details on the DCE Security services
and facilities, and describes the main Security interfaces. Walkthroughs of Authentication and
Authorization are presented to enhance your understanding of the DCE security concepts. You are
shown how to use the DCE Security APIs to enable your client applications to communicate with the
Registry server, establish a login context, manage secret keys, and communicate with the Access
Control List facility.

To find more information on topics related to application development not addressed in this book, consult
the following:

 About This Book xxv

� z/OS DCE Application Development Reference, SC24-5908

� z/OS DCE Administration Guide, SC24-5904

� z/OS DCE Application Support Programming Guide, SC24-5902 (CICS and IMS)

� z/OS DCE Messages and Codes, SC24-5912

For example, the DCE CDS is discussed in detail as a separate component in the administration
documentation. Similarly, certain aspects of the DCE Security Service important to application developers
(such as adding new principals to the registry database) are found only in the administration books.

Terminology Used in This Book

Because DCE technology has been developed from the UNIX environment, many DCE concepts and
terms contained herein relate to that environment. z/OS terms and concepts are used throughout this
book wherever possible.

The following table explains how certain terms are used in this book and how they are related.

Related Terms Relationship

file

data set

sequential data set

partitioned data set member

hierarchical file system (HFS) file

Throughout this book, the term file can refer to a sequential data
set, a member of a partitioned data set, or a hierarchical file
system (HFS) file (UNIX System Services file system). For more
information on hierarchical file systems in z/OS, see z/OS UNIX
System Services User's Guide, SA22-7801.

user prefix

data set names

The term user prefix is used throughout this book when referring
to the names of data sets in a TSO/E environment. In that
environment, the user prefix is usually a user’s logon
identification. If desired, you can set the user prefix to a value
other than the your logon identification by using the TSO/E
PROFILE command. In z/OS batch mode, your user prefix
depends on whether Resource Access Control Facility (RACF),
a component of the SecureWay Security Server for z/OS, or
another security product is installed on your system. If RACF is
installed, and you are processing in batch mode, your user prefix
can be the same as your logon user identification. If RACF is
not installed and you are processing in batch mode under z/OS,
you may not have to use a prefix. See your systems
programmer to determine the RACF settings for your site.

Unless otherwise specified, when the full name of a data set is
referred to, the high-level qualifier for that data set will be
represented by USERPRFX. The USERPRFX is determined by
the application developer, and depends on the library where the
application is installed. For example,
USERPRFX.EXAMPLE.C(MEMBER) represents a partitioned data
set whose first-level qualifier is represented by USERPRFX,
whose second-level qualifier is EXAMPLE, and whose third-level
qualifier is C. Its member is MEMBER.

application programming interface (API)

call

function

routine

Throughout this book, the terms API, call, function, and routine
all refer to the same z/OS DCE application programming
interface. For example, rpc_binding_free() API,
rpc_binding_free() call, and rpc_binding_free() routine, all
refer to the same rpc_binding_free() function.

xxvi Application Development Guide: Core Components

Conventions Used in This Book

This book uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must enter into
the system literally, such as commands, options, or path names.

Italic Italic words or characters represent values for variables.

Example font Examples and information displayed by the system appear in constant width
type style.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item one
or more times.

\ A backslash is used as a continuation character when entering commands
from the shell that exceed one line (255 characters). If the command
exceeds one line, use the backslash character \ as the last non-blank
character on the line to be continued, and continue the command on the next
line.

This book uses the following keying conventions:

<Alt-c> The notation <Alt-c> followed by the name of a key indicates a control character
sequence.

<Return> The notation <Return> refers to the key on your keyboard that is labeled with the
word Return or Enter, or with a left arrow.

Entering commands When instructed to enter a command, type the command name and then press
<Return>.

Related Terms Relationship

DCE components Throughout this book, all references to individual DCE
components (such as RPC) refer to that component within z/OS
DCE. For example, references to RPC, DCE RPC, and z/OS
DCE RPC all refer to the same z/OS DCE component.

z/OS SecureWay Security Server DCE In this book the term “DCE Security Server” (or simply “Security
Server”) refers to the z/OS SecureWay Security Server DCE or
to a DCE Security Server provided on another host in the DCE
cell. The z/OS SecureWay Security Server DCE is a component
of the SecureWay Security Server for z/OS.

daemon

process

started task

address space

The term daemon (originating from the UNIX operating system)
is used throughout this book. It is synonymous with a process.
Usually there is one process per address space; however, the
DCEKERN started task is an exception in that its address space
contains several processes (or daemons).

 About This Book xxvii

Where to Find More Information

Where necessary, this book references information in other books using shortened versions of the book
title. For complete titles and order numbers of the books for all products that are part of z/OS, see the
z/OS Information Roadmap, SA22-7500. For complete titles and order numbers of the books for z/OS
DCE, refer to the publications listed in the “Bibliography” on page 577.

For information about installing z/OS DCE components, see the z/OS Program Directory.

 Softcopy Publications

The z/OS DCE library is available on a CD-ROM, z/OS Collection, SK3T-4269. The CD-ROM online
library collection is a set of unlicensed books for z/OS and related products that includes the IBM Library
Reader. This is a program that enables you to view the BookManager files. This CD-ROM also
contains the Portable Document Format (PDF) files. You can view or print these files with the Adobe
Acrobat reader.

 Internet Sources

The Softcopy z/OS publications are also available for web-browsing and for viewing or printing PDFs using
the following URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

You can also provide comments about this book and any other z/OS documentation by visiting that URL.
Your feedback is important in helping to provide the most accurate and high-quality information.

Using LookAt to Look up Message Explanations

LookAt is an online facility that allows you to look up explanations for z/OS messages. You can also use
LookAt to look up explanations of system abends.

Using LookAt to find information is faster than a conventional search because LookAt goes directly to the
explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system. You can obtain the
LookAt code for TSO from the LookAt Web site by clicking on the News and Help link or from the z/OS
Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat message-id as in the
following:

lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message ID and select the
release with which you are working.

xxviii Application Development Guide: Core Components

Note: Some messages have information in more than one book. For example, IEC192I has routing and
descriptor codes listed in z/OS MVS Routing and Descriptor Codes, SA22-7624. For such
messages, LookAt prompts you to choose which book to open.

Accessing Licensed Books on the Web

z/OS licensed documentation in PDF format is available on the Internet at the IBM Resource Link site:

http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to these books requires an
IBM Resource Link user ID, password, and z/OS licensed book key code. The z/OS order that you
received provides a memo that includes your key code.

To obtain your IBM Resource Link user ID and password, logon to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Logon to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.
3. Select Access Profile.
4. Select Request Access to Licensed books.
5. Supply your key code where requested and select the Submit button.

If you supplied the correct key code you will receive confirmation that your request is being processed.

After your request is processed you will receive an e-mail confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

To access the licensed books:

1. Logon to Resource Link using your Resource Link user ID and password.
 2. Select Library.
 3. Select zSeries.
 4. Select Software.
 5. Select z/OS.

6. Access the licensed book by selecting the appropriate element.

 About This Book xxix

xxx Application Development Guide: Core Components

 Part 1. DCE Facilities

This part describes two DCE facilities:

� DCE Host Services

� DCE Backing Store

Chapter 1. Introduction to DCE Facilities . 3

Chapter 2. DCE Host Services 5
Types of Applications 5
Issues of Distributed Applications 6
Managing a Host's Endpoint Map 6
Binding to the dced Services 7

Host Service Naming in Applications 8
The dced Maintains Entry Lists 8
Reading All of a Host Service's Data 10
Managing Individual dced Entries 11

Managing Host Data on a Remote Host 14
Kinds of Host Data Stored 14
Adding New Host Data 15
Modifying Host Data 16
Running Programs Automatically When

Host Data Changes 16
Controlling Servers Remotely 18

Two States of Server Management:
Configuration and Execution 19

Configuring Servers 19
Starting and Stopping Servers 21
Enabling and Disabling Services of a

Server . 22

Validating the Security Server 23
Managing Server Key Tables 23

Chapter 3. The DCE Backing Store 27
Data in a Backing Store 27
Using A Backing Store 27
Header for Data 27
The User Interface 28
The IDL Encoding Services 29

Encoding and Decoding in the Backing
Store . 29

Conformant Arrays Not Allowed 29
The Backing Store Routines 30

Opening a Backing Store 30
Closing a Backing Store 30
Storing or Retrieving Data 31
Freeing Data 31
Making or Retrieving Headers 31
Performing Iteration 31
Deleting Items from a Backing Store 32
Locking and Unlocking a Backing Store . . . 32

Example of Backing Store Use 32

 Copyright IBM Corp. 1994, 2001 1

2 Application Development Guide: Core Components

Chapter 1. Introduction to DCE Facilities

By now you are aware that DCE consists of a number of major components, each of which addresses
some necessary aspect of distributed computing:

� Threads make programs more efficient by allowing parallel execution of portions of code

� Remote Procedure Calls (RPCs) hide network details from applications

� Time Service gives consistent time to widely scattered cells and hosts

� Security gives programs assurances that users and other programs are who they say they are and
that they are authorized to do what they are supposed to do

� Directory Service helps clients find servers and other resources

For most applications, a DCE component is not used by itself but the components all work together to
create a very useful and powerful environment.

The more you understand DCE and its components, the more you will realize that a strict division by
component is not always clear. The document set for DCE is organized by component mostly for the
convenience of people trying to explain and understand DCE, but applications often contain a blend of
aspects of all the components. This is why it often seems like the information you need to do your work is
scattered across many chapters or volumes, and why advanced or unusual features seem to be described
along side basic or typical tasks. DCE also has some special facilities that just do not fit neatly into any
one discussion of a DCE component, and these are the facilities we describe in this first part of this book.

You should read the z/OS DCE Application Development Guide: Introduction and Style prior to using the
DCE facilities described here, and you may want to skip to other parts of this book before learning details
about the DCE facilities.

For the most part, the DCE facilities are already used by one or more major components of DCE to
accomplish some feature they require, while others are stand-alone facilities intended to make developing
distributed applications easier. These facilities are described separately here so that you can use them for
your own applications too. The DCE facilities include the following:

Host Services Host Services give remote access to several kinds of data and
functionality with respect to each DCE host and its servers. Each
host runs a DCE Host daemon (dced) as the interface to the Host
Services. In many cases dced automatically maintains the data and
performs the functions. Some of the data that you can access (and
maintain) remotely includes the host name, the host's cell name,
configuration and execution data for all servers on the host, and a
database of endpoints (server addresses) through which running
servers can be contacted. Some of the functions that you can
perform remotely include starting and stopping servers.

Backing Store Database Service You use a backing store to maintain typed data between invocations
of applications. For example, you could store application-specific
configuration data in a backing store, and then when the application
restarts, it could read the previous configuration from the backing
store. Data is stored and retrieved by a UUID or character string
key, and each record (or data item) may have a standard header if
you wish.

As DCE has developed and improved, useful facilities have been added to make DCE easier and more
useful. Some solutions developed to implement a major component's feature can also prove useful to

 Copyright IBM Corp. 1994, 2001 3

your applications. For example, the Security component must have a way to maintain Access Control
Lists (ACLs). While the backing store was developed to handle this kind of task, you can use this facility
to store your own application-specific data across invocations.

This first part of this book describes how you might put these useful facilities to work in your applications.

4 Application Development Guide: Core Components

Chapter 2. DCE Host Services

Every DCE host must maintain certain kinds of data about itself and the servers it provides. For example,
each host stores configuration data about its DCE environment, and it also stores data about servers
registered and running on the host. In addition, each host needs some services to not only manage this
data, but also to administer the host and DCE servers. For example, a service that can start and stop
specific servers has obvious value. The DCE host services consist of the following:

Endpoint Mapper The endpoint mapper service enables a client to find servers on a particular
host and the services and objects provided by those services. This service
maintains on each host an endpoint map that contains a mapping of port
addresses (endpoints) to servers, the services servers provide, and the
objects servers manage.

Host Data Management The host data management service stores and controls access to such data
as the host's cell name, the host name, and the cell alias names, among
other things.

Server Management The server management service can start and stop specified servers on a
host, enable or disable specific services provided by a server, and manage
configuration and execution data about these servers.

Security Validation The security validation service maintains a login context for the host's identity
of itself, maintains the host principal's keys, and assures applications
(especially login programs) that the DCE Security Daemon (secd) is genuine.

Key Table Management A server uses private keys for its security instead of human-entered
passwords. The key table management service can be used to manage the
keys stored in key tables on a server's host.

Of course in a distributed environment, these data and services must be easily yet securely accessible
from other hosts. The DCE Host Daemon (dced) is a continuously running program on each host that
provides access to the host services either locally on that host, or remotely from another host.

Types of Applications

Although your applications may need some aspect of these host services (control over which services are
enabled for a particular server, for example), typical servers do not have to do any special coding for
them. This reduces the size and complexity of server code, and it keeps the details of administration out
of applications. This also takes the burden of server administration off of you so you can concentrate on
the application's business functionality.

System administrators will appreciate this development model too because it is unlikely that many servers
implementing their own administrative mechanisms will all behave in the same manner. Administrators
commonly use the DCE control program, dcecp, to access the host services (via dced) of any host in
their distributed environment (provided the user has the appropriate permissions). The dcecp also uses
a script language for more sophisticated administration. See the z/OS DCE Administration Guide for more
on using dcecp to access the host services.

Although the dcecp commands offer an administrator a great deal of control over DCE hosts and servers,
a set of APIs are also supplied for application developers who need to access the DCE host services from
an application rather than from scripts or the operating system's command line.

 Copyright IBM Corp. 1994, 2001 5

Typical business applications do not use the APIs of these services, but a management application might.
A management application is a client or server that manages other servers or some aspect of the
distributed environment. (The dced is itself a management application that is built into DCE.) Some other
types of applications that might use these APIs include:

� Applications that control other servers for load balancing or server redundancy.

� Applications that use a graphical user interface (GUI) instead of the command line interface provided
by the dcecp program.

� Applications that need to monitor a server's current state. For example, an application may need to
make sure a particular server or one of its services is available.

Issues of Distributed Applications

The most important aspect of dced is that it gives system administrators the ability to remotely manage
services, servers, endpoints, and even objects on any host in DCE. This eliminates the frustrating and
tedious task of logging in to many different hosts to manage them. This also allows for scalability because
it is impractical to manage a large system by logging in to all its hosts.

The features of dced are greatly enhanced when used remotely. Of course an administrator can use
dced to locally manage a host's services, but dced's real power is in remotely managing system and
application server configurations, key tables, server startup, login configurations, and cell information.

Security becomes a major issue when it comes to remote services. With the power of dced's services
and the dcecp tool, it is important that only authorized principals can use them. The dced controls
access to its various objects using ACLs. Server keys are security-sensitive data that must be seldom
transmitted over the network. All key table data are encrypted when they are transmitted for secure
remote key table management.

Finally, the remote capabilities of the dced give you real-time status of processes and services in DCE.

Managing a Host's Endpoint Map

Each DCE host has an endpoint map that contains a mapping of servers to endpoints. Each endpoint
map server entry is associated with an array of services (interfaces) provided by the server, and each
service is associated with an array of objects supported by the service.

When a typical server calls the dce_server_register() routine, the RPC runtime generates the endpoints
on which the server will listen for calls and then uses dced's endpoint mapper service of the local host to
register the endpoints. Later, when a typical client makes a remote procedure call, its RPC runtime uses
the server host's endpoint mapper service to find the server. When the typical server shuts down, it calls
the dce_server_unregister() routine to remove its endpoints from the endpoint map so that clients do not
later try to bind to it.

Applications can also use the lower level rpc_ep_register() and associated RPC routines. Because the
endpoint map is essential for RPCs to work, endpoints are fully described in Chapter 5, “RPC
Fundamentals” on page 59, and the endpoint map structure is described with respect to routing of RPCs
in Chapter 10, “Topics in RPC Application Development” on page 173.

The endpoint map is for the most part maintained automatically by dced. For example, it periodically
removes stale endpoints so that the RPC runtime will not try to complete a binding for a client to a server
that is no longer running. However, administrative applications may find it necessary to peruse a remote
endpoint map and even remove specific endpoints from a local host's endpoint map.

6 Application Development Guide: Core Components

To read the elements of a remote endpoint map, applications use a loop with the set of routines
rpc_mgmt_ep_elt_inq_begin(), rpc_mgmt_ep_elt_inq_next(), and rpc_mgmt_ep_elt_inq_done(). The
inquiry can return all elements until the list is exhausted, or the inquiry can be restricted to return elements
for the following:

� Elements matching an interface identifier (UUID and version number)

� Elements matching an object UUID

� Elements matching both an interface identifier and object UUID

Administrators can manage the endpoint map by using dcecp with the endpoint object. In an extreme
situation, you could permanently remove endpoints directly from the local endpoint map by calling the
rpc_mgmt_ep_unregister() routine. This function cannot be done remotely for security reasons.

Binding to the dced Services

When you write a program that uses a host service, you begin by creating a dced binding to the service
on a particular host. Bindings are relationships between clients and servers that allow them to
communicate. A dced binding is a specific kind of binding that not only gives your application a binding to
the dced server, but it also associates the binding with a specific host service on that server.1

In general, an application follows these basic steps to use a host service:

1. Establish a binding to the service on the desired host. For example, your application can establish a
binding to the host data management service on another host.

2. Obtain one or more dced entries for that service. For example, your application can obtain the host
data entry that identifies the host's cell name, among other things. This step is valid for the following
services:

� Host data management
 � Server management
� Key table management

Depending on the service and function desired, this step may or may not be necessary. For example,
the security validation service does not store data, so dced maintains no entries for this service.

3. Access (read or write) the actual data for the entries obtained or perform other functions appropriate
for the service. For example, if your application reads the host data management service's cell name
entry, the API accesses dced which may actually read the data from a file. For another example, if
your application established a binding to the security validation service, it could validate the Security
daemon.

4. Release the resources obtained in step 2.

5. Free the binding established in step 1.

Applications bind to a host service using the dced_binding_create() or
dced_binding_from_rpc_binding() routine. The first routine establishes a dced binding to a service on a
host specified in a service name, and the second routine establishes a dced binding to a service on a host
for which the application already has a binding. Both of the routines return a dced binding handle of type
dced_binding_handle_t, which is used as an input parameter to all other dced API routines.

1 Applications must establish a binding to each host service used. However, the endpoint mapper service uses a different binding
mechanism and API from the other host services. This is due to the fact that the endpoint mapper service already existed within
the very large RPC API in earlier versions of DCE, prior to the development of dced.

 Chapter 2. DCE Host Services 7

Host Service Naming in Applications

Applications include a host service name as input to the dced binding routine dced_binding_create(). A
host service name is a string that may include a host name, or a cell and host name. The following key
words in the host service name refer to a specific DCE host service:

hostdata The hostdata name refers to configuration data of the host data management service.

srvrconf The srvrconf name refers to the static server configuration portion of the server management
service. This refers to the management of a DCE-installed server.

srvrexec The srvrexec name refers to the dynamic server execution portion of the server management
service. This refers to the management of a running DCE-installed server.

secval The secval name refers to the security validation service.

keytab The keytab name refers to the private key data of the key table management service.

The following examples show service names and the locations of the hosts in the namespace:

service The host is local, the same as the application's.

service@hosts/host The host is in the local namespace.

/.:/hosts/host/config/service The complete specification for the previous example where the host
is in the local namespace.

/.../cell/hosts/host/config/service The host is in the global namespace.

Since the dced_binding_from_rpc_binding() routine already knows which host to bind to from an RPC
binding input parameter, it uses one of the global variables defined for each service (instead of a string) to
specify which dced service to use.

The dced Maintains Entry Lists

One dced service's data is very different from another's (for example, server configuration data versus key
table data), but you manipulate the data in a similar way. This is because it is a simpler and more
efficient design to implement a few API routines that can handle more than one kind of data rather than
many routines that do essentially the same thing but on a different service's data. An added benefit is a
flexible API that can handle your own application's data and new kinds of DCE data in the future.

To separate the actual data from the API implementation, a dced service maintains a list of all data items
in an entry list. Entry lists contain entries that describe the name and location of each item of data, but do
not contain the actual data. With this mechanism, dced can obtain and manipulate data very efficiently,
without concern for the implementation and location of the actual data. It also supports well the model
administrators commonly need when accessing data: scan a list, select an item, and use the data.

Figure 1 on page 9 shows the entry lists maintained by dced.

8 Application Development Guide: Core Components

Host Data Entry

Server Configuration Entry Server Execution Entry

Key Table Entry

hostdata entry list

Server Management Entry Lists

srvrconf entry list srvrexec entry list

keytab entry list

dced

Figure 1. The dced Entry Lists

The dced maintains entry lists for the hostdata, srvrconf, srvrexec, and keytab services. The secval
service does not need an entry list because it does not maintain any data, but functions are performed to
set its state.

There is a special relationship between srvrconf and srvrexec entries. In order for dced to control the
start of a server, the server must have a srvrconf entry associated with server configuration data. When
dced starts a server, it generates from the srvrconf entry and data a srvrexec entry and associates the
new entry with the running server's state.

Although an entry can be associated with many different kinds of data items, all entries have the same
structure as shown in Figure 2.

Entry UUID, Name, Description, Storage Tag

Figure 2. Structure of an Entry

Each entry is a dced_entry_t data structure. Each member of this data structure is described as follows:

 Chapter 2. DCE Host Services 9

id An entry UUID is necessary to uniquely identify the data item. Some data items have
well-known UUIDs (the same UUID for the particular item on all hosts). The data type is
uuid_t.

name Each data item is identified with a name, to which applications refer. The name need only
be unique within an entry list, because the entry UUID guarantees the entry's uniqueness.
Some item names are well-known and defined in header files. The data type is
dced_string_t.

description This is a human-readable description of the data item. Its data type is dced_string_t.

storage_tag The storage tag locates the actual data. Each service knows how to interpret this tag to
find the data. For example, some data is stored in a file, the name of which is contained
in the storage tag. Other data is stored in memory and the storage tag contains a pointer
to the memory location. The data type is dced_string_t.

Reading All of a Host Service's Data

Suppose you want to display host service data in an application that has a graphical user interface. The
dcecp commands may not be adequate to display data for this application. The following example shows
how to obtain the entire set of data for each host service:

dced_binding_handle_t dced_bh;
dced_string_t host_service;
void $data_list;
unsigned32 count;
dced_service_type_t service_type;
error_status_t status;
 .
 .
 .
while(user_selects(&host_service, &service_type)){ /$application specific$/
 dced_binding_create(host_service,
 dced_c_binding_syntax_default,
 &dced_bh,
 &status);

if(status == error_status_ok) {
dced_object_read_all(dced_bh, &count, &data_list, &status);
if(status == error_status_ok) {

display(service_type, count, data_list); /$application specific$/
dced_objects_release(dced_bh, count, data_list, &status);

 }
dced_binding_free(dced_bh, &status);

 }
}

Following is a description of the example:

user_selects() This is an example of an application-specific routine that constructs the
complete service name from host and service name information. Data is
stored and retrievable for the hostdata, srvrconf, srvrexec, and keytab
services. No data is stored for the secval service.

dced_binding_create() Output from the dced_binding_create routine includes a dced binding handle
whose data type is dced_binding_handle_t. If an application already has an
RPC binding handle to a server on the host desired, it can use the
dced_binding_from_rpc_binding() routine to bind to dced and one of its host
services on that host. (Applications also use these routines to bind to the
secval service to perform other functions.)

10 Application Development Guide: Core Components

dced_object_read_all() Applications use the dced_object_read_all() routine to read data for all the
objects in an entry list. The output includes the address of an allocated buffer
of data and a count of the number of objects the buffer contains. The data
type in the buffer depends on the service used.

display() This is an application specific routine that displays the data. Before the data is
displayed, it must be interpreted depending on the service. The hostdata data
is an array of sec_attr_t data structures, the srvrconf and srvrexec data are
arrays of server_t structures, and the keytab data is an array of
dced_key_list_t structures. The following code fragments show the data type
for each service:

void display(
dced_service_type_t service_type, /$ dced service type $/
int count, /$ count of the number of data items $/
void $data) /$ obtained from dced_object_read{_all}() $/
{
 sec_attr_t $host_data;
 server_t $servers;
 dced_key_list_t $keytab_data;
 .
 .
 .
 switch(service_type) {
 case dced_e_service_type_hostdata:

host_data = (sec_attr_t $)data;
. . .

 case dced_e_service_type_srvrconf:
servers = (server_t $)data;
. . .

 case dced_e_service_type_srvrexec:
servers = (server_t $)data;
. . .

 case dced_e_service_type_keytab:
keytab_data = (dced_key_list_t $)data;
. . .

 default:
/$ No other dced service types have data to read. $/

 break;
 }
 return;
}

dced_objects_release() Each call to the dced_object_read_all() routine requires a corresponding call
to dced_objects_release() to release the resources allocated.

dced_binding_free() Each call to the dced_binding_create() routine requires a corresponding call
to dced_binding_free() to release the resources for the binding allocated.

Managing Individual dced Entries

Figure 3 on page 12 shows examples of individual dced entries and the locations of associated data.
The data item name or its UUID is used to find an entry, and then the storage tag is used to find the data.

 Chapter 2. DCE Host Services 11

DCE Host

dced

hostdata entry

srvrexec entry

srvrconf entry

keytab entry

UUID . . . file location

UUID . . . file location

UUID . . . object location

UUID . . . object location

data

data
data

data

Local Host's Disk data

Figure 3. Accessing Host Data

The data for each hostdata item is stored in a file on disk. The dced uses the UUID to find the entry in
the hostdata entry list. The entry's storage tag is then used to find the data. For hostdata, the tag
contains a file name. The data returned for one entry is an array of strings in a sec_attr_t structure.

The server management data is stored in memory. The dced uses UUIDs (maintained in the entry lists by
dced) to find an entry. The location of the data in memory is indicated by the storage tag. The data
returned for one entry is a structure of server data (server_t). All data for the srvrconf and srvrexec
entries are accessed from memory for fast retrieval, but the srvrconf data is also stored on disk for use
when a host needs to restart DCE.

Each keytab entry stores its data in a file on disk. However, like the server management entries, the
keytab entries use server names and corresponding UUIDs (maintained by dced) to identify each entry.

12 Application Development Guide: Core Components

The storage tag contains the name of the key table file. The data returned for one entry is a list of keys of
type dced_key_list_t.

The following example shows how to obtain and manage individual entries for the hostdata, srvrconf,
srvrexec, or keytab services.

 handle_t rpc_bh;
 dced_binding_handle_t dced_bh;
 dced_entry_list_t entries;
 unsigned32 i;
 dced_service_type_t service_type;
 void $data;
 error_status_t status;
 .
 .
 .

dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh, &status);
if(status != error_status_ok)

 return;
dced_list_get(dced_bh, &entries, &status);
if(status == error_status_ok) {

for(i=0; i<entries.count; i++) {
if(select_entry(entries.list[i].name)) {/$ application specific $/

dced_object_read(dced_bh, &(entries.list[i].id), &data, &status);
if(status == error_status_ok) {

display(service_type, 1, &data); /$ application specific $/
dced_objects_release(dced_bh, 1, data, &status);

 }
 }
 }

dced_list_release(dced_bh, &entries, &status);
 }
 dced_binding_free(dced_bh, &status);

Each routine is described as follows:

dced_binding_from_rpc_binding() The dced_binding_from_rpc_binding routine returns a dced
binding handle whose data type is dced_binding_handle_t. This
binding handle is used in all subsequent dced API routines to
access the service. The host is determined from the RPC binding
handle, rpc_bh, and the service_type is selected from the following
list:

 � dced_e_service_type_hostdata

 � dced_e_service_type_srvrconf

 � dced_e_service_type_srvrexec

 � dced_e_service_type_keytab

dced_list_get() Applications use the dced_list_get() routine to get a service's
entire list of names. Using the dced_list_get() routine gives your
application great flexibility when manipulating entries in an entry
list. If you prefer, your application can use the
dced_entry_cursor_initialize(), dced_entry_get_next(), and
dced_entry_cursor_release() set of routines to obtain individual
entries, one at a time.

select_entry() This is an application specific routine that selects which entry to
use based on the entry name.

 Chapter 2. DCE Host Services 13

dced_object_read() The default attribute for dced_object_read() is to return an array of
strings. The hostdata and keytab services have other read
routines that allow you to specify binary data.

display() This is an example of an application-specific routine that simply
displays the server configuration data read. Depending on the
service, a different data structure is used. For the hostdata
service a sec_attr_t is used. For the srvrconf and srvrexec
services server_t structures are used. For the keytab service a
dced_key_list_t structure is used.

dced_objects_release() After your application is finished with the data read with the
dced_object_read() routine, free the buffer of data allocated using
the dced_objects_release() routine.

dced_list_release() Each call to the dced_list_get() routine requires a corresponding
call to dced_list_release() to release the resources allocated for
the entry list.

dced_binding_free() Each call to the dced_binding_from_rpc_binding() routine
requires a corresponding call to dced_binding_free() to release
the resources of the allocated binding.

Managing Host Data on a Remote Host

Administrators typically use the dcecp hostdata object to remotely manage the data of the hostdata
service. However, application developers can use the dced API for their own management applications or
if dcecp does not handle a task in the desired way, such as for a browser of host data that uses a
graphical user interface.

Kinds of Host Data Stored

Each hostdata item is stored in a file and dced has a UUID associated with each. On z/OS DCE, the
standard data items include the following well-known names:

cell_name The name of the cell to which your host belongs is stored.

cell_aliases When the cell name changes, the old names are designated as cell aliases.

dce_cf.db The DCE configuration data file is stored.

host_name The host name is stored.

pe_site The location of the Security server is stored.

post_processors The post_processors file contains UUID-program pairs for which the UUIDs
represent other hostdata items. If changes occur to an associated hostdata item, the
system runs the program.

In addition to the well-known hostdata items, applications can also add their own. (DCE implementations
other than z/OS DCE may also define additional items.) The well-known hostdata items have well-known
UUIDs defined in the file /usr/include/dce/dced_data.h, but you can use the dced_inq_uuid() routine to
obtain any UUID associated with any name known to dced.

See the z/OS DCE Administration Guide for additional information on managing host data.

14 Application Development Guide: Core Components

Adding New Host Data

In addition to modifying existing host data, you can add your own data by using the host data API. For
example, suppose you want to add a printer to a host, and make the configuration file part of that host's
dced data. The following example shows how to do this:

dced_binding_handle_t dced_bh;
error_status_t status;
dced_entry_t entry;
dced_attr_list_t data;
int num_attr, str_size;
sec_attr_enc_str_array_t $attr_array;
 .
 .
 .
dced_binding_create(dced_c_service_hostdata,
 dced_c_binding_syntax_default,
 &dced_bh,
 &status);
/$Create Entry Data $/
uuid_create(&(entry.id), &status);
entry.name = (dced_string_t)("NEWERprinter");
entry.description = (dced_string_t)("Configuration for a new printer.");
entry.storage_tag = (dced_string_t)("/etc/NEWprinter");

/$ Create the Attributes, one for this example $/
data.count = 1;
num_attr = 1;
data.list = (sec_attr_t $)malloc(data.count $ sizeof(sec_attr_t));
(data.list)->attr_id = dced_g_uuid_fileattr;
(data.list)->attr_value.attr_encoding = sec_attr_enc_printstring_array;
str_size = sizeof(sec_attr_enc_str_array_t) +

num_attr $ sizeof(sec_attr_enc_printstring_p_t);
attr_array = (sec_attr_enc_str_array_t $)malloc(str_size);
(data.list)->attr_value.tagged_union.string_array = attr_array;
attr_array->num_strings = num_attr;
attr_array->strings[0] = (dced_string_t)("New printer configuration data");

dced_hostdata_create(dced_bh, &entry, &data, &status);
dced_binding_free(dced_bh, &status);

Following is a description of the example:

dced_binding_create() This routine creates a dced binding to a dced service. The binding handle
created is used in all subsequent calls to appropriate dced API routines. By
using the dced_c_server_hostdata value for the first parameter, we are using
the hostdata service on the local host.

Create Entry Data Prior to creating a hostdata entry, we have to set its values. These include
the name and UUID that dced will use to identify the new data, a description
of the entry, and a file name with the full path where the actual data will
reside.

Create the Attributes The data stored is of type sec_attr_t. This data type is a very flexible one
which can store many different kinds of data. In this example we set the file
to have one attribute, printable string information. This example has only one
string of data. You can also establish binary data for the file.

dced_hostdata_create() This routine takes the binding handle, entry, and new data as input, creates
the file with the new data, and returns a status code.

If the printer configuration file already exists on the host, but you want to make

 Chapter 2. DCE Host Services 15

it accessible to dced, use the dce_entry_add() routine instead of
dced_hostdata_create().

dced_binding_free() Each call to the dced_binding_create() routine requires a corresponding call
to dced_binding_free() to release the binding resources allocated.

Use the dced_hostdata_delete() routine to delete application-specific hostdata items and their entries.
For example, the printer installed in the above example is easily removed with this routine. If you are only
taking the printer out of service for a short time, use the dced_entry_remove() routine to remove the
dced entry but not the data file itself. When the printer is later ready again, use the dced_entry_add()
routine to re-install it.

Do not delete the well-known hostdata items or remove their entries.

Modifying Host Data

Changing host data can not only change the way the host works but it affects other files and processes on
the host. Therefore, care should be taken when changing host data. Deleting the well-known hostdata
entries can cause even more serious operational problems for the host.

The current as well as earlier versions of DCE provide configuration routines that use a dce_cf.db file for
data. When host data changes, dced also makes the appropriate changes to this file so that the dce_cf*
routines continue to work correctly. This is one reason the hostdata items are established as well-known
names with well-known UUIDs so that dced knows which values to monitor.

Management applications use the dced_hostdata_read() routine to obtain the data for an entry referred to
by an entry UUID. To modify an entry's actual data, applications use the dced_hostdata_write() routine.
This routine replaces the old data with the new data for the host data entry represented by the entry
UUID. The host data entry must already exist because this routine will not create it. Use the
dced_hostdata_create() routine to create new host data entries.

Running Programs Automatically When Host Data Changes

The following example shows how to use the post_processors feature of the well-known hostdata to
cause dced to automatically run a program if another hostdata entry changes. In this example, the
post_processors file is read, and data is added for the NEWERprinter hostdata entry created in an earlier
example. The data is placed in a dced_attr_list_t structure and written back to the post_processors
hostdata entry.

dced_binding_handle_t dced_bh;
uuid_t entry_uuid;
sec_attr_t $data_ptr;
error_status_t status;
int i, num_strings, str_size;
sec_attr_enc_str_array_t $attr_array;
unsigned_char_t $string_uuid, temp_string[200];
dced_attr_list_t attr_list;

dced_binding_create(dced_c_service_hostdata,
 dced_c_binding_syntax_default,
 &dced_bh,
 &status);
dced_hostdata_read(dced_bh,
 &dced_g_uuid_hostdata_post_proc,
 &dced_g_uuid_fileattr,
 &data_ptr,
 &status);

16 Application Development Guide: Core Components

/$ Create New Array and Copy Old Data into it $/
num_strings = data_ptr->attr_value.tagged_union.string_array->num_strings + 1;
str_size = sizeof(sec_attr_enc_str_array_t) +

num_strings $ sizeof(sec_attr_enc_printstring_p_t);
attr_array = (sec_attr_enc_str_array_t $)malloc(str_size);
attr_array->num_strings = num_strings;
for(i=0; i<(num_strings-1); i++) {
 attr_array->strings[i] =
 data_ptr->attr_value.tagged_union.string_array->strings[i];
}

dced_inq_id(dced_bh, "NEWERprinter", &entry_uuid, &status);

uuid_to_string(&entry_uuid, &string_uuid, &status);
sprintf(temp_string, "%s %s", string_uuid, "/path/and/program/to/run");
attr_array->strings[num_strings-1] = (dced_string_t)(temp_string);
data_ptr->attr_value.tagged_union.string_array = attr_array;

attr_list.count = 1;
attr_list.list = (sec_attr_t $)malloc(attr_list.count $ sizeof(sec_attr_t));
attr_list.list = data_ptr;
dced_hostdata_write(dced_bh,
 &dced_g_uuid_hostdata_post_proc,
 &attr_list,
 &status);

dced_objects_release(dced_bh, 1, (void$)(data_ptr), &status);
dced_binding_free(dced_bh, &status);

The example is described as follows:

dced_binding_create() This routine creates a dced binding to the hostdata service on a specified host.
The binding handle created is used in all subsequent calls to appropriate dced
API routines. The dced_c_service_hostdata argument is a constant string
that is the well-known name of the hostdata service. When this string is used
by itself, it refers to the service on the local host.

dced_hostdata_read() This routine reads the hostdata item referred to by the entry UUID. In this
example, the global variable dced_g_uuid_hostdata_post_proc represents
the UUID for the well-known post_processors file. The second parameter
specifies an attribute for the data. Attributes describe how the data is to be
interpreted. In this example we know the data to be read is plain text so we
use the global variable dced_g_uuid_fileattr to specify plain text rather than
binary data (dced_g_uuid_binfileattr).

Create New Array The next few lines copy the existing array of print strings into a new array that
has additional space allocated for the new data.

dced_inq_id() This routine acquires the UUID dced maintains for a known entry name. In this
example, we need the UUID for the NEWERprinter hostdata entry, so it can be
included in the data stored back in the post_processors file.

uuid_to_string() This routine returns the string representation of a UUID. Each line in the
post_processors file contains a string UUID and a program name for dced to
run if the hostdata entry referred to by the UUID changes. The next few lines
create a new string containing the string UUID and a program name, adds the
new string to the new array, and reassigns the new array to the old data
pointer.

 Chapter 2. DCE Host Services 17

dced_hostdata_write() Since hostdata could have more than one attribute associated with each entry,
the data must be inserted in an attribute list data structure before the
dced_hostdata_write() routine is called. In the case of the well-known
post_processor hostdata object, the attribute is for a plain text file. The
dced_hostdata_write() routine replaces the old data with the new data for the
hostdata entry represented by the entry UUID.

dced_objects_release() Each call to the dced_hostdata_read() routine requires a corresponding call to
dced_objects_release() to release the resources allocated.

dced_binding_free() Each call the dced_binding_create() routine requires a corresponding call to
dced_binding_free() to release the resources allocated.

The post_processors data for this dced now contains an additional string with a UUID and program name.
If the hostdata item represented by the UUID for NEWERprinter is changed, dced automatically runs the
program.

Note: In z/OS UNIX System Services if the post processor program is a shell script, the first two
characters of the file must be # !. They should be entered using the same code page that DCEKERN will
be using at the time the post-processor is executed.

If DCEKERN requires a code page other than IBM-1047, use the z/OS iconv command to convert
/opt/dcelocal/bin/dcecf_postproc to the new code page before starting DCEKERN. As initially installed,
dcecf_postproc (a post-processor shell script) is in the IBM-1047 code page. See the z/OS UNIX
System Services Command Reference, SA22-7802, for information on the iconv command.

The shell (/bin/sh) will be invoked to execute the script. stdin, stdout, and stderr will not be open and
the post-processor program must open them as necessary, for example, by using redirection with a shell
script to route output to an HFS file.

Controlling Servers Remotely

Both applications developers and system administrators may want servers to have certain support services
and control functionality. For example, servers may need mechanisms to store operational data, and they
may need to start or stop in various ways. The dced program provides these support and control
mechanisms for servers.

Servers are typically configured by an administrator using the dcecp server object in a script after the
server is installed on the host. In addition to configuring the server, this script would commonly include
other tasks like create an account and assign a principal name for the server, modify the access control
lists (ACLs) and key table files (keytabs) to control access to the server and its resources, and export the
server binding information to the Cell Directory Service (CDS) so that clients can find a server that will
start dynamically later.

After a server is configured, whether it runs as a persistent daemon or an on-demand (dynamic) process,
administrators would again use dcecp if they need to control or modify its behavior. Although server
management is typically an administrator's task, you may want a management application to perform these
tasks, including the following:

� Configure a server to describe how it can be invoked

� Start a server based on configuration data

� Stop a running server

� Disable a specific service provided by a running server

� Enable a specific service for a running server

18 Application Development Guide: Core Components

� Modify a server's configuration

� Delete a server's configuration, effectively removing the server from dced's control

Two States of Server Management: Configuration and Execution

If all servers ran as persistent processes, dced could maintain data about each server in a single (albeit
complex) data structure. However, due to the fact that some servers may run on-demand, it is a more
flexible design to have two sets of data: one that describes the default configuration to start the server,
and one that describes the executing (running) server. Earlier in this chapter when we described dced
service naming, we defined srvrconf and srvrexec objects to name the two portions of the server
management service.

Table 1 lists the routines applications can use to control servers. It also shows the valid object names to
use when establishing a dced binding prior to using the routine.

Table 1. API Routines for Remote Server Management

API Routine Service Name for Binding

dced_server_create() srvrconf

dced_server_start() srvrconf

dced_server_disable_if() srvrexec

dced_server_enable_if() srvrexec

dced_server_stop() srvrexec

dced_object_read() srvrexec or srvrconf

dced_object_read_all() srvrexec or srvrconf

dced_server_modify_attributes() srvrconf

dced_server_delete() srvrconf

 Configuring Servers

Although administrators commonly use dcecp to configure servers remotely, management applications
can use dced API routines to configure a new server remotely by creating server configuration data,
changing a remote server's configuration, and deleting a server's configuration data.

Configuring a New DCE Server: Management applications use the dced_server_create()
routine to add a new server to a host. After a server is configured, it can be remotely controlled by
modifying its configuration attributes, starting and stopping it, enabling or disabling the RPC interfaces it
supports, and deleting its configuration.

Configuring the server involves describing the server for DCE by allocating and filling in a server_t data
structure, as shown in the following example. Note that not all server_t fields are assigned values in the
following example:

 int i;
 dced_binding_handle_t dced_bh;
 server_t conf, exec;
 dced_string_t server_name;
 uuid_t srvrconf_id, srvrexec_id;
 dced_attr_list_t attr_list;
 error_status_t status;
 static service_t nil_service;
 .

 Chapter 2. DCE Host Services 19

 .
 .
 dced_binding_create("srvrconf@hosts/somehost",
 dced_c_binding_syntax_default,
 &dced_bh,
 &status);

dced_inq_id(dced_bh, server_name, &srvrconf_id, &status);
if(status == error_status_ok) {

puts("Configuration already exists for this server.");
 dced_binding_free(dced_bh, &status);
 return;
 }

/$ ___________setup a server_t structure________________$/
 uuid_create(&(conf.id), &status);
 conf.name = server_name;
 conf.entryname = (dced_string_t)"/.:/greeter";

conf.services.count = 1;

/$ ___service_t structures represent each interface supported ___$/
 conf.services.list =

(service_t $)malloc(conf.services.count $ sizeof(service_t));
for(i=0; i<conf.services.count; i++) {

 rpc_if_inq_id(greetif_v1_0_c_ifspec,
 &(conf.services.list[i].ifspec),
 &status);

conf.services.list[i] = nil_service;
 conf.services.list[i].ifname = (dced_string_t)"greet";

conf.services.list[i].annotation = (dced_string_t)"The greet application";
 conf.services.list[i].flags = 0;
 }

/$ ______________server_fixedattr_t structure_______________$/
 conf.fixed.startupflags =

server_c_startup_explicit | server_c_startup_on_failure;
conf.fixed.flags = 0;
conf.fixed.program = (dced_string_t)"/server/path/and/program/name";

dced_server_create(dced_bh, &conf, &status);
 dced_binding_free(dced_bh, &status);

dced_binding_create() To configure a server, the application must first create a dced binding to the
srvrconf portion of the server management service on a specified host. The
binding handle created is used in all subsequent calls to appropriate dced API
routines.

dced_inq_id() This routine returns the UUID that dced associates with the name input. Each
configured server has an associated UUID used by dced to identify it. This
example does not try to create a configuration for a server that already exists.

Setup a server_t Structure for the Server
The server_t structure contains all the information DCE uses to specify a server.

Setup service_t Structures for each Interface
Each service that the server supports is represented by a service_t data
structure which contains the interface specification among other things. In this
example, the client stub for the interface was compiled with the program so that
the interface specification (greetif_v1_0_c_ifspec) could be obtained without
building the structure from scratch.

Setup a server_fixedattr_t Structure
Other fixed attributes required for all servers describe how the server can start,
the program path and name for the server so that dced knows which program to
start, and the program's arguments, among other things.

20 Application Development Guide: Core Components

Note: In z/OS UNIX System Services if the program is a shell script, the first
two characters of the file must be # !. They should be entered using the same
code page that DCEKERN will be using at the time the program is executed.
The shell (/bin/sh) will be invoked to execute the script. stdin, stdout, and
stderr will not be open and the post-processor program must open them as
necessary, for example, by using redirection with a shell script to route output to
an HFS file.

dced_server_create() This routine uses the filled-in server_t structure to create a srvrconf entry for
dced. The data is stored in memory for quick access whenever the server is
started.

dced_binding_free() Each call to the dced_binding_create() routine requires a corresponding call to
dced_binding_free() to release the binding resources allocated.

Modifying a Server's Configuration Attributes: The data for configuring servers includes
arrays of attributes. For flexibility, the dced is implemented using the extensible and dynamic data
structures developed for the DCE security registry attributes. This extended registry attribute (ERA)
schema gives vendors the flexibility to modify the attributes appropriate for configuring servers on various
systems. The use and modification of these data structures are described in Chapter 29, “The Extended
Attribute Application Program Interfaces” on page 465.

Applications commonly use dced_server_modify_attributes() after the dced_server_create() routine to
change the default configuration attributes (the attributes field of a server_t structure) for a remote
server. A dced_attr_list_t data structure is input which contains an array of sec_attr_t data structures
and a count of the number in the array.

Deleting a DCE Server: Management applications use dced_server_delete() to delete a server's
configuration data and entry in its hosts dced. Although this does not delete the actual server program
from the host, it removes it from DCE control.

Starting and Stopping Servers

Servers typically run as persistent processes or are started on demand when a client makes a remote
procedure call to it. Management applications can start remote servers using the dced_server_start()
routine. This is a srvrconf routine that takes as input server configuration data in the form of an attribute
list.

Once a server has started, it tends to remain running until an administrator or management application
stops it, but some applications may stop themselves if, for example, they do not detect activity within a
specified time. To stop remote servers, applications can use the dced_server_stop() routine.

The following example shows how an application starts or stops a server:

dced_binding_handle_t dced_bh, conf_bh, exec_bh;
 server_t conf, exec;
 dced_string_t server_name;
 uuid_t srvrconf_id, srvrexec_id;
 error_status_t status;
 .
 .
 .

/$ Toggle the Starting or Stopping of a Server $/
 dced_binding_create("srvrconf@hosts/somehost",
 dced_c_binding_syntax_default,
 &conf_bh,
 &status);

 Chapter 2. DCE Host Services 21

 dced_binding_create("srvrexec@hosts/somehost",
 dced_c_binding_syntax_default,
 &exec_bh,
 &status);

dced_inq_id(exec_bh, server_name, &srvrexec_id, &status);
if(status != error_status_ok) {

puts("Server is NOT running.");
dced_inq_id(conf_bh, server_name, &srvrconf_id, &status);
dced_server_start(conf_bh, &srvrconf_id, NULL, &srvrexec_id, &status);

 }
 else {

puts("Server is RUNNING.");
dced_server_stop(exec_bh, &srvrexec_id, srvrexec_stop_soft, &status);

 }
 dced_binding_free(conf_bh, &status);
 dced_binding_free(exec_bh, &status);

dced_binding_create() These routines create dced bindings to the srvrconf and srvrexec portions of
the server management service on a specified host. The binding handles
created are used in all subsequent calls to appropriate dced API routines.

dced_inq_id() This routine returns the UUID that dced associates with the name input. Each
name used to identify an object of each service has a UUID. If dced maintains
a UUID for a srvrexec object, the server is running. However, it is possible
that the server is in an in-between state as it is starting up or shutting down.
For a more robust check as to whether the server is running, use the
dced_object_read() routine to read the server_t structure for the srvrexec
object. If the exec_data.tagged_union.running_data.instance UUID is the
same as the srvrconf UUID (srvrconf_id), the server is running.

dced_server_start() This routine starts the server via dced. The srvrconf binding handle and UUID
are input. For special server configurations, you can start a server with a
specific list of attributes, but a value of NULL in the third parameter uses the
attributes of the server configuration data. You can input a srvrexec UUID for
dced to use, or allow it to generate one for you.

dced_server_stop() This routine stops a running server identified by its srvrexec UUID.

dced_binding_free() Each call to the dced_binding_create() routine requires a corresponding call to
dced_binding_free() to release the binding resources allocated.

Enabling and Disabling Services of a Server

Most servers have all their services enabled to process all requests. However, a server may need to
enable or disable services to synchronize them, for example. For another example, an administrator (or
management application) may need to disable or enable services to perform orderly startup or shutdown
of a server. Each service provided by a server is implemented as a set of procedures. DCE uses an
interface definition to define a service and its procedures, and application code refers to the interface
when controlling the service.

When a server starts, it initializes itself by registering with the RPC runtime and the dced on its host
using the dce_server_register() routine. This enables all services (interfaces) that the server can
support.

Note: The dce_server_disable_if() and dce_server_enable_if() routines are not supported when
targeted at DCE hosts running on z/OS. If you wish to have clients that already know about the server
and service work, but wish to prohibit any new clients from finding the server and service, you can use
rpc_mgmt_ep_unregister() to remove from the endpoint map the server address information with
respect to the service. This routine does not affect the RPC runtime.

22 Application Development Guide: Core Components

Validating the Security Server

The security validation service (secval) has the following major functions:

� It maintains a login context for the host's self identity which includes periodic changes to the host's key
(password).

� It validates and certifies to applications, usually login programs, that the DCE Security Daemon (secd)
is legitimate.

Clients (including remote clients, local servers, host logins, and administrators) all need the security
validation service to make sure the DCE Security Daemon (secd) being used by the host is legitimate.
The security validation service establishes the link in a trust chain between applications and secd, so that
applications can trust the DCE security mechanism.

An application can trust its host's security validation service because they are on the same host, but an
application has no way to convince itself that secd, presumably on another host, is genuine. However, if
the application trusts another principal (in this case the security validation service), which in turn trusts
secd, then the trust chain extends from the application to secd.

Typically, a login program accesses the security validation service when it uses the Security Service's
Login API, described in Chapter 30, “The Login Application Program Interface” on page 495.
Administrators access the secval service by using dcecp's secval object. However, suppose you are
writing a security monitoring application to watch for and respond to security attacks. After the application
binds to the secval service, it can call the dced_secval_validate() routine to verify that the secd is
legitimate.

Applications can also use the dced_secval_start() and dced_secval_stop() routines to start and stop the
security validation service on a given host.

For example, during configuration of a host, the dced program can start with or without the security
validation service. Later when security is configured, a management application can start secval using
the dced_secval_start() routine. For another example, suppose our security monitoring application
mentioned earlier suspects an attack. The application can call dced_secval_stop() to stop the security
validation service without stopping the entire dced. This makes the login environment more restrictive.

Managing Server Key Tables

Keys for servers are analogous to passwords for human users. Keys also play a major role in
authenticated remote procedure calls. Keys have some similarities with passwords. For example, server
keys and user passwords have to follow the same change policy (or a more stringent one) for a given host
or cell. This means that just as a user has to periodically come up with a new password, a server has to
periodically generate a new key. It is easy to see that a human user protects a password by memorizing
it. But a server memorizes a key by storing it in a file called a key table.

It is more complex for a server to change keys than it is for a human user to change a password. For
example, a human user needs to only remember the latest password, but a server may need to maintain a
history of its keys using version numbers, so that currently active clients do not have difficulty completing a
remote procedure call. When a client prepares to make authenticated remote procedure calls, it obtains a
ticket to talk with the server. (The security registry of the authentication service encrypts this ticket using
the server's key, and later the server decrypts the ticket when it receives the remote procedure call.)
Timing can become an issue when a client makes a remote procedure call, because tickets have a limited
lifetime before they expire, and servers must also change their keys on a regular basis. Assuming the
client possesses a valid ticket, suppose that by the time the client makes the call, the server has

 Chapter 2. DCE Host Services 23

generated a new key. If a server maintains versions of its keys, the client can still complete the call.
Authentication is described in detail in Chapter 24, “Authentication” on page 413.

A key table usually contains keys stored by one server, and must be located on the same host as that
server. However, a key table can hold keys for a set of related servers, as long as all the servers reside
on the same host. Servers usually maintain their own keys, and Chapter 31, “The Key Management
Application Program Interface” on page 501 describes the API they use. Administrators can remotely
manage key tables and the keys in the tables by using dcecp's keytab object. This section describes the
API routines that management applications can use to manage the key tables and keys of other servers
on the network.

Suppose you discover that a server or an entire host's security has been compromised. Applications can
use the dced_keytab_change_key() routine to change a key table's key. The following example shows
how to reset the key for all key tables on a specified host:

 dced_binding_handle_t dced_bh;
 dced_entry_list_t entries;
 unsigned32 i;
 error_status_t status;
 dced_key_t key;

 dced_binding_create("keytab@hosts/somehost",
 dced_c_binding_syntax_default,
 &dced_bh,
 &status);

 dced_binding_set_auth_info(dced_bh,
 rpc_c_protect_level_default,
 rpc_c_authn_default,
 NULL,
 rpc_c_authz_dce,
 &status);

dced_list_get(dced_bh, &entries, &status);

for(i=0; i<entries.count; i++) {
generate_new_key(&key); /$ application specific $/
dced_keytab_change_key(dced_bh, &entries.list[i].id, &key, &status);

 }
dced_list_release(dced_bh, &entries, &status);
dced_binding_free(dced_bh, &status);

Each routine used in this example is described here:

dced_binding_create() This routine creates a dced binding to a dced service on a specified
host. The binding handle created is used in all subsequent calls to
appropriate dced API routines. The keytab portion of the first argument
represents the well-known name of the keytab service. When this
string is used by itself, it refers to the service on the local host.

dced_binding_set_auth_info() Accessing keytab data requires authenticated remote procedure calls.
The dced_binding_set_auth_info() routine sets authentication for the
dced binding handle, dced_bh.

dced_list_get() Applications use the dced_list_get() routine to get a service's entire list
of names.

24 Application Development Guide: Core Components

generate_new_key() This application-specific routine generates the new key, and fills in a
dced_key_t data structure. This routine could use the
sec_key_mgmt_gen_rand_key() routine to randomly generate a new
key.

dced_keytab_change_key() The dced_keytab_change_key() routine tries to change principal's key
in the Security Service's registry first. If that is successful, it changes
the key in the key table.

dced_list_release() Each call to the dced_list_get() routine requires a corresponding call to
dced_list_release() to release the resources allocated for the entry list.

dced_binding_free() Each call to the dced_binding_create() routine requires a
corresponding call to dced_binding_free() to release the resources
allocated for a dced binding handle.

For more detailed key table management, applications can peruse a key table's list of keys by using the
dced_keytab_initialize_cursor(), dced_keytab_get_next_key(), and dced_keytab_release_cursor()
routines. Reading key table data remotely presents a greater security risk because data is sent over the
network. For remote access these routines actually get all the keys during one remote procedure call to
be more efficient and to minimize the time keys are being sent over the network.

Earlier in this section we described how to change the key of a key table with the
dced_keytab_change_key() routine. The key table management service also provides the routines
dced_keytab_add_key() and dced_keytab_remove_key() to control key modification in even greater
detail.

Finally, you can create a new key table using dced_keytab_create() or delete an existing key table using
dced_keytab_delete().

 Chapter 2. DCE Host Services 25

26 Application Development Guide: Core Components

Chapter 3. The DCE Backing Store

This chapter describes the backing store library that DCE provides for the convenience of programmers
who are writing DCE servers. A backing store is a persistent database or persistent object store from
which typed data can be stored and retrieved by a key.

Note: Sometimes the backing store is called a database. For instance, the associated IDL file is
dce/database.idl, and the name of the backing store routines begin with dce_db_. The backing
store is, however, not a full-fledged database in the conventional sense, and it has no support for
SQL or for any other query system.

Servers generally need to manage several objects. Good design often requires that the state of the
objects be maintained over sequential instances of a particular server. For example, the ACLs used by a
server should not need to be recalculated each time the system is rebooted. The backing store interface
provides a way to store, into a file, any data that can be described with IDL, so that it can persist across
instances of software that run from time to time. For example, the ACL library uses the backing store
library. The backing store routines can be used in servers, in clients or in stand-alone programs that do
not involve remote procedure calls (RPC). Backing store data should not be used for sharing data
between processes.

Data in a Backing Store

The backing store interface provides the application programmer with the capability for tagged storage and
retrieval of typed data. The tag (or retrieval key) can be either a UUID or a standard C string. For a
specific backing store, the data type must be specified at compile time, and is established through the IDL
Encoding Services. Each backing store can contain only a single data type.

Each data item (which also may called a data object, or a data record) consists of the data stored in a
single call to a storage routine. The storage routines are dce_db_store(), dce_db_store_by_name(),
and dce_db_store_by_uuid(). Optionally, data items may have standard headers. If a backing store has
been created to use headers, then every data item has the header.

A program can have more than one backing store open at the same time.

Using A Backing Store

Although the backing store library is a generalized service, you are encouraged to use it in a particular,
standardized way. You should use the header and the recommended IDL interface format that are
described in the following sections. Standardized use will ease the transition to later developments in
DCE.

Header for Data

An optional standard header is available for data objects or items in the backing store. If it is employed,
then the backing store library automatically maintains the created, modified, and modified_count fields,
as shown in the following IDL description taken from the dce/database.idl file:

/$ This is the standard header for each "object" in the database. $/

typedef struct dce_db_dataheader_s_t {
 uuid_t uuid;
 uuid_t owner_id;

 Copyright IBM Corp. 1994, 2001 27

 uuid_t group_id;
 uuid_t acl_uuid;
 uuid_t def_object_acl;
 uuid_t def_container_acl;
 unsigned32 ref_count;

/$ The following fields are updated by the library $/
 utc_t created;
 utc_t modified;
 unsigned32 modified_count;
} dce_db_dataheader_t;

typedef enum {
 dce_db_header_std,
 dce_db_header_acl_uuid,
 dce_db_header_none
} dce_db_header_type_t;

typedef union switch (dce_db_header_type_t type) tagged_union {
case dce_db_header_none: /$ none $/ ;

 case dce_db_header_std: dce_db_dataheader_t h;
 case dce_db_header_acl_uuid: uuid_t acl_uuid;
} dce_db_header_t;

void dce_db_header_convert(
 [in] handle_t h,
 [in,out] dce_db_header_t $data,
 [out] error_status_t $st
);

The acl_uuid field is intended for use as a UUID retrieval key in a server's ACL database.

The User Interface

The recommended, standardized backing store IDL interface for a server looks like the following, where
XXX is the server name:

interface XXX_convert
{
 import "dce/database.idl"

typedef XXX_data_s_t {
dce_db_header_t header; /$ Header must be first! $/
/$ (server-specific data goes here) $/

 } XXX_data_t;

 void XXX_data_convert(
 [in] handle_t h,
 [in, out] XXX_data_t $data
 [out] error_status_t $st
);
}

It should be compiled with the following ACF, that instructs the idl compiler to write the data conversion
routine into the XXX_cstub.c file:

interface XXX_convert
{

[encode, decode] XXX_data_convert([comm_status] st);
}

28 Application Development Guide: Core Components

The IDL Encoding Services

When a Remote Procedure Call (RPC) sends data between a client and a server, it serializes the user's
data structures by using the IDL Encoding Services (ES), described in “Creating Portable Data Using the
IDL Encoding Services” on page 211.

Encoding and Decoding in the Backing Store

The backing store uses this same serialization scheme for encoding and decoding, informally called
pickling, when storing data structures to disk. The IDL compiler, idl, writes the routine that encodes and
decodes the data. This routine is passed to dce_db_open(), remembered in the handle, and used by the
store and fetch routines:

 � dce_db_fetch()

 � dce_db_fetch_by_name()

 � dce_db_fetch_by_uuid()

 � dce_db_header_fetch()

 � dce_db_store()

 � dce_db_store_by_name()

 � dce_db_store_by_uuid()

Conformant Arrays Not Allowed

You can not use conformant arrays in objects stored to a backing store. This is because the
IDL-generated code that encodes (pickles) the structure has no way to predict or detect the size of the
array. When the object is fetched, there will likely be insufficient space provided for the structure, and the
array's data will destroy whatever is in memory after the structure.

To illustrate the problem more clearly, here is an example. An IDL file has a conformant array, na, as an
object in a struct:

typedef struct {
 unsigned32 length;
 [size_is(length)]
 unsigned32 numbers[];
} num_array_t
typedef struct {
 char $name;
 num_array_t na;
} my_type_t;

The idl compiler turns the IDL specification into the following .h file contents:

typedef struct {
 unsigned32 length;
 unsigned32 numbers[1];
} num_array_t
typedef struct {
 idl_char $name;
 num_array_t na;
} my_type_t;

When the object is fetched, and the array length is greater than the 1 (one) assumed in the .h file, the
decoding operation destroys whatever follows my_struct in memory:

 Chapter 3. The DCE Backing Store 29

my_type_t my_struct;
dce_db_fetch(dbh, key, &my_struct, &st);

The correct method is to use a pointer to the array, not the array itself, in the IDL file. For example:

typedef struct {
 char $name;
 num_array_t $na;
} my_type_t;

The Backing Store Routines

Many of the backing store routines appear in three versions: plain, by name, and by UUID. The plain
version will work with backing stores that were created to be indexed either by name, or by UUID, while
the restricted versions accept only the matching type. It is advantageous to use the restricted versions
when they are appropriate, because they provide type checking by the compiler, as well as visual clarity of
purpose.

The backing store operations described in the following sections are supported.

Opening a Backing Store
The dce_db_open() routine creates a new backing store or opens an existing one. The backing store is
identified by a file name. There are flags to permit the following choices:

� Create a new backing store, or open an existing one.

� Create a new backing store indexed by name, or indexed by UUID. (The choice depends upon the
server's purpose.) This index is called the backing store key.

� Open an existing backing store read/write, or read-only.

� Use the standard header, or not.

Every backing store is created with one of the two possible index schemes, by name or by UUID, and you
cannot subsequently open it for use with the other scheme. Also, once a backing store has been created
with (or without) standard headers, you cannot subsequently open it the other way.

The routine returns a handle by which subsequent operations identify the backing store.

The following conventions for file names are recommended:

xxx.acl ACL storage.

xxx.db Backing store file name.

Closing a Backing Store

The dce_db_close() routine frees the handle. It closes any open files and releases all other resources
associated with the backing store.

30 Application Development Guide: Core Components

Storing or Retrieving Data

The following routines store data into a backing store:

dce_db_store() This routine can store into a backing store that is indexed by name or by
UUID. The key's type must match the flag that was used in dce_db_open().

dce_db_store_by_name() This routine can store only into a backing store that is indexed by name.

dce_db_store_by_uuid() This routine can store only into a backing store that is indexed by UUID.

To retrieve data from a backing store, use the appropriate one of the following routines:

dce_db_fetch() This routine can retrieve data from a backing store that is indexed by name
or by UUID. The key's type must match the flag that was used in
dce_db_open().

dce_db_fetch_by_name() This routine can retrieve data only from a backing store that is indexed by
name.

dce_db_fetch_by_uuid() This routine can retrieve data only from a backing store that is indexed by
UUID.

When storing or retrieving data, a function that was specified at open time converts between native format
and on-disk (serialized) format. This function is generated from the IDL file by the IDL compiler.

 Freeing Data

When fetching data, the Encoding Services (ES) allocate memory for the data structures that are returned.
These services accept a structure, and use rpc_sm_allocate() to provide additional memory needed to
hold the data.

The backing store library does not know what memory has been allocated, and therefore cannot free it.
For fetch calls that are made from a server stub, this is not a problem, because the memory is freed
automatically when the server call terminates. For fetch calls that are made from a nonserver, the
programmer is responsible for freeing the memory.

Programs that call the fetch or store routines, such as dce_db_fetch(), outside of a server operation (for
instance, if a server does some backing store initialization, or in a standalone program) must call
rpc_sm_enable_allocate() first.

Making or Retrieving Headers

The dce_db_std_header_init() routine initializes a standard backing store header from the values the
caller provides in its arguments. It only places the values into the header, and does not write into the
backing store file. The dce_db_header_fetch() routine retrieves the header of an object in the backing
store.

 Performing Iteration

The following routines traverse all of the keys (name or UUID) in a backing store, iteratively. The order of
retrieval of the keys is indeterminate; they are not sorted, nor are they necessarily returned in the order in
which they were originally stored. It is strongly recommended to use the locking and unlocking routines,
dce_db_lock() and dce_db_unlock(), whenever performing iteration.

dce_db_iter_start() This routine prepares for the start of iteration.

 Chapter 3. The DCE Backing Store 31

dce_db_iter_next() This routine returns the key for the next item from a backing store that is
indexed by name or by UUID. The db_s_no_more status code
indicates that there are no more items.

dce_db_iter_next_by_name() This routine returns the key for the next item only from a backing store
that is indexed by name. Again, db_s_no_more indicates that no items
remain.

dce_db_iter_next_by_uuid() This routine returns the key for the next item only from a backing store
that is indexed by UUID. Again, db_s_no_more indicates that no items
remain.

dce_db_iter_done() This routine is counterpart to dce_db_iter_start(), and should be called
when iteration is done.

dce_db_inq_count() This routine returns the number of items in a backing store.

Deleting Items from a Backing Store

The following routines delete an item from a backing store.

dce_db_delete() This routine deletes an item from a backing store that is indexed by name
or by UUID. The key's type must match the flag that was used in
dce_db_open().

dce_db_delete_by_name() This routine deletes an item only from a backing store that is indexed by
name.

dce_db_delete_by_uuid() This routine deletes an item only from a backing store that is indexed by
UUID.

To delete an entire backing store, ensure that the data file is not open, and remove it. There is only one
file.

Locking and Unlocking a Backing Store
The dce_db_lock() and dce_db_unlock() routines lock and unlock a backing store. If a backing store is
already locked, dce_db_lock() provides an indication. A lock is associated with an open backing store's
handle. The storage routines, dce_db_store(), dce_db_store_by_name(), and
dce_db_store_by_uuid(), all acquire the lock before updating. Explicit use of locking is appropriate in
some circumstances; for example, when reading or writing pairs (or multiples) of closely associated items
in a backing store, or when using iteration.

The locks are advisory. It is possible to write a backing store even if it is locked, so if you want to rely
upon the locks, you must always check them.

Example of Backing Store Use

For a full example of backing store use, see the z/OS DCE Application Development Guide: Introduction
and Style.

The following brief example shows a portion of a server that manages an office telephone directory.
Following are the relevant structures defined in an IDL file:

typedef struct phone_record_s_t {
 [string,ptr] char $name;
 [string,ptr] char $email;
 [string,ptr] char $phone;

32 Application Development Guide: Core Components

 [string,ptr] char $office;
} phone_record_t;

typedef struct phone_record_array_s_t {
 unsigned32 count;
 [ptr,size_is(count)] phone_record_t $entry;
} phone_record_array_t;

typedef struct phone_data_s_t {
 dce_db_header_t h;
 phone_record_t ph;
} phone_data_t;

/$
 $ The following routine returns the entire contents of the
 $ directory from the backing store by using the iteration routines.
 $ First, the portion of the IDL file that defines the routine's
 $ RPC format:
 $/
[idempotent] void entire_phone_book(
 [in] handle_t h,
 [out] phone_record_array_t $e_array,
 [out] error_status_t $st
);

Following is the routine itself, written in C:

/$ global variables $/
dce_db_handle__t db_h; /$ handle to the phone book backing store
$/

/$ Other routines are not shown here, including the routine that
 $ opened the backing store.
 $/

void
entire_phone_book(

/$ [in] $/ handle_t h, /$ For RPC, but not used
$ here. An ACL check
$ would use it.

 $/
/$ [out] $/ phone_record_array_t $e_array,
/$ [out] $/ error_status_t $st

)
{
 uuid_t $dbkey;
 phone_data_t pd;
 unsigned32 i;
 error_status_t st2;

$st = error_status_ok;
/$ Lock before starting work, so that the backing store
$ does not change until after all the info has been returned.

 $/
 dce_db_lock(db_h, st);

/$ Count the entries, so enough storage can be allocated $/
e_array->count = 0;
dce_db_inq_count(db_h, &e_array->count, st);
if ($st != error_status_ok) {

dce_fprintf(stderr, $st); /$ or some other treatment $/
 dce_db_unlock(db_h, st);
 return;
 }

if (e_array->count == 0) { /$ No items, nothing to do. $/

 Chapter 3. The DCE Backing Store 33

 dce_db_unlock(db_h, st);
 return;
 }

/$ Allocate the space for the output. $/
e_array->entry = rpc_sm_allocate(

 e_array->count$sizeof(e_array->entry[0]),st);
if ($st != rpc_s_ok) {

dce_fprintf(stderr, $st); /$ or some other treatment $/
 return
 }
 dce_db_iter_start(db_h, st);

i = 0;
while (TRUE) {

/$ Get the next key. $/
dce_db_iter_next(db_h, &dbkey, st);
/$ break when we've scanned the entire backing store $/
if ($st == db_s_no_more) break;
/$ Get the data associated with the next key. $/
dce_db_fetch_by_uuid(db_h, dbkey, (void $)&pd, st);
if ($st != error_status_ok) {

 dce_fprintf(stderr, $st);
/$ Don't forget to stop iterating and unlock after an error. $/

 dce_db_iter_done(db_h, &st2);
 dce_db_unlock(db_h, &st2);
 return;
 }

/$ Stick the item into the array to be returned when done. $/
 e_array->entry[i].name = strdup(pd.ph.name);
 e_array->entry[i].email = strdup(pd.ph.email);
 e_array->entry[i].phone = strdup(pd.ph.phone);

e_array->entry[i].office = strdup(pd.ph.office);
 i++;

/$ The use of strdup() above is illustrative, but it is not
$ correct within a server, because the allocated memory is
$ never freed. Correct code would involve the use of

 $ rpc_sm_allocate().
 $/
 }

/$ The iteration is finished. $/
 dce_db_iter_done(db_h, st);
 dce_db_unlock(db_h, st);
}

34 Application Development Guide: Core Components

Part 2. Using the DCE Remote Procedure Call APIs

This part shows you how to use the Remote Procedure Call (RPC) APIs to create DCE RPC applications.
You are introduced to the RPC model and RPC components and shown how to write an internationalized
RPC application. Many other topics related to RPC application development are discussed, in addition to
the details of the Interface Definition Language (IDL) and Attribute Configuration Language.

Chapter 4. Developing a Simple RPC
Application 39

The Remote Procedure Call Model 39
RPC Application Code 40
Stubs . 41
The RPC Runtime 42
RPC Application Components Working

Together 43
Overview of DCE RPC Development Tasks 44

Writing an Interface Definition 45
RPC Interfaces Represent Services 46
Generating an Interface UUID 48
Naming the Interface 48
Specifying Interface Attributes 49
Import Declarations 49
Constant Declarations 49
Type Declarations 49
Operation Declarations 50

Running the IDL Compiler 51
Writing the Client Code 51
Writing the Server Code 53

The greet_server.c Source Code 53
The greet_manager.c Source Code 56

Building the greet Programs 56
Running the greet Programs 57

Chapter 5. RPC Fundamentals 59
Direct Implications of Remoteness 59
Universal Unique Identifiers 60
Communications Protocols 60
Binding Information 61

Server Binding Information 62
Defining a Compatible Server 63
How Clients Obtain Server Binding

Information 64
Client Binding Information for Servers 66

Endpoints . 67
Well-Known Endpoints 67
Dynamic Endpoints 67

Run time Semantics 68
Communications Failures 70
Scalability . 70
RPC Objects . 71

Chapter 6. Basic RPC Routine Usage 73

Overview of the Basic RPC Runtime Routines 73
Server Initialization Using the RPC Routines . 75

Assigning Types to Objects 76
Registering Interfaces 77
Selecting RPC Protocol Sequences 78
Obtaining a List of Server Binding Handles . 79
Registering Endpoints 79
Making Binding Information Accessible to

Clients . 79
Listening for Calls 81

How Clients Find Servers 81
Searching a Namespace 82
Using String Bindings to Obtain Binding

Information 83

Chapter 7. RPC and Other DCE
Components 85

Threads in RPC Applications 85
RPC Threads 87
Cancel Operations 88
Multithreaded RPC Applications 89

Security and RPC: Using Authenticated RPC . 91
Authentication 91
Authorization 93
Authenticated RPC Routines 94

Directory Services and RPC: Using the
Namespace 96

NSI Directory Service Entries 96
Strategies for Using Directory Service

Entries . 114
The Service Model for Defining Servers . 117
The Resource Model for Defining Servers . 121

Chapter 8. DCE Data Representation
Support Considerations 129

The DCE Model 129
Data Type Considerations for Users 130

Floating-Point Data 131
Integer Data 131
Character Data 131
Double-Byte Character Data 136

Internationalization Considerations for DCE
Applications 136

Code Page Considerations 138
Homogeneous Code Page Considerations 139

 Copyright IBM Corp. 1994, 2001 35

Heterogeneous Code Page Considerations 139
DCE-specific Considerations 139

Code Page Restrictions 139
Client Application Data Considerations . . 140

Chapter 9. Writing Internationalized RPC
Applications 143

Character Sets, Code Sets, and Code Set
Conversion 143

Remote Procedure Call with Character/Code
Set Interoperability 144

Building an Application for Character and
Code Set Interoperability 147

Writing the Interface Definition File 148
Writing the Attribute Configuration File . . 149
Writing the Stub Support Routines 150
Writing the Server Code 153
Writing the Client Code 159
Writing the Evaluation Routine 163

Chapter 10. Topics in RPC Application
Development 173

Memory Management 173
Using the Memory Management Defaults . 174
Using rpc_ss_allocate and rpc_ss_free . . 174
Using Your Own Allocation and Free

Routines 175
Using Thread Handles in Memory

Management 176
Guidelines for Error Handling 176

Exceptions 177
The fault_status Attribute 178
The comm_status Attribute 178
Determining Which Method to Use for

Handling Exceptions 178
Examples of Error Handling 179

Context Handles 180
Context Handles in the Interface 181
Context Handles in a Server Manager . . 182
Context Rundown 190
Binding and Security Information 191

Pipes . 192
Input Pipes 192
Output Pipes 194
Pipe Summary 197

Nested Calls and Callbacks 197
Routing Remote Procedure Calls 199

Obtaining an Endpoint 200
Buffering Call Requests 205
Queuing Incoming Calls 206
Dynamic Executor Threads 208
Selecting a Manager 209

Creating Portable Data Using the IDL
Encoding Services 211

Memory Management for IDL Encoding
Services 212

Buffering Styles 212
IDL Encoding Services Handles 213
Programming Example 214
Performing Multiple Operations on a

Single Handle 219
Determining the Identity of an Encoding . 219

Chapter 11. Interface Definition Language 221
The Interface Definition Language File 221
Syntax Notation Conventions 221

Typography 221
Special Symbols 222

IDL Lexical Elements 222
Identifiers 222
Keywords 222
Punctuation Characters 222
White Space 223
Case Sensitivity 223

IDL versus C 223
Declarations 224
Data Types 224
Attributes 224

Interface Definition Structure 224
Interface Definition Header 224
Interface Definition Body 225

Overview of IDL Attributes 225
Interface Definition Header Attributes 226

The uuid Attribute 226
The version Attribute 226
The endpoint Attribute 227
The exceptions Attribute 228
The pointer_default Attribute 229
The local Attribute 229
Rules for Using Interface Definition

Header Attributes 229
Examples of Interface Definition Header

Attributes 230
Import Declarations 230
Constant Declarations 230

Integer Constants 231
Boolean Constants 231
Character Constants 231
String Constants 231
NULL Constants 232

Type Declarations 232
Type Attributes 232
Base Type Specifiers 232
Constructed Type Specifiers 234
Predefined Type Specifiers 234
Type Declarator 234

Operation Declarations 234
Operation Attributes 235

36 Application Development Guide: Core Components

Operation Attributes: idempotent,
broadcast, and maybe 235

Operation Attributes: Memory
Management 236

Parameter Declarations 236
Basic Data Types 237

Integer Types 237
Floating-Point Types 238
The char Type 238
The boolean Type 238
The byte Type 239
The void Type 239
The handle_t Type 239
The error_status_t Type 239
International Characters 240

Constructed Data Types 240
Structures 240
Unions . 241
Enumerations 244
Pipes . 244
Arrays . 247
Strings . 253
Pointers . 254
Customized Handles 267
Context Handles 268

Associating a Data Type with a Transmitted
Type . 273

IDL Grammar Synopsis 275

Chapter 12. Attribute Configuration
Language 285

Syntax Notation Conventions 285
Attribute Configuration File (ACF) 285

Naming the ACF 285
Compiling the ACF 286
ACF Features 286

Structure . 286
ACF Interface Header 287
ACF Interface Body 287
The include Statement 288
The auto_handle Attribute 288
The explicit_handle Attribute 289
The implicit_handle Attribute 290
The comm_status and fault_status

Attributes 291
The code and nocode Attributes 292
The represent_as Attribute 293
The enable_allocate Attribute 294
The heap Attribute 295
The extern_exceptions Attribute 296
The encode and decode Attributes 296
The cs_char Attribute 298
The cs_stag, cs_drtag, and cs_rtag

Attributes 302
The cs_tag_rtn Attribute 303
The binding_callout Attribute 305

Summary of Attributes 306
ACF Grammar Synopsis 306

 Part 2. Using the DCE Remote Procedure Call APIs 37

38 Application Development Guide: Core Components

Chapter 4. Developing a Simple RPC Application

This chapter first explains how to write an interface definition in the DCE RPC Interface Definition
Language (IDL) and illustrates the basic features of IDL. As an example, we present an interface
definition for greet, a very simple application that prints greetings from a client and a remote server. The
remainder of the chapter describes how to develop, build, and run the greet client and server programs.

You can find the application source code for the greet example in the usr/lpp/dce/examples/greet
directory.

The z/OS DCE Application Development Guide: Introduction and Style describes how to develop a DCE
application using many of the features of DCE. The following chapters use the term RPC application to
mean essentially the same thing, except in this context an RPC application concentrates on the features of
the RPC technology, glossing over other DCE issues such as security, threads, and messaging. Since the
RPC mechanism is the root technology for developing all DCE applications, the basic development
approach is the same.

The Remote Procedure Call Model
The Remote Procedure Call (RPC) model is a well-tested, industry-wide framework for distributing
applications.

The RPC model is derived from the programming model of local procedure calls. The key difference is
that an RPC executes a remote procedure, that is, one that is located in a separate address space from
the calling code. The RPC model takes advantage of the fact that every procedure contains a procedure
declaration which defines the interface (including call syntax and parameters) between the calling code
and the called procedure. In an RPC this interface definition is the mechanism that makes called
procedures remotely accessible.

An RPC application is divided into two parts: an RPC server, which offers one or more sets of remote
procedures, and an RPC client, which makes remote procedure calls to RPC servers. The client and
server generally (although not necessarily) reside on separate systems and communicate over a network.

The DCE RPC model is implemented via a runtime library of routines that perform the functions a
distributed application needs, such as controlling network communications and finding servers for clients.
This code is linked with client and server application code to form the RPC application.

Table 2 on page 40 shows the basic tasks of the client and server of an RPC application.

 Copyright IBM Corp. 1994, 2001 39

Table 2. Basic Tasks of an RPC Application

Client Tasks Server Tasks

1. Select network protocols
2. Register RPC interfaces
3. Advertise RPC interfaces and objects in the

namespace
4. Listen for calls

5. Find compatible servers that offer the procedures
6. Call the remote procedure
7. Establish a binding relationship with the server
8. Convert interface input arguments to network data

representations
9. Transmit arguments to the server's runtime

10. Receive call
11. Disassemble network data and convert arguments

into local data
12. Locate and invoke the called procedure
13. Execute the remote procedure
14. Convert to network data representations the interface

output arguments and possible return value
15. Transmit results to the client's runtime

16. Receive results
17. Disassemble network data and convert arguments

into local data
18. Pass to the calling code the results and return

control to it

An RPC typically uses computing resources (such as processors, databases, devices, and services)
dispersed on many systems. Some typical examples of RPC applications are :

� A calendar-management application that allows authorized users to access the personal calendars of
other users

� A graphics application that processes data on central processors and displays the results on
workstations

� A manufacturing application that shares changing information about assembly components among
design, inventory, scheduling, and accounting programs located on different computers

RPC Application Code

An RPC server or client contains application code, one or more RPC stubs, and a copy of the RPC
runtime. RPC application code is the code written for a specific RPC application by the application
developer. Application code implements and calls remote procedures, and also calls any RPC runtime
routines the application needs. An RPC stub is an interface-specific code module that uses an RPC
interface to pass and receive arguments. A server and a client contain complementary stubs for each
RPC interface they share. The DCE RPC runtime manages communications for RPC applications. In
addition, the DCE RPC runtime supports an Application Programming Interface (API) used by RPC
application code to call runtime routines. These runtime routines enable RPC applications to set up their
communications, manipulate information about servers, and perform optional tasks such as remotely
managing servers and accessing security information.

Figure 4 on page 41 shows the relationship of application code, stubs, and the RPC runtime in the
server and client portions of an RPC application.

40 Application Development Guide: Core Components

Figure 4. The Parts of an RPC Application

RPC application code differs for servers and clients. Minimally, server application code contains the
remote procedures (also referred to as “manager code”) that implement one RPC interface, and the
corresponding client contains calls to those remote procedures.

 Stubs

The stub performs basic support functions for remote procedure calls. For instance, stubs prepare input
and output arguments for transmission between systems with different forms of data representation. The
stubs use the RPC runtime to send and receive remote procedure calls. The client stub can also use the
runtime to find servers for the client.

When a client application calls a remote procedure, the client stub first prepares the input arguments for
transmission. The process for preparing arguments for transmission is known as “marshalling.”
Marshalling converts call arguments into a byte-stream format and packages them for transmission. Upon
receiving call arguments, a stub unmarshalls them. Unmarshalling is the process by which a stub
disassembles incoming network data and converts it into application data using a format that the local
system understands. Marshalling and unmarshalling both occur twice for each remote procedure call; that
is, the client stub marshalls input arguments and unmarshalls output arguments, and the server stub
unmarshalls input arguments and marshalls output arguments. Marshalling and unmarshalling permit
client and server systems to use different data representations for equivalent data. For example, the client
system can use ASCII characters and the server system can use EBCDIC characters as shown in
Figure 5 on page 42.

 Chapter 4. Developing a Simple RPC Application 41

Client Stub Server Stub

ASCII

ASCII

EBCDIC

EBCDIC

Byte-stream format

marshalling unmarshalling

marshallingunmarshalling

Input Argument

Output Argument

Remote Procedure Call

AIX MVS

Figure 5. Marshalling and Unmarshalling Between ASCII and EBCDIC Data

The DCE IDL compiler (a tool for DCE application development) generates stubs by compiling an RPC
interface definition written by application developers. The IDL compiler generates marshalling and
unmarshalling routines for IDL data types specified in the interface definition (.idl file).

To build the client for an RPC application, a developer links client application code to the client stubs of all
the RPC interfaces the application uses. To build the server, the developer links the server application
code to the corresponding server stubs.

The RPC Runtime

In addition to one or more RPC stubs, every RPC server and RPC client is linked with its own copy of the
RPC runtime. Runtime operations perform tasks such as controlling communications between clients and
servers and finding servers for clients on request. An interface's client and server stubs exchange
arguments through their respective local RPC runtimes. The client runtime transmits remote procedure
calls to the server. The server runtime receives the calls and dispatches each call to the appropriate
server stub. The server runtime passes the call results to the client runtime. The DCE RPC runtime
supports the RPC API used by RPC application code to call runtime routines.

Server application code must also contain server initialization code that calls RPC runtime routines when
the server is starting up and shutting down. These routines can, for example, announce that the server is
ready to receive requests or is ending request servicing. Client application code can also call RPC
runtime routines, for example, to list all available servers with certain desired characteristics so the client
can determine the best one to use. Server and client application code can also contain calls to RPC
stub-support routines. Stub-support routines allow applications to perform programming tasks such as
allocating and freeing memory storage. The marshalling and unmarshalling of data that is passed
between the client and server is done with stub-support routines.

42 Application Development Guide: Core Components

RPC Application Components Working Together

Figure 6 shows the roles of application code, RPC stubs, and RPC runtimes during a remote procedure
call.

Figure 6. Interrelationships During a Remote Procedure Call

The following steps describe the interrelationships of the components of RPC applications, as shown in
Figure 6:

1. The client's application code makes a remote procedure call, passing the input arguments to the stub
for the particular RPC interface.

2. The client's stub marshalls the input arguments and dispatches the call to the client's RPC runtime.

3. The client's RPC runtime transmits the input arguments over the communications network to the
server's RPC runtime, which dispatches the call to the server stub for the RPC interface of the called
procedure.

4. The server's stub unmarshalls the input arguments and passes them to the called remote procedure.

5. The procedure executes and then returns any results (output arguments or a return value or both) to
the server's stub.

6. The server's stub marshalls the results and passes them to the server's RPC runtime.

7. The server's RPC runtime transmits the results over the communications network to the client's RPC
runtime, which dispatches them to the correct stub of the client.

8. The client's stub unmarshalls output arguments and passes them to the calling code.

 Chapter 4. Developing a Simple RPC Application 43

Note that only steps one and five involve code that is written by the application developer; the rest of the
steps are all handled by the RPC runtime.

Overview of DCE RPC Development Tasks

The tasks involved in developing an RPC application resemble those involved in developing a local
application. As an RPC developer, you perform the following basic tasks (these will be described in more
detail later in this chapter):

1. Design your application as you normally would, but with the additional step of deciding which
procedures you will be using will be remote procedures.

2. Generate a unique identifier (UUID) for each new planned interface by using the uuidgen command.
(See 46 for the definition of a UUID.)

3. Write an interface definition file (named interfacename.idl if using HFS) using the Interface Definition
Language (IDL) that describes the RPC interfaces for the planned remote procedures. This step is
similar to writing C language prototype .h files. (See “Writing an Interface Definition” on page 45.)

4. Use the DCE IDL compiler to generate the client and server stubs. The IDL Compiler invokes the C
Compiler to create the stub object code. Figure 7 illustrates this task.

Interface
definition

file

IDL Compiler

Client
stub

Server
stub

UUID
Generator

header

Figure 7. Generating Stubs

Note:

While the .idl and .acf files themselves are portable across all DCE platforms, the .c, .h, and .o
stub files generated by the IDL compiler are not. Stub files used on the z/OS DCE platform
must be generated with the z/OS DCE IDL compiler.

5. Write or modify application code using a compatible programming language; that is, a language that
can be linked with C and can invoke C procedures, so the application code works with the stubs.

Application code includes several kinds of code, as follows:

a. Remote procedures (actual client and server application code functions)

b. Remote procedure calls (for example, a call to check on which server is best to use for a
procedure)

44 Application Development Guide: Core Components

c. Initialization code (calls to RPC stub-support or runtime routines)

d. Any non-RPC code your application requires (for example, data display menus)

6. Generate object code from application code.

7. Create an executable client and server from the object files. Figure 8 illustrates this task.

For the client, link object code of the client stub(s) and the client application with the RPC runtime and
any other needed runtime libraries.

For the server, link object code for the server stub(s), the initialization routines, and the set(s) of
remote procedures with the RPC runtime and any other needed runtime libraries.

Figure 8. Building a Simple Client and Server

8. After initial testing, distribute the new application by separately installing the server and client
executable images on systems on the network.

Writing an Interface Definition

Traditionally, calling code and called procedures share the same address space and are link-edited
together. In an RPC application, the calling code and the called remote procedures are not linked; rather,
they communicate indirectly through an RPC interface. An RPC interface is a logical grouping of
operations, data types, and constants that serves as a unique network contract for a set of remote
procedures. DCE RPC interfaces are compiled from formal interface definitions written by application
developers using the DCE Interface Definition Language (IDL).

The first step in developing a distributed application is to write an interface definition file in IDL. The IDL
compiler, idl, uses the information in an interface definition to generate a header file, a client stub file, and
a server stub file. The IDL compiler produces header files in C and can produce stubs as C source files
and/or as object files.

For some applications, you may also need to write an Attribute Configuration File (ACF) to accompany the
interface definition. If an ACF exists, the IDL compiler interprets the ACF when it compiles the interface
definition. Information in the ACF is used to modify the code that the compiler generates. (The greet
example does not require an ACF.)

 Chapter 4. Developing a Simple RPC Application 45

The remainder of this section briefly explains how to create an interface definition and gives simple
examples of each kind of IDL declaration. For a detailed description of IDL, see Chapter 11, “Interface
Definition Language” on page 221. For information on the IDL compiler, see the z/OS DCE Command
Reference.

An IDL interface definition consists of a header and a body. The following example shows the interface
definition for the greet application:

Each RPC interface contains in the header a Universal Unique Identifier (UUID), which is a hexadecimal
number that can uniquely identify an entity. The UUID in the example above is
3d6ead56-06e3-11ca-8dd1-826901beabcd. A UUID that identifies an RPC interface is known as an
interface UUID. The interface UUID ensures that the interface can be uniquely identified across all
possible network configurations. In addition to an interface UUID, each RPC interface contains major and
minor version numbers. The example above is version 1.0. Together, the interface UUID and version
numbers form an interface identifier that identifies an instance of an RPC interface across systems and
through time.

The interface body can contain the following constructs:

� Import declarations (not shown)

� Constant declarations (REPLY_SIZE)

� Type declarations (not shown)

� Operation declarations (void greet(...);)

IDL declarations resemble declarations in ANSI C. IDL is purely a declarative language, so, in some
ways, an IDL interface definition is like a C header file. However, an IDL interface definition must specify
the extra information that is needed by the remote procedure call mechanism. Most of this information is
expressed via IDL attributes. IDL attributes can apply to types, to type members, to operations, to
operation parameters, or to an interface as a whole. An attribute is represented in [] (brackets) before
the item to which it applies. In the greet.idl example, the [in, string] attributes associated with the
client_greeting array means the parameter is for input only and that the array of characters has the
properties of strings.

A comment can be inserted at any place in an interface definition where white space is permitted. IDL
comments, like C comments, begin with /* (a slash and an asterisk) and end with */ (an asterisk and a
slash).

RPC Interfaces Represent Services

The simplest RPC application uses only one RPC interface. However, an application can use multiple
RPC interfaces, and frequently, an integral set of RPC interfaces work together as an RPC service. An
RPC service is a logical grouping of one or more RPC interfaces. For example, you can write a calendar
service that contains only a personal calendar interface or a calendar service that contains additional RPC
interfaces such as a scheduling interface for meetings.

Different services can share one or more RPC interfaces. For example, an administrative support
application can include an RPC interface from a calendar service.

An RPC interface exists independently of specific applications. That is, it can be implemented by by any
client/server application that conforms to the interface definition, and all implementation of the same
version of an interface will operate the same way. This makes it possible for clients from different
implementations to call the same interface, and servers from different implementations to offer the same
interface.

46 Application Development Guide: Core Components

/$
 $ greet.idl
 $
 $ The "greet" interface.
 $/

[uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),
version(1.0)]

interface greetif
{

const long int REPLY_SIZE = 100;

 void greet(
 [in] handle_t h,
 [in, string] char client_greeting[],
 [out, string] char server_reply[REPLY_SIZE]
);
}

Figure 9. GREET Interface Definition

Figure 10 on page 47 shows the role of RPC interfaces in remote procedure calls. This client contains
calling code that makes two remote procedure calls. The first is a remote procedure call to Procedure A.
The second is a remote procedure call to Procedure B.

Figure 10. Role of RPC Interfaces

Any application may use interfaces A and B above if it conforms to the A and B's interface definitions (that
is, incorporates A and B's interface specifications into its application code.)

Clients can use any practical combination of RPC interfaces, whether offered by the same or different
servers. For this example, using a database access interface, a client on a graphics workstation can call
a remote procedure on a database server to fetch data from a central database. Then, using a statistics

 Chapter 4. Developing a Simple RPC Application 47

interface, the client can call a procedure on another server on a parallel processor to analyze the data
from the central database and return the results to the client for display.

Generating an Interface UUID

The first step in building an RPC application is to generate a skeletal interface definition file and a UUID
for the interface. Every interface in an RPC application must have a Universal Unique Identifier (UUID).
When you define a new interface, you must generate a new UUID for it. (In an object-oriented application,
every object and object type must also have a non-nil UUID.)

Typically, you run uuidgen with the -i option. The -i option produces a skeletal interface definition file and
includes the generated UUID for the interface. For example:

 $ uuidgen -i > chess.idl
 $ cat chess.idl

[
uuid(443f4b20-a100-11c9-baed-08001e0218cb),
version(1)
]
interface INTERFACENAME {

}

The first part of the skeletal definition is the header, which specifies a UUID, a version number, and a
name for the interface. The last part of the definition is { } the body, (an empty pair of braces); import,
constant, type, and operation declarations go between these braces.

By convention, the names of interface definition files end with the suffix .idl. The IDL compiler constructs
names for its output files based on the name of the interface definition file and uses the following default
suffixes:

� .h for header files

� _cstub.o for client stub files

� _sstub.o for server stub files

For example, compilation of a chess.idl interface definition file would produce a chess.h header file, a
chess_cstub.o client stub file, and a chess_sstub.o server stub file. (The IDL compiler creates C
language intermediate files and by default invokes the C compiler to produce object files, but it can also
retain the C language files.)

For more information on the UUID generator, see the z/OS DCE Command Reference.

Naming the Interface

After you have used uuidgen to generate a skeletal interface definition, replace the dummy string
INTERFACENAME with the name of your interface.

By convention, the name of an interface definition file is the same as the name of the interface it defines,
with the suffix .idl appended. For example, the definition for a bank interface would reside in a bank.idl
interface definition file, and if the application required an ACF, its name would be bank.acf.

The IDL compiler incorporates the interface name in identifiers it constructs for various data structures and
data types, so the length of an interface name can be at most 17 characters. (Most IDL identifiers have a
maximum length of 31 characters.)

48 Application Development Guide: Core Components

Specifying Interface Attributes

Interface attributes are defined within [] (brackets) in the header of the interface definition. The definition
for any remote interface needs to specify the uuid and version interface attributes, so these are included
in the skeletal definition that uuidgen produces.

If an interface is exported by servers on well-known endpoints, these endpoints must be specified via the
endpoint attribute. Interfaces that use dynamic endpoints do not have this attribute. (A well-known
endpoint is a stable address on the host, while a dynamic endpoint is an address that the RPC runtime
requests for the server.)

The interface definition language can be used to specify procedure prototypes for any application, even if
the procedures are never used remotely. If all of the procedures of an interface are called only locally and
never remotely, the interface can be given the local attribute. Since local calls do not have any network
overhead, the local attribute causes the compiler to generate only a header file, not stubs, for the
interface.

 Import Declarations

The IDL import declaration specifies another interface definition whose types and constants are used by
the importing interface.

The import declaration allows you to collect declarations for types and constants that are used by several
interfaces into one common file. For example, if you are defining two database interfaces named
dblookup and dbupdate, and these interfaces have many constants in common, you can declare those
constants in a dbconstants.idl file and import this file in the dblookup.idl and dbupdate.idl interface
definitions. For example:

import "dbconstants.idl";

By default, the IDL compiler resolves relative path names of imported files by looking first in the current
working directory and then in the system IDL directory. The -I option of the IDL compiler allows you to
specify additional directories to search. You can thereby avoid putting absolute path names in your
interface definitions. For example, if an imported file has the absolute path name
/dbproject/src/dbconstants.idl, then the IDL compiler option -I/dbproject/src allows you to import the file
by its leaf name, dbconstants.idl.

 Constant Declarations

The IDL const declaration allows you to declare integer, Boolean, character, string, and null pointer
constants, some of which are shown in the following examples:

const short TEN = 10;
const boolean VRAI = TRUE;
const char$ JSB = "Johann Sebastian Bach";

 Type Declarations

To support application development in a variety of languages and to support the special needs of
distributed applications, IDL provides an extensive set of data types, including the following:

� Simple types, such as integers, floating-pointing numbers, characters, Booleans, and the primitive
binding-handle type handle_t (equivalent to rpc_binding_handle_t)

� Constructed types, such as strings, structures, unions, arrays, pointers, and pipes

� Predefined types, including ISO international character types and the error status type error_status_t

 Chapter 4. Developing a Simple RPC Application 49

The IDL typedef declaration lets you give a name to any types you construct.

The general form of a type declaration is

typedef [type_attribute,...] type_specifier type_declarator,...;

where the bracketed list of type attributes is optional. The type_specifier specifies a simple type, a
constructed type, a predefined type, or a type previously named in the interface. Each type_declarator is
a name for the type being defined. As in C, arrays and pointers are declared by the type_declarator
constructs [] (brackets) and an * (asterisk) rather than by type_specifier constructs.

The following type declaration defines integer32 as a name for a 32-bit integer type:

typedef long integer32;

The type_specifier constructs for structures and unions permit the application of attributes to members. In
the following example, one member of a structure is a conformant array (an array without a fixed upper
bound), and the size_is attribute names another member of the structure that at runtime provides
information about the size of the array:

typedef struct {
 long dsize;

[size_is(dsize)] float darray[];
 } dataset;

 Operation Declarations

Operation declarations specify the signature of each operation in the interface, including the operation
name, the type of data returned (if any), and the types of all parameters passed (if any) in a call.

The general form of an operation declaration is

[operation_attribute,...] type_specifier operation_identifier (parameter_declaration ,...);

where the bracketed list of operation attributes is optional. Among the possible attributes of an operation
are idempotent, broadcast, and maybe, which specify semantics to be applied by the RPC runtime
mechanism when the operation is called. If an operation when called once can safely be executed more
than once, the IDL declaration of the operation may specify the idempotent attribute; idempotent
semantics allow remote procedure calls to execute more efficiently by letting the underlying RPC
mechanism retry the procedure if it deems it necessary. Broadcast semantics specify that the operations
is always to be broadcast to all hosts on a network. Maybe specifies that the caller of the operation does
not require and will not receive any response.

The type_specifier specifies the type of data returned by the operation.

The operation_identifier names the operation. Although operation names are arbitrary, a common
convention is to use the name of an interface as a prefix for the names of its operations. For example, a
bank interface may have operations named bank_open, bank_close, bank_deposit, bank_withdraw,
and bank_balance.

Each parameter_declaration in an operation declaration declares a parameter of the operation. A
parameter_declaration takes the following form:

[parameter_attribute, ...] type_specifier parameter_declarator

Every parameter attribute must have at least one of the parameter attributes in or out to specify whether
the parameter is passed as an input, as an output, or in both directions. The type_specifier and
parameter_declarator specify the type and name of the parameter.

50 Application Development Guide: Core Components

Output parameters must be passed by reference and therefore must be declared as pointers via the
pointer operator * (an asterisk) or an array.

If you want an interface to always use explicit binding handles, the first parameter of each operation
declaration must be a binding handle, as in the following example:

 void greet(
 [in] handle_t h,
 [in, string] char client_greeting[],
 [out, string] char server_reply[REPLY_SIZE]
);

However, if you want applications to use an implicit handle or use automatic binding (ACF features) for
some or all procedures, operation declarations must not have binding handle parameters in the interface
definition:

 void greet_no_handle(
 [in, string] char client_greeting[],
 [out, string] char server_reply[REPLY_SIZE]
);

This form of operation declaration is the most flexible because applications can always specify explicit,
implicit, or automatic binding handles through an ACF.

Running the IDL Compiler

After you have written an interface definition, run the IDL compiler to generate header and stub files. The
compiler offers many options that, for example, allow you to choose what C compiler or C preprocessor
commands are run, what directories are searched for imported files, which of the possible output files are
generated, and how the output files are named.

When you compile the definition of a remote interface, you must ensure that the system IDL directory is
among those that the compiler searches for imported files because any remote interface implicitly imports
rpc.idl.

The greet.idl interface definition (shown in Figure 9 on page 47) can be compiled by the following
command:

% idl greet.idl

This compilation produces a header file, greet.h; a client stub file, greet_cstub.o; and a server stub file,
greet_sstub.o. For complete information on running the IDL compiler, see the z/OS DCE Command
Reference.

Writing the Client Code

This section describes the client program for the greet application, whose interface definition was shown
earlier in this chapter.

The client performs the following major steps:

1. It calls rpc_string_binding_compose() to create a string binding from the components of binding
information specified (protocol sequence, host network address, etc.) These components are entered
by the user at runtime.

2. It calls rpc_binding_from_string_binding() to convert the string binding into a server binding handle.

 Chapter 4. Developing a Simple RPC Application 51

3. It calls the greet_rpc remote procedure with a string greeting.

4. It prints the reply from the server.

The greet_client.c module is as follows:

/$
 $ greet_client.c
 $
 $ Client of "greet" interface.
 $/

#include <stdio.h>
#include <locale.h>
#include <dce/dce_error.h>
#include "greet.h"

int main(int argc, char $argv[])
{
 handle_t h;
 unsigned long st;
 int error_inq_st;
 dce_error_string_t error_text;

idl_char $string_binding, $protseq, $hostid, $endpoint;
static idl_char nil_string[] = "";

 int i, MAX_PASS;
 char reply[STR_SZ];

 setlocale(LC_ALL, "");

if (argc != 5) {
fprintf(stderr, "Usage: %s protseq hostid endpoint passes\n", argv[0]);

 fflush(stderr);
 exit (1);
 }

protseq = (idl_char $) argv[1];
hostid = (idl_char $) argv[2];
endpoint = (idl_char $) argv[3];

 rpc_string_binding_compose(nil_string,
protseq, hostid, endpoint,
nil_string, &string_binding, &st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr,"Can't compose string binding - %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

rpc_binding_from_string_binding(string_binding, &h, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot get binding from string binding %s - %s\n",

 string_binding,error_text);
 fflush(stderr);
 exit(1);
 }

printf("Bound to %s\n",string_binding);
 fflush (stdout);

MAX_PASS= atoi(argv [4]);

for (i=1; i <= MAX_PASS; i++) {
greet_rpc(h, "Hello Server !", reply);

52 Application Development Guide: Core Components

printf("The Greet Server said: %s\n", reply);
 fflush(stdout);
 }

return(0);
}

The module first includes greet.h, the header file for the greet interface generated by the IDL compiler.

The client program checks the status after each call to the RPC runtime. If it is not error_status_ok,
dce_error_inq_text() is called and the error message is printed.

As specified in the greet.idl interface definition, the greet application uses implicit binding handles.
Before making the remote call to the server, the client initializes a server binding handle by having the
runtime convert string binding information to a binding handle. The client then assigns this binding handle
to a global variable, and uses it to make the remote call.

Writing the Server Code

The following subsections describe the server program for the greet application.

The greet server program has two user-written modules:

� The greet_server.c module contains the server main function and performs the initialization and
registration required to export the greet interface.

� The greet_manager.c module contains the code that actually implements the greet operation.

The greet_server.c Source Code

Most applications should use the DCE convenience routines for server initialization routines (routines that
begin with dce_server) to prepare servers to listen for remote procedure calls. These routines are simple
to use, prepare a server so that dced can manage it, and they allow enough flexibility to do most typical
initializations. However, for detailed control, applications can also use the lower-level RPC API to do
server initialization. In this chapter we describe how to use the RPC API for server initialization.

In this section, the greet_server.c module is described and shown in successive pieces.

Including idl-Generated Headers and Selecting Protocol Sequences: Like
greet_client.c, the greet_server.c module includes greet.h so that constants, data types, and procedure
prototypes are available in the application.

The server then calls rpc_server_use_all_protseqs() to obtain endpoints on which to listen for remote
procedure calls. This call also specifies the maximum number of calls this server can accept at the same
time (in this case, 5) with the MAX_CONCURRENT_CALLS parameter.

/$
 $ greet_server.c
 $
 $ Main program (initialization) for "greet" server.
 $/
#pragma runopts(stack(12K, 4K, ANY,KEEP))

#include <stdio.h>
#include <locale.h>
#include <dce/dce_error.h>

 Chapter 4. Developing a Simple RPC Application 53

#include <dce/exc_handling.h>
#include "greet.h"

#define MAX_CONCURRENT_CALLS 5

/$ In the first part of the main function, the server calls
rpc_server_use_all_protseqs() to use all protocol
sequences that are supported on its host both by the
runtime library and the operating system. $/

int main (int argc, char $argv⅛‘)
{
 rpc_binding_vector_p_t bvec;
 unsigned long st;
 int error_inq_st;
 dce_error_string_t error_text;
 idl_boolean validfamily;
 idl_char $string_binding;
 int i;

 setlocale(LC_ALL, "");

if (argc != 1) {
fprintf(stderr, "Usage: %s\n", argv⅛0‘);

 fflush(stderr);
 exit(1);
 }

/$ Calling rpc_server_use_all_protseqs to obtain an endpoint
for each protocol sequence supported by the RPC runtime and
the operating system $/

 rpc_server_use_all_protseqs(MAX_CONCURRENT_CALLS, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot register protocol seqs - %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

Registering the Interface: The server calls rpc_server_register_if(), supplying its interface
specifier (defined in greet.h), to register each interface with the RPC runtime:

 /$
$ Register interface with RPC runtime.

 $/
rpc_server_register_if(greetif_v1_0_s_ifspec, NULL, NULL,

 &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr,"Cannot register interface - %s\n",error_text);

 fflush(stderr);
 exit(1);
 }

54 Application Development Guide: Core Components

Obtaining the Server's Binding Handles: To obtain a vector of binding handles that it can use
when registering endpoints, the server calls rpc_server_inq_bindings(): It then converts a binding handle
to a string binding using rpc_binding_to_string_binding(). It prints the string binding and then frees it
after use.

/$ Calling rpc_server_inq_bindings to obtain a vector of
binding handles that can be used to register the server's
endpoint. The server then obtains, prints, and frees a
string binding $/

 rpc_server_inq_bindings(&bvec, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr,"Cannot inquire bindings - %s\n",error_text);

 fflush(stderr);
 exit(1);
 }

 printf("Bindings:\n");
 fflush(stdout);

for (i = 0; i < bvec->count; i++) {
 rpc_binding_to_string_binding(bvec->binding_h[i],
 &string_binding, &st);

printf("%s\n", (char $)string_binding);
 fflush(stdout);
 rpc_string_free(&string_binding, &st);
 }

Listening for Calls: To begin listening for remote procedure call requests, the server calls
rpc_server_listen().

/$ To begin listening for RPC requests, the server calls
rpc_server_listen. This call is placed within the TRY of a
TRY, CATCH_ALL, ENDTRY sequence, so that if the server receives
a signal while it is listening, the CATCH_ALL code will allow
the server to shut down gracefully. $/

 TRY {
 printf("Listening...\n");
 fflush(stdout);
 rpc_server_listen(MAX_CONCURRENT_CALLS, &st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Error: %s\n",error_text);

 fflush(stderr);
 }
 }

 CATCH_ALL {
printf("Server GREET shutting down\n");

 fflush(stdout);
 }

 ENDTRY;

return(0);
}

 Chapter 4. Developing a Simple RPC Application 55

The greet_manager.c Source Code

The greet_manager.c module includes greet.h and it also defines the routine greet_rpc, as follows:

/$
 $ greet_manager.c
 $
 $ Implementation of "greet" interface.
 $/

#include <stdio.h>
#include "greet.h"

void greet_rpc(handle_t h,
 char $client_greeting,
 char $server_reply)
{

printf("The client says: %s\n", client_greeting);
 fflush(stdout);

strncpy(server_reply, "Hi client !", STR_SZ);
}

Building the greet Programs

The client side of the greet application is the greet_client program, which is built from the following:

� The user-written greet_client.c client module

� The IDL-compiler-generated greet_cstub.o client stub module

� Libraries for the RPC runtime

The server side of the greet application is the greet_server program, which is built from the following:

� The user-written greet_server.c server module

� The user-written greet_manager.c manager module

� The IDL-compiler-generated greet_sstub.o server stub module

� Libraries for the RPC runtime

These programs can be built by make with a makefile such as the following:

PROGRAMS = greet_server greet_client
INCLUDES = greet.h
IDLFILES = greet.idl
ILIST = Makefile README greet_server.c greet_manager.c \
 greet_client.c greet.idl
greet_server_OFILES = greet_sstub.o greet_server.o greet_manager.o
greet_client_OFILES = greet_cstub.o greet_client.o
IDLFLAGS = -no_cpp -keep c_source
IDIR = /examples/greet/
LIBS = -ldce
greet_server_OFILES : greet.h
greet_client_OFILES : greet.h
.include <${RULES_MK}>

56 Application Development Guide: Core Components

Running the greet Programs

Running the greet application involves starting the server program and then running the client program.
For more information, see the z/OS DCE Application Development Guide: Introduction and Style. The
following message is printed on the server's host:

The client says: Hello, Server!

The following reply is printed on the client's host:

The Greet Server said: Hi, client!

The server program can be terminated at any time by a quit signal, which on many systems can be
generated by <Ctrl-c>:

 <Ctrl-c>

 $

When applications such as greet execute, many errors can occur that have nothing to do with your own
code. In general, errors that occur when a remote procedure call executes are reported as exceptions.
For example, exceptions that the client side of greet_client could raise if the server suddenly and
unexpectedly halts include (but are not limited to) rpc_x_comm_failure and rpc_x_call_timeout. Other
ways to respond to these errors are available through the comm_status and fault_status attributes in an
interface definition or attribute configuration file. Explanations of these attributes appear in Chapter 12,
“Attribute Configuration Language” on page 285. Also, see Chapter 10, “Topics in RPC Application
Development” on page 173, which explains the guidelines for error handling.

Part 3, “Using the DCE Threads APIs” on page 313 contains information about the macros (such as
those specified by TRY, CATCH, and ENDTRY statements) for exception handling. If an exception occurs
that the client application does not handle, it causes the client to terminate with an error message. The
client's termination could include a core dump or other system-dependent error reporting method. Detailed
explanations of RPC status codes and RPC exceptions are in the z/OS DCE Messages and Codes book.

 Chapter 4. Developing a Simple RPC Application 57

58 Application Development Guide: Core Components

 Chapter 5. RPC Fundamentals

The DCE RPC call environment essentially behaves like a local call environment. However, the
remoteness (that is, distribution among different address spaces) of the calling code to the called
procedure does have some special implications. Therefore, a remote procedure call may not always
behave exactly like a local procedure call.

Note:

RPC function in z/OS DCE differs slightly from that available in OSF DCE. The following RPC routines
are IBM added APIs and may not be available in other DCE environments:

 � rpc_err_get_uuid()
 � rpc_err_reset_uuid()
 � rpc_err_test_uuid()
 � rpc_err_user_exit()
 � rpc_err_ss_destroy_callee_context().

Direct Implications of Remoteness

Distributed applications have the following implications:

 � Server/client relationship: binding

Like a local procedure call, a remote procedure call depends on a static relationship between the
calling code and the called procedure. In a local application, this relationship is established by linking
the calling and called code. Linking gives the calling code access to the address of each procedure to
be called. Enabling a remote procedure call to go to the right procedure requires a similar relationship
(called a binding) between a client and a server. A binding is a temporary relationship that depends
on a communications link between the client and server RPC runtimes. A client establishes a binding
over a specific protocol sequence to a specific host system and endpoint.

� Lack of shared memory

The calling code and called remote procedure reside in different address spaces, generally on
separate systems. The calling and called code cannot share global variables or other global program
states such as open files. All data shared between the caller and the called remote procedure must
be specified as procedure parameters. Unlike a local procedure call that commonly uses the
call-by-reference passing mechanism for input/output parameters, remote procedure calls with
input/output parameters have copy-in/copy-out semantics due to the differing address spaces of the
calling and called code. These two passing mechanisms are only slightly different, and most
procedure calls are not sensitive to the differences between call-by-reference and copy-in/copy-out
semantics.

 � Independent Failure

Distributing a calling program and the called procedures to physically separate machines increases the
complexity of procedure calls. Remoteness introduces issues such as a remote system failure,
communications links, naming and binding issues, security problems, protocol incompatibilities,
performance and diagnosis. Such issues can require error handling that is unnecessary for local
procedure calls. Also, as with local procedure calls, remote procedure calls are subject to run time
errors that arise from the procedure call itself.

This chapter discusses the following topics:

� Universal unique identifiers

 Copyright IBM Corp. 1994, 2001 59

 � Communications protocols

 � Binding information

 � Endpoints

� Run time semantics

 � Communications failures

 � Scalability

 � RPC objects

Universal Unique Identifiers

A Universal Unique Identifier (UUID) is a hexadecimal number. Each UUID contains information, including
a timestamp and a host identifier.

Applications use UUIDs to identify many kinds of entities. DCE RPC identifies several kinds of UUIDs
according to the kind of entities each identifies:

 � Interface UUID

An interface UUID identifies a specific RPC interface. It is declared in an RPC interface definition and
is a required element of the interface. For example:

uuid(2fac8900-31f8-11ca-b331-08002b13d56d),

 � Object UUID

An object UUID is a UUID that identifies an entity for an application; for example, a resource, a
service, or a particular instance of a server. An application defines an RPC object by associating the
object with its own UUID known as an object UUID. The object UUID exists independently of the
object, unlike an interface UUID. If different servers offer the same RPC object, the servers typically
use different object UUIDs to identify it. A server usually generates UUIDs for its objects as part of
initialization. A given object UUID is meaningful only while a server is offering the corresponding RPC
object to clients.

Note: To distinguish a specific use of an object UUID, a UUID is sometimes labeled for the entity it
identifies. For example, an object UUID that is used to identify a particular instance of a server
is known as an instance UUID.

 � Type UUID

A type UUID identifies a class of RPC objects and an associated manager. A manager is the set of
remote procedures that puts into effect the RPC interface for objects of that type.

Servers can create object and type UUIDs by calling the uuid_create() routine.

 Communications Protocols

A communications link depends on a set of communications protocols. A communications protocol is a
clearly defined set of operational rules and procedures for communications.

Communications protocols include a transport protocol (from the Transport Layer of the OSI network
architecture) such as the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP);
and the corresponding network protocol (from the OSI Network Layer), such as the Internet Protocol (IP).

60 Application Development Guide: Core Components

For an RPC client and server to communicate, their RPC runtimes must use at least one identical
communications protocol, including a common RPC protocol, transport protocol, and network protocol. An
RPC protocol is a communications protocol that supports the semantics of the DCE RPC API and runs
over specific combinations of transport and network protocols. DCE RPC provides two RPC protocols: the
connectionless RPC protocol and the connection-oriented RPC protocol.

� Connectionless (Datagram) RPC protocol

This protocol runs over a connectionless transport protocol such as UDP. The connectionless protocol
supports broadcast calls.

� Connection-oriented RPC protocol

This protocol runs over a connection-oriented transport protocol such as TCP.

Each binding uses a single RPC protocol and a single pair of transport and network protocols. Only
certain combinations of communications protocols are functionally valid (are actually useful for
interoperation); for instance, the RPC connectionless protocol cannot run over connection-oriented
transport protocols such as TCP. DCE RPC supports the following combinations of communications
protocols:

� RPC connection-oriented protocol over the Internet Protocol Suite, Transmission Control Protocol
(TCP/IP)

� RPC connectionless over the Internet Protocol Suite, User Datagram Protocol (UDP/IP)

 Binding Information

In general terms, binding information is information about one or more potential binding instances.
Binding information includes a set of information that identifies a server to a client or a client to a server.
Each instance of binding information contains all or part of a single address. The RPC runtime maintains
binding information for RPC servers and clients. To make a specific instance of locally maintained binding
information available to a given server or client, the runtime creates a local reference known as a binding
handle. Servers and clients use binding handles to refer to binding information in runtime calls or remote
procedure calls. A server obtains a complete list of its binding handles from its RPC runtime. A client
obtains one binding handle after each binding to a server from its RPC runtime. Figure 11 illustrates a
binding.

Client

Endpoint
Server

Client’s system

Network

Server’s system

Network
addressRPC and communications protocols

Figure 11. A Binding

Binding information includes the following components:

� A protocol sequence: A valid combination of communications protocols represented by a character
string. Each protocol sequence typically includes a network protocol, a transport protocol, and an
RPC protocol that works with them. For example, RPC connection-oriented protocol over TCP/IP.

 Chapter 5. RPC Fundamentals 61

An RPC server tells the runtime which protocol sequences to accept when listening for calls to the
server via its binding information that contains those protocol sequences.

� Network addressing information: the network address and the endpoint of a server.

– The network address identifies a specific host system on a network. The format of the address
depends on the network protocol portion of the protocol sequence.

– The endpoint acts as the address of a specific server instance on the host system. The format of
the endpoint depends on the transport protocol portion of the protocol sequence. For each
protocol sequence a server instance uses, it requires a unique endpoint. A given endpoint can be
used by only one server per system, on a first-come, first-served basis.

� Transfer Syntax: a set of encoding rules used for transmitting data over a network and for converting
application data to and from different local data representations. The server’s RPC runtime must use
a transfer syntax that matches one used by the client’s RPC runtime. This shared transfer syntax
enables communications between systems that represent local data differently. DCE RPC uses a
single transfer syntax, Network Data Representation (NDR). NDR encodes data into a byte stream for
transmission over a network. A transfer syntax, such as NDR, enables machines with different
formats to exchange data successfully. (The DCE RPC communications protocols support the
negotiation of transfer syntax. However, at present, the outcome of a transfer-syntax negotiation is
always NDR.)

� RPC protocol version numbers: The client and server runtimes must use compatible versions of the
RPC protocol specified by the client in the protocol sequence. The major version number of the RPC
protocol used by the server must equal the specified major version number. The minor version
number of the RPC protocol used by the server must be greater than or equal to the specified minor
version number. This means that a client at version 1.0, level 0 can communicate with a server at
version 1.1, but not with a server at version 2.0.

Server Binding Information

Binding information for a server is known as server binding information. A binding handle that refers to
server binding information is known as a server binding handle. The use of server binding handles differs
on servers and clients.

� On a server

Servers use a list of server binding handles. Each represents one way to establish a binding with the
server. Before exporting binding information to a namespace, a server tells the RPC runtime which
RPC protocol sequences to use for the RPC interfaces the server supports. For each protocol
sequence, the server runtime creates one or more server binding handles. Each server binding
handle refers to binding information for a single potential binding, including a protocol sequence, a
network (host) address, an endpoint (server address), a transfer syntax, and an RPC protocol version
number.

� On a client

A client uses a single server binding handle that refers to the server binding information the client
needs for making one or more remote procedure calls to a given server. Server binding information
on a client contains binding information for one potential binding.

On a client, server binding information always includes a protocol sequence and the network address
of the server’s host system. However, sometimes a client obtains binding information that lacks an
endpoint, resulting in a partially bound binding handle. A partially bound binding handle
corresponds to a system, but not to a particular server instance. When a client makes a remote
procedure call using a partially bound binding handle, the client runtime gets an endpoint either from
the interface specification or from the endpoint map on the server’s system. Adding the endpoint to

62 Application Development Guide: Core Components

the server binding information results in a fully bound binding handle, which contains an endpoint
and corresponds to a specific server instance.

Defining a Compatible Server

Compatible binding information identifies a server whose communications capabilities (RPC protocol and
protocol major version number, network and transport protocols, and transfer syntax) are compatible with
those of the client. Compatible binding information is sufficient for establishing a binding. However,
binding information is insufficient for ensuring that the binding is to a compatible server; that is, a server
that also offers the requested RPC interface and RPC object (if any).

A compatible server is a server that meets the following criteria:

� Offers the requested RPC interface

� Offers the requested RPC object (if any)

� Shares a common communications environment with the client; that is, the client and server RPC
runtimes must support the following:

– At least one common pair of transport and network protocols, such as UDP/IP or TCP/IP

– At least one common transfer syntax, such as NDR

– The same DCE RPC protocol (connection-oriented or connectionless protocol) and RPC protocol
major version number

The additional information that a client imposes on the RPC runtime includes an RPC interface identifier
and an object UUID, as follows:

� Interface identifier: The interface UUID and version numbers of an RPC interface:

– Interface UUID: The interface UUID, unlike the interface name, clearly identifies the RPC interface
across time and space.

– Interface version number: The combined major and minor version numbers identify one generation
of an interface.

Version numbers allow multiple versions of an RPC interface to coexist. Strict rules govern valid
changes to an interface and determine whether different versions of an interface are compatible.
For a description of these rules see Chapter 11, “Interface Definition Language” on page 221.

The runtime uses the version number of an RPC interface to decide whether the version offered
by a given server is compatible with the version requested by a client. The offered and requested
interface are compatible under the following conditions:

- The interface requested by the client and the interface offered by the server have the same
major version number.

- The interface requested by the client has a minor version number less than or equal to that of
the interface offered by the server.

� An object UUID: A Universal Unique Identifier that identifies a particular object.

An object is a distinct computing resource, such as a particular database, a specific RPC service that
a remote procedure can access, and so on; for example, personal calendars are RPC objects to a
calendar service. Accessing an object requires including its object UUID with the binding information
used for establishing a binding. A client can request a specific RPC object when requesting new
binding information, or the client can ask the runtime to associate an object UUID with binding
information the client already has available.

Sometimes the object UUID is the nil UUID, which contains only zeros,
00000000-0000-0000-0000-000000000000. In this case, the object UUID does not represent any

 Chapter 5. RPC Fundamentals 63

object. Often, however, the object UUID represents a specific RPC object and is a non-nil value. To
create a non-nil object UUID, a server calls the uuid_create() routine, which returns a non-nil UUID
that the server then associates with a particular object.

If a client requests a non-nil object UUID, the client runtime uses that UUID as one of the criteria for a
compatible server. When searching the namespace for server binding information, the client runtime
looks for the requested interface identifier and object UUID. The endpoint map service uses this same
information to help identify a map element corresponding to a compatible server.

Figure 12 illustrates the aspects of a server and its system that is identified by the client’s server binding
information, requested interface identifier, and requested object UUID.

Endpoint

Server

Network

System

Network
address

Communications protocols

Interface

Object

Protocol sequence

Interface UUID & version numbers

Object UUID

Figure 12. Information Used to Identify a Compatible Server

How Clients Obtain Server Binding Information

When a client initiates a series of related remote procedure calls, the RPC runtime tries to establish a
binding, which requires the address of a compatible server. An RPC client can use compatible binding
information obtained from either a namespace or from a string representation of the binding information.
Establishing a binding can also involve requesting an endpoint from the Endpoint Mapper of the server's
system.

Binding Information in a Namespace: Usually, a server exports binding information for one or
more of its interface identifiers and its object UUIDs, if any, to an entry in a namespace. A namespace is
a collection of information about applications, systems, and other relevant computing resources which is
maintained by a directory service, such as the Cell Directory Service (CDS). The namespace is provided
by a directory service, such as the DCE Cell Directory Service (CDS). The directory service entry to
which a server exports binding information is known as a server entry.

To learn about a server that offers a given RPC interface and object, if any, a client can import binding
information from a server entry belonging to that server. A client can delegate the task of finding servers
from the namespace to a stub. In this case, if a binding is accidentally broken, the RPC runtime
automatically tries to establish a new binding with a compatible server.

Advantages of using a directory service to obtain binding information include:

� Convenient for large RPC environments. Initial overhead of understanding and configuring a directory
service is balanced by easier management over time.

� Management of data in a directory service is more automated.

� Effective in dynamic end-user environments.

64 Application Development Guide: Core Components

� Binding information is stored in a named server entry. Data can be dynamic. Servers can
automatically place their binding information in the namespace. Changes in binding information are
made once by a server or administrator and then propagated automatically by the directory service to
the replicas of the data.

� Centralized administration of data in a namespace. Sophisticated access control is possible.

� Supports searching for and choosing services based on an interface identifier and object UUID.
Clients access data by specifying an entry name. NSI groups and profiles in directory service entries
provide search paths for importing binding information.

Binding Information in Strings: Occasionally, a client can receive binding information in the form
of a string (also known as a string binding).

The client can receive a string binding (or the information to compose a string binding) from many
sources; for example, an application-specific environment variable, a file, or the application user. The
client must call the RPC runtime to convert a string binding to a binding handle. The RPC runtime stores
the binding information from the string binding and creates a binding handle that refers to the binding
information. The runtime returns this binding handle to the client to use for remote procedure calls.

String representations of binding information have several possible components. The binding information
can include an RPC protocol sequence, a network address, and an endpoint. The protocol sequence is
mandatory, the endpoint is optional. For a server on the client’s system, the network address is optional.
Also, a string binding optionally associates an object UUID with the binding information.

The string bindings have the following format:

obj-uuid@rpc-protocol-seq:network-addr[endpoint,option-name=opt-value...]

or

obj-uuid@rpc-protocol-seq:network-addr[endpoint=endpoint,option-name=opt-value...]

The following example string binding contains all possible components:

b07122e2-83df-11c9-be29-08002b1110fa@ncacn_ip_tcp:16.20.15.25[2001]

The following example string binding contains only the protocol sequence and network address:

ncacn_ip_tcp:16.20.15.25

For more information about this format, see the z/OS DCE Application Development Reference.

String bindings are useful in small environments, for example, when developing and testing an application.
However, string bindings are inappropriate as the principal way of providing binding information to clients.
For moderate to large environments and for small environments that may expand, applications should use
the directory service to advertise binding information.

 Chapter 5. RPC Fundamentals 65

Client Binding Information for Servers

When making a remote procedure call, the client runtime provides information about the client to the
server runtime. This information, known as client binding information, includes the following information:

� The address where the call originated (network address and endpoint)

� The RPC protocol used by the client for the call

� The object UUID that a client requests

� The client authentication information (if present).

The server runtime maintains the client binding information and makes it available to the server application
by a client binding handle.

Figure 13 illustrates the relationships between what a client supplies when establishing a binding and the
corresponding client binding information.

CLIENT'S SYSTEM SERVER'S SYSTEM

Object
UUID

Client
binding handle

client
authentication

information

client
binding

informationEndpoint

Network
address Protocols

Object

1

2

Client Server

Network

Appl.
Code

Runtime

Key:

3

= Contributes to client binding information
= Refers to client binding information

Figure 13. Client Binding Information Resulting from a Remote Procedure Call

The reference keys in Figure 13 refer to the following:

�1� The requested object UUID, which may be the nil UUID

�2� Client authentication information, which is optional

�3� The address from which the client is making the remote procedure call. The communications
protocols supply this information to the server.

A server application can use the client binding handle to ask the RPC runtime about the object UUID
requested by a client or about the client’s authentication information.

66 Application Development Guide: Core Components

 Endpoints

An endpoint is the address of a specific server instance on a host system. The following kinds of
endpoints exist: well-known endpoints and dynamic endpoints.

 Well-Known Endpoints

A well-known endpoint is a preassigned stable address that a server can use every time it runs.
Well-known endpoints typically are assigned by a central authority responsible for a transport protocol; for
example, the ARPANET Network Information Center assigns endpoint values for the IP family of protocols.
If you use well-known endpoints for a server, you should register them with the appropriate authority.

Well-known endpoints can be declared for an interface (in the interface declaration) or for a server
instance, as follows:

� Any interface definition can store one or more endpoints, along with the RPC protocol sequence
corresponding to each endpoint (the endpoint attribute).

When compiling an interface, the IDL compiler stores each combination of endpoint and protocol
sequence in the interface specification. If a call is made using binding information that lacks an
endpoint, the RPC runtime automatically looks in the interface specification for a well-known endpoint
specified for the protocol sequence obtained from the binding information. If the interface specification
contains an appropriate endpoint, the runtime adds it to the binding information.

� Alternatively, server-specific, well-known endpoints can be defined in server application code. When
asking the runtime to use a given protocol sequence, the server supplies the corresponding endpoints
to the RPC runtime. On a given system, each endpoint can be used by only one server at a time. If
server application code contains a hardcoded endpoint or the server’s installers always specify the
same well-known endpoint, only one instance of the server can run per system.

When a server exports its binding information to a server entry, the export operation includes any
well-known endpoints within the server binding information stored in the server entry.

 Dynamic Endpoints

A dynamic endpoint is an endpoint that is requested and assigned at runtime. For some transport
protocols, the number of endpoints is limited; for example, TCP/IP and UDP/IP use a 16-bit number for
endpoints, which allows only 65,536 endpoints. When the supply of endpoints for a transport protocol is
limited, the protocol ensures an adequate supply of endpoints by limiting the portion that can be reserved
as well-known endpoints. A transport, on request, dynamically makes its remaining endpoints available on
a first-come, first-served basis to specific processes such as RPC server instances.

When a server requests dynamic endpoints, the server’s RPC runtime asks the operating system for a
unique dynamic endpoint for each protocol sequence the server is using. For a given protocol sequence,
the local implementation of the corresponding transport protocol provides the requested endpoints. When
an RPC server with dynamic endpoints stops running, its dynamic endpoints are released.

Because of the transient nature of dynamic endpoints, the NSI does not export them to a namespace;
however, the NSI does export the rest of the server’s binding information. References to expired
endpoints would remain indefinitely in server entries, causing clients to import and try, unsuccessfully, to
establish bindings to nonexistent endpoints. Also, updating transient data in namespace entries impairs
the performance of a directory service. Therefore, the export operation removes dynamic endpoints
before adding binding information to a server entry; the exported server address contains only network
addressing information. The import operation returns a partially bound binding handle. The client makes
its first remote procedure call with the partially bound handle, and the endpoint map service on the

 Chapter 5. RPC Fundamentals 67

server’s system attempts to resolve the binding handle with the endpoint of a compatible server. To make
dynamic endpoints available to clients using partially bound binding handles, a server must register its
dynamic endpoints in the local endpoint map.

Note: Register all endpoints to enable administrators to view all the endpoints of RPC servers by
showing the endpoint map elements. To do this, use the dcecp endpoint show operation of the
DCE control program.

By using object UUIDs, a server can ensure that a client that imports a partially bound handle obtains one
of a particular server’s endpoints. The server must do the following:

1. Specify a list of one or more object UUIDs that are unique to the server.

2. Export the list of object UUIDs.

3. Supply the list of object UUIDs to the endpoint map service when registering endpoints.

4. If the server provides different managers that use an interface for different types of objects, the server
must set the type of each object.

To request binding information for a particular server, a client specifies one of the server’s object UUIDs,
which is then associated with the server binding information the client uses for making a remote procedure
call.

Note: If a client requests the nil object UUID when importing from a server entry containing object
UUIDs, the import (or lookup) operation selects one of those object UUIDs and associates it with
the imported server binding information. This object UUID ensures that the call goes to the server
that exported the binding information and object UUID to the server entry.

Run time Semantics

Run time semantics identify the ability of a procedure to run more than once during a given remote
procedure call. The communications environment that underlies remote procedure calls affects the
reliability of the RPC. A communications link can break for a variety of reasons, such as a server
stopping, a remote system failure, a network failure, and so forth; all remote procedures risk disruption
because of communications failures. However, some procedures are more sensitive to such failures, and
their affect depends partly on how reinvoking an operation affects that operation’s results.

To maximize valid outcomes for its operations, the operation declarations of an RPC interface definition
indicate the effect of running operations multiple times on the outcome of the operations.

The run time semantics for DCE RPC calls are summarized in Table 3.

Table 3 (Page 1 of 2). Run time Semantics

Semantics Meaning

At-most-once The operation must run either once, partially, or not at all; for example, adding or deleting an
appointment from a calendar can use at-most-once semantics. This is the default run time
semantics for remote procedure calls.

68 Application Development Guide: Core Components

Table 3 (Page 2 of 2). Run time Semantics

Semantics Meaning

Idempotent The operation can run more than once; running more than once using the same input arguments
produces identical outcomes without undesirable side effects; for example, an operation that
reads a block of an immutable file is idempotent. DCE RPC supports maybe semantics and
broadcast semantics as special forms of idempotent operations.

Semantics Meaning

Maybe The caller neither requires nor receives any response or fault indication for an
operation, even though the operation may not have completed. An operation with
maybe semantics is implicitly idempotent and must lack output parameters.

Broadcast The operation is always broadcast to all host systems on the local network, rather
than delivered to a specific system. An operation with broadcast semantics is
implicitly idempotent.

The broadcast capabilities of RPC runtime have a number of distinct limitations:

� Not all systems and networks support broadcasting. In particular, broadcasting is not supported by the
RPC connection-oriented protocol.

� Broadcasts are limited to hosts on the local network.

� Broadcasts make inefficient use of network bandwidth and processor cycles.

� The RPC runtime library does not support at-most-once semantics for broadcast operations; it applies
idempotent semantics to all such operations.

� The input arguments for broadcast calls are limited to 944 bytes.

Notes:

1. Authenticated RPC for maybe calls is not supported on z/OS DCE.

2. It does not matter to a DCE application whether UDP or TCP is used, when a data frame is discarded
because of network congestion. A client application will not receive an error because a retransmission
occurs whether TCP or UDP is used.

If both the client and server systems remain running but are susceptible to lost UDP frames, the RPC
runtime does guarantee the call exactly once, not just at-most-once. For the normal non-idempotent
situation, the RPC runtime keeps state information including a sequence number on each request.
The server RPC runtime can therefore detect whether this is a new situation where the frame is lost
going to the server, or a duplicate situation where the frame is lost coming from a server. In effect,
the RPC runtime has implemented a reliable connection-oriented protocol over a connectionless UDP
network.

If it is known that the server can run multiple times without any adverse affects, specifying idempotent
removes the requirement of the RPC runtime to keep sequence numbers. The runtime resends the
request until the server answers and does not worry about the server running more than once.

If either the client or server stops running in the middle of an RPC, the results of that RPC are
indeterminate as two-phase commit is unavailable. That is, transactional RPC is not supported by
z/OS DCE base services. (However Application Support does support transactional RPC.)

 Chapter 5. RPC Fundamentals 69

 Communications Failures

If a server’s runtime detects a communications failure during a remote procedure call, the server’s runtime
attempts to end the now orphaned call by sending a cancel to the called procedure. A cancel is a
mechanism by which a running client thread notifies a running server thread (the canceled thread) to end
as soon as possible. A cancel sent by the RPC runtime after a communications failure initiates orderly
ending of an RPC. (For a brief discussion of how cancels work with remote procedure calls, see
Chapter 7, “RPC and Other DCE Components” on page 85. For detailed information, see “Thread
Cancelation” on page 328.)

Applications that use context handles to establish a client context require a context rundown procedure to
enable the server to clean up the client context when it is no longer needed. A type declaration for the
context rundown procedure is declared in the RPC interface definition; this ensures that the stub knows
about the rundown procedure in the server application code. If a communications link with a client is lost
while a server is maintaining context for the client, the RPC runtime will tell the server to start the context
rundown procedure. This is a user-written procedure. See “The Context Rundown Procedure” on
page 270 for more information on specifying a context rundown procedure, and see Figure 54 on
page 273 for an example.

 Scalability

Unlike local applications, RPC applications require network resources, which are possible bottlenecks to
scaling an RPC application. RPC clients and servers require network resources that are not required by
local programs. The main network resources to consider are network bandwidth, endpoints, network
descriptors (the identifiers of potential network channels such as UNIX sockets), kernel buffers, and for a
connection-oriented transport, the connections. Also, RPC applications place extra demands on system
resources such as memory buffers, various quotas, and the processing unit.

The number of remote procedure calls that a server can support depends on various factors, such as the
following:

� The resources of the server and the network

� The requirements of each call

� The number of calls that can be concurrently offered at some level of service

� The performance requirements.

An accurate analysis of the requirements of a given server involves detailed work load and resource
characterization and modeling techniques. Although measurement of live configurations under load will
offer the best information, general guidelines apply. You should consider the connection, buffering,
bandwidth, and processing unit resources as the most likely RPC bottlenecks to scaling. Use these
application requirements to scale resources.

Many system implementations limit the number of network connections per process. This limit provides an
upper bound on the number of clients that can be served concurrently using the connection-oriented
protocol. The limit on z/OS DCE is 64. However, except for applications that use context handles, the
connection-oriented RPC runtime allows pooling of connections. Pooling permits simultaneous support of
more clients than the maximum number of connections, provided they do not all make calls at the same
instant and occasionally can wait briefly.

70 Application Development Guide: Core Components

 RPC Objects

An RPC object is an entity that an RPC server defines and identifies to its clients. Frequently, an RPC
object is a distinct computing resource such as a particular database, directory, device, process, or
processor. Identifying a resource as an RPC object enables an application to ensure that clients can use
an RPC interface to operate on that resource. An RPC object can also be an abstraction that is
meaningful to an application, such as a service or the location of a server.

The RPC runtime provides substantial flexibility to applications about whether, when, and how they use
RPC objects. RPC applications generally use RPC objects to enable clients to find and access a specific
server. When servers are completely interchangeable, using RPC objects may be unnecessary.
However, when clients need to distinguish between two servers that offer the same RPC interface, RPC
objects are essential. If the servers offer distinct computing resources, each server can identify itself by
defining its resources as RPC objects. Alternatively, each server can establish itself as an RPC object
that is distinct from other instances of a server offering the same RPC interface.

RPC objects also enable a single server to distinguish among alternative implementations of an RPC
interface, as long as each implementation operates on a distinct type of object. To offer multiple
implementations of an RPC interface, a server must identify RPC objects, classify them into types, and
associate each type with a specific implementation.

The set of remote procedures that carries out an RPC interface for a given type of object is known as a
manager. The tasks performed by a manager depend on the type of object on which the manager
operates. For example, a manager of a queue-management interface may operate on print queues, while
another manager may operate on batch queues.

 Chapter 5. RPC Fundamentals 71

72 Application Development Guide: Core Components

Chapter 6. Basic RPC Routine Usage

This chapter introduces a number of basic DCE RPC routines for directory service, communications, and
authentication operations and discusses major usage issues important for developing DCE RPC
applications.

This chapter discusses the following topics:

� Overview of the basic RPC runtime routines

� Server initialization tasks

� How clients find servers

Overview of the Basic RPC Runtime Routines

This section summarizes the major concerns of RPC communications, Name Service Interface (NSI)
usage, and authenticated RPC.

� Basic operations of RPC communications

The DCE RPC runtime provides the following communications operations for RPC applications:

– Managing communications for RPC applications

As part of server initialization, a server sets up its communications capabilities by a series of calls
to the RPC runtime. These runtime calls register the server’s RPC interfaces, tell the RPC
runtime what combination of communications protocols to use for the server, and register the
endpoints of the server for each of its interfaces. After completing these and any other
initialization tasks, the server tells the runtime to begin listening for incoming calls.

– Managing binding information

A variety of communications operations allow servers to access and manipulate binding
information. In addition, a set of communications operations enables applications to manipulate
string representations of binding information (string bindings).

� Basic operations of the RPC NSI

The NSI routines perform operations on a namespace for RPC applications. The fundamental
operations are:

– Creating and deleting entries in namespaces

 – Exporting

A server uses the NSI export operation to place binding information associated with its RPC
interfaces and objects into the namespace used by the RPC application.

 Copyright IBM Corp. 1994, 2001 73

 – Importing

Clients can search for exported binding information associated with an interface and object using
the NSI import operation or lookup operation. These two operations are collectively referred to as
the NSI search operations.

 – Unexporting

The unexport operation enables a server to remove some or all of its binding information from a
server entry.

– Managing information in a namespace

Applications use the NSI interface to place information about server entries into a namespace and
to inquire about and manage that information.

� Basic operations of authenticated RPC

The authenticated RPC routines provide a mechanism for establishing secure communications
between clients and servers.

To engage in authenticated RPC, a client and server must agree on the authentication service to be
used. The server’s responsibility is to register its principal name and the authentication service to be
supported with the RPC runtime. The client’s responsibility is to establish the authentication service, a
given protection level, and an authorization service for the server binding handle. The protection level
determines the degree of protection applied to individual messages between the client and server.
The authorization service determines the form in which the client’s credentials will be presented to the
server (for access checking).

Once authenticated RPC has been established between a client and server, the client issues RPCs in
the usual fashion, with all authentication and protection being handled by the DCE Security Service
component and the RPC runtime.

Table 4 relates several of the RPC runtime operations just discussed to specific routines or sets of
routines.

Table 4 (Page 1 of 2). Basic Runtime Routines

Description of Operation Usage Routine Name(s)

Communications Routines:

Setting the type of an RPC object with the RPC runtime Server rpc_object_set_type()

Registering RPC interfaces Server rpc_server_register_if()
Selecting RPC protocol sequences Server rpc_network_inq_protseqs()

rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs_if()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if()

Obtaining server binding handles Server rpc_server_inq_bindings()
Registering endpoints Server rpc_ep_register()

rpc_ep_register_no_replace()

Unregistering endpoints Server rpc_ep_unregister()

Resolving endpoints Client rpc_ep_resolve_binding()

Listening for calls Server rpc_server_listen()

74 Application Development Guide: Core Components

Table 4 (Page 2 of 2). Basic Runtime Routines

Description of Operation Usage Routine Name(s)

Manipulating string representations of binding information
(string bindings)

Client rpc_binding_from_string_binding()

 Client, Server rpc_binding_to_string_binding()

rpc_string binding_compose()
rpc_string_binding_parse()

Changing the RPC object in server binding information Client rpc_binding_set_object()

Converting a client binding handle to a server binding
handle

Server rpc_binding_server_from_client()

Name Service Interface Routines:

Exporting binding information to a namespace Server rpc_ns_binding_export()

Searching a namespace for binding information Client rpc_ns_binding_import_begin()

rpc_ns_binding_import_done()
rpc_ns_binding_import_next()
rpc_ns_binding_lookup_begin()
rpc_ns_binding_lookup_done()
rpc_ns_binding_lookup_next()
rpc_ns_binding_select()

Authentication Routines:

Authentication and authorization Server, Client rpc_binding_inq_auth_info()

rpc_mgmt_set_authorization_fn()
 Server rpc_binding_inq_auth_caller()

rpc_binding_inq_auth_client()
rpc_server_register_auth_info()

 Client rpc_binding_set_auth_info()

Server Initialization Using the RPC Routines

Before a server can receive any RPCs, it usually initializes itself by calling the dce_server_register()
routine so that the server is properly recognized by DCE. However, servers can instead use a series of
the lower-level RPC runtime routines. The server initialization code, that you write, varies among servers.
However, every server must set up its communications capabilities, which usually involve most of the
following tasks:

1. Assigning types to objects

2. Registering at least one interface

3. Specifying which protocol sequences the server will use

4. Obtaining a list of references to a server’s binding information (a list of binding handles)

 5. Registering endpoints

6. Exporting binding information to a server entry or entries in the namespace

7. Listening for RPCs

8. Performing cleanup tasks including unregistering endpoints

 Chapter 6. Basic RPC Routine Usage 75

The following pseudocode illustrates the calls a server makes to accomplish these basic initialization
tasks.

/$ Initialization tasks $/

 rpc_object_set_type(...);

 rpc_server_register_if(...);

 rpc_server_use_all_protseqs(...);

 rpc_server_inq_bindings(...);

 rpc_ep_register(...);

 rpc_ns_binding_export(...);

 rpc_server_listen(...);

/$ Cleanup tasks $/

 rpc_ep_unregister(...);

Assigning Types to Objects

An object type is a mechanism for associating a set of RPC objects and the manager whose remote
procedures constitute an RPC interface for those objects. Using types, an application can cluster objects
such as computing resources according to any relevant criteria. For example, a single accounting
interface can be coded to operate on accounting databases that contain equivalent information but that are
formatted differently; each database format represents a distinct type.

To simultaneously offer alternative implementations of an RPC interface for different types of objects, a
server uses alternative managers. Servers that have each of their interfaces on only one manager can
usually avoid the tasks associated with assigning object types. However, when a server offers multiple
managers, each manager must be dedicated to operating on a separate type of object. In this case, a
server must classify some or all of its objects into types; for example, a calendar application that specifies
one non-nil type UUID for departmental calendars and another non-nil type UUID for personal calendars.

By default, objects have the nil type. Only a server that uses different managers for different objects or
sets of objects needs to type classify its RPC objects. To type classify an object, a server associates the
object UUID of the object with a single type UUID by calling the rpc_object_set_type() procedure
separately for each object. To create a type UUID, a server calls the uuid_create() routine.

The exact implementation of a manager can vary with the type of object on which each manager operates.
For example, a queue-management interface may be implemented to manage print queues as objects in
one case and to manage batch queues as objects in another. Figure 14 on page 77 illustrates the use of
type UUIDs to identify two types of managers. The server associates each object with a particular type.

76 Application Development Guide: Core Components

Figure 14. Types of Managers

When the server receives an incoming call that specifies an object UUID, the server sends the call to the
manager for the type to which the object belongs. For information on how a type is used to select a
manager for an incoming call, see Chapter 10, “Topics in RPC Application Development” on page 173.

 Registering Interfaces

A server calls the rpc_server_register_if() routine to tell the RPC runtime about a specific RPC interface.
Registering an interface informs the runtime that the server is offering that interface and makes it available
to clients. A server can register any number of interfaces with the RPC runtime by calling the
rpc_server_register_if() routine once for each set of procedures, or manager, that constitutes an
interface.

To offer more than one manager for an interface, a server must register each manager separately.

When registering an interface, the server provides the following information:

 � Interface specification

This is a reference to information about an RPC interface as offered by its server stub. The DCE IDL
compiler generates an interface specification as part of the stub code. For a specific version of an
interface, all managers use the same interface specification. Information in an interface specification
that concerns application developers includes the following:

– The interface identifier (UUID and major and minor version numbers).

– The supported transfer syntaxes.

 Chapter 6. Basic RPC Routine Usage 77

– A list of any well-known endpoints (and their associated protocol sequences) specified in the
interface definition (IDL) file.

– The default manager endpoint vector (manager EPV) of the interface, (if present)

A default manager EPV, constructed using the operation names of the interface definition, is
typically generated for stubs by the DCE IDL compiler (the no_mepv compiler option suppresses
this feature).

� A type UUID for the manager

Each implementation of an interface, a manager, is represented by a type UUID.

� A manager EPV for the interface

A server can register a given interface more than once by specifying a different type UUID and
manager EPV each time it calls rpc_server_register_if().

A manager EPV is a list of the addresses (the entry points of the remote procedures provided by the
manager) that represent the location in the code for each remote procedure implementation. A
manager EPV must contain exactly one entry point for each procedure defined in the interface
definition.

The server can use the default manager EPV only once, and only for a manager that uses the
procedure names declared in the interface definition. For any additional manager of the RPC
interface, the server must create and register a unique manager EPV. Also, each manager must be
associated with a distinct type UUID.

Selecting RPC Protocol Sequences

A server can inquire about whether the local RPC runtime supports a specific protocol sequence by using
the rpc_network_is_protseq_valid() routine. The server can also use the rpc_network_inq_protseqs()
routine to ask the RPC runtime for a list of all protocol sequences supported by both the RPC runtime and
the operating system.

To prepare to receive RPCs, a server uses rpc_server_use_all_protseqs() or
rpc_server_use_protseq() calls to tell the RPC runtime to use at least one protocol sequence. For each
protocol combination, the RPC runtime creates one or more binding handles with dynamic endpoints on
which the server will listen for RPCs. The server then can use a list of these binding handles to register
dynamic endpoints in the endpoint map and to export its binding information (except the endpoints) to the
name service.

Optionally, an interface can contain one or more well-known endpoints, each of which is accompanied by
a protocol sequence. A server uses the rpc_server_use_all_protseqs_if(),
rpc_server_use_protseq_if(), or rpc_server_use_protseq_ep() to notify the RPC runtime about which
protocol sequence and well-known endpoint combinations will be used.

A server can use any protocol sequence declared in an interface endpoint declaration, or the server can
ignore the endpoint declarations, as long as it registers at least one endpoint.

78 Application Development Guide: Core Components

Obtaining a List of Server Binding Handles

After a server passes to the RPC runtime the protocol sequences over which it will listen for RPCs, the
RPC runtime constructs server binding handles. Each binding handle refers to a complement of binding
information that defines one potential binding, that is, a specific RPC protocol sequence, RPC protocol
major version, network address, endpoint, and transfer syntax that an RPC client can use to establish a
binding with an RPC server.

Before registering endpoints or exporting binding information, a server must obtain a list of its binding
handles from the RPC runtime by using the rpc_server_inq_bindings() routine. The server passes this
list back to the runtime as an argument when registering endpoints and exporting binding information.

 Registering Endpoints

Servers can use well-known or dynamic endpoints with any protocol sequence.

When a server asks the runtime to use a dynamic endpoint with a protocol sequence, the runtime asks the
operating system to generate the endpoint. To use the dynamic endpoints, a server must register the
server’s binding information, including the endpoints, by using the rpc_server_ep_register() routine. For
each combination of RPC interface identifier, object UUID, and binding information that the server offers,
the endpoint map service creates an element in the local endpoint map.

A server does not necessarily need to register well-known endpoints; however, by registering well-known
endpoints, the server ensures that clients can always obtain them. Registration also makes the endpoints
accessible to administrators, who can show the elements of an endpoint map by using the endpoint show
operation of the DCE control program dcecp.

Servers can remove map elements from a local endpoint map using the rpc_ep_unregister() routine.
Servers should unregister endpoints after they stop listening.

Making Binding Information Accessible to Clients

A server needs to make its binding information accessible to clients. Usually, a server uses the NSI
export operation to place its binding information into a server entry. However, servers can also make
string bindings accessible to clients. In any case, the server obtains its binding information from the
runtime by first using the rpc_server_inq_bindings() routine to ask for a list of binding handles.

Using String Bindings to Provide Binding Information: While running and debugging a
server program you may temporarily want to communicate binding information to clients using string
bindings. A server can then establish a client/server relationship without registering endpoints in the local
endpoint map or exporting binding information to a namespace.

The server can convert into a string each binding handle in the list obtained from the
rpc_server_inq_bindings() routine, by calling rpc_binding_to_string_binding(). The resulting string
binding is always fully bound. The server then makes some or all of its string bindings available to clients
in various ways; for example, by placing the string bindings in a file to be read by clients or users or both.

 Chapter 6. Basic RPC Routine Usage 79

Exporting Binding Information: Servers can export binding information (and interface identifiers)
or objects or both by calling the rpc_ns_binding_export() routine. To export binding information
associated with a given RPC interface, a server uses an interface handle. The interface handle is
created by the IDL compiler as a reference to information about the interface that the compiler stores in an
interface specification. To refer to binding information, the application code obtains a list of server binding
handles from the RPC runtime and passes the list to the export operation. The list contains binding
handles for all the protocol sequence and endpoint combinations that the server has requested; it obtains
this list by calling the use-protocol-sequence operations. However, the server can remove any of those
binding handles from the list before exporting it. This enables a server to export the binding information
associated with a subset of its binding handles.

To export object UUIDs, a server application must provide a list of object UUIDs for the RPC objects it
offers. The server can generate these object UUIDs itself or obtain them from some application-specific
source such as an object-UUID database. All object UUIDs in a given server entry are associated with
every interface UUID and server address in the entry.

Figure 15 illustrates the use of server binding handles to refer to server binding information to be
exported.

Server
binding
handle

Server
binding

information

Server
binding

information

Server

Server entry

Application

Runtime

= Reference to binding information

Exporting

1

2

3

Server
binding
handle

Server
binding
handle

Figure 15. Exporting Server Binding Information

The reference keys in the figure refer to the following operations:

�1� The server application code calls the export operation, having previously inquired for a list of binding
handles. Along with the name of a server entry, the application passes the export operation a list of
server binding handles and an interface handle, a list of object UUIDs, or both.

�2� The export operation uses the binding handles to identify the binding information to export.

�3� The export operation places binding information, the associated interface identifier, and the associated
list of object UUIDs into the designated server entry.

80 Application Development Guide: Core Components

A server entry must belong exclusively to a server running on a given host. If there are identical,
interchangeable instances of a server on the host, they can share a single set of server entries. However,
if clients need to distinguish between coexisting instances of a server (for example, when each offers a
different RPC object), each instance requires its own server entry.

Note: Cell Directory Services (CDS) databases are subject to access control. To access entries in a
CDS database, you need Access Control List (ACL) permissions. Depending on the NSI
operation, you need ACL permissions to the parent directory, or the CDS object entry, or both. If
you need ACL permissions, see your CDS administrator. For more information on CDS, see the
z/OS DCE Application Development Guide: Directory Services.

The ACL permissions are:

� To create an entry, you need insert permission to the parent directory.

� To read an entry, you need read permission to the CDS object entry.

� To write to an entry, you need write permission to the CDS object entry.

� To delete an entry, you need delete permission either to the CDS object entry or to the parent
directory.

� To test an entry, you need either test permission or read permission to the CDS object entry.

Note that write permission does not imply read permission.

Listening for Calls

When a server is ready to accept RPCs, it initiates listening, specifying the maximum number of calls it
can run concurrently by calling the rpc_server_listen routine. If a server allows concurrent calls, its
remote procedures are responsible for concurrency control (also known as thread-safe). If it runs a set of
remote procedures concurrently requiring concurrency control and a server lacks this control, the server
must allow only one call at a time.

The RPC runtime continues listening for new RPCs to the server’s registered interfaces, until one of the
following events occurs:

� Any of the server’s procedures makes a local management call to stop a server from listening for
future RPCs.

� For applications whose servers enable clients to stop servers from listening, a client makes a remote
management call to stop a server from listening for future RPCs.

On receipt of a stop listening request, the RPC runtime stops accepting new RPCs for all registered
interfaces. However, currently running calls are allowed to complete. After all running calls are
completed, the listen operation stops listening and returns control to the server. Servers should unregister
endpoints after they stop listening.

How Clients Find Servers

A client runtime can obtain server binding information from a namespace. Alternatively, a client runtime
can obtain server binding information in string format from an application-specific source, such as a file.
Runtime routines enable client applications to obtain server binding handles that refer to server binding
information obtained from either source.

 Chapter 6. Basic RPC Routine Usage 81

Searching a Namespace

To obtain binding information from a name service database, a client can do one of the following:

� The client uses the automatic method of binding management to make the client stub transparently
manage binding information.

In this case, the application code lacks any calls to the NSI interface. However, the automatic method
does require the client to identify the directory service entry where the search for binding information
begins. The client must specify the starting entry name as the value of the NSI-defined
RPC_DEFAULT_ENTRY environment variable.

� The client calls the import routines rpc_ns_binding_import_begin(), rpc_ns_binding_import_next(),
and rpc_ns_binding_import_done() to obtain a binding handle for a compatible server.

� The client calls the lookup routines rpc_ns_binding_lookup_begin(),
rpc_ns_binding_lookup_next(), and rpc_ns_binding_lookup_done() to obtain a list of binding
handles for a compatible server. Select a binding handle from the list by calling either of the following:

– The NSI select routine rpc_ns_binding_select(), which selects a binding handle at random

– A user-defined select routine, which runs an application-specific selection algorithm

An NSI import or lookup operation searches server entries for a compatible server. On finding such a
server entry, the search operation copies the server binding information associated with the requested
interface and an object UUID. The search operation then creates a randomly ordered list of server binding
handles to refer to the potential bindings represented by the binding information.

Figure 16 illustrates the use of a server binding handle to refer to server binding information selected by
an import operation.

Server
binding
handle

Server
binding

information

Server
binding

information

Client

Server entry

Application

Runtime

= Reference to binding information

Importing

2

1

3

Figure 16. Importing Server Binding Information

The reference keys in the figure refer to the following operations:

82 Application Development Guide: Core Components

�1� The import operation looks up binding information of a server that is compatible with the client.

The import operation finds a server entry based on the specified interface identifier, and then looks at
the list of object UUIDs. If the importing client specifies a non-nil object UUID, the import operation
looks for and returns that object UUID. If the client specifies the nil object UUID and the server entry
contains any object UUIDs, the import operation selects and returns one UUID at random. If the entry
lacks any object UUIDs, the import operation returns the nil UUID.

�2� The import operation fetches the compatible binding information and creates a binding handle for
each potential binding represented in the binding information.

�3� The import operation then selects a binding handle at random and passes it to the client application.

Note: With z/OS DCE, any thread calling the RPC NSI routines (rpc_ns_xx()) cannot be canceled with
the pthread_cancel() routine. This avoids potential resource clean up problems with the NSI
routines.

Using String Bindings to Obtain Binding Information

To use a string binding, a client starts with either an existing string binding or with the components of the
binding information. Do not hardcode string bindings into application code. Rather, specify them at
runtime using a command argument, environment variable, file, or other means. The simplest way to
specify a string binding is for a user to supply a string binding manually to a client. However, this manual
approach is awkward as users must know how to obtain and manipulate the string bindings. Also, if
binding information changes, the users are responsible for updating any string bindings used by their
clients. Reducing manual intervention in the use of string bindings requires that an application provide its
own mechanisms for storing, maintaining, and accessing binding information. In contrast, a directory
service such as CDS provides these mechanisms automatically to applications that store binding
information in a namespace.

Regardless of how a client obtains a string binding, before establishing a binding, the client must ask the
RPC runtime for a binding handle that refers to the server binding information depicted in the string
binding. The client converts the string binding into a server binding handle by calling the
rpc_binding_from_string_binding() routine.

The following pseudocode lists the calls for composing a string binding and for using it to obtain a server
binding handle.

rpc_string_binding_compose(...);

rpc_binding_from_string_binding(...);
.
.
.
rpc_string_free(...);

 Chapter 6. Basic RPC Routine Usage 83

84 Application Development Guide: Core Components

Chapter 7. RPC and Other DCE Components

This chapter discusses aspects of the internal behavior of RPCs that are significant for advanced RPC
programmers, including the following topics:

� Threads in RPC applications

� Authenticated remote procedure calls

� Using the Name Service Interface (NSI)

DCE RPC is a fully integrated part of the distributed computing environment. The communications
capabilities of DCE RPC are used by clients and servers of other DCE components. In turn, RPC uses
services provided by the following DCE components: the Threads service, the Security Service, and the
Cell Directory Service.

Thread services are also important to DCE RPC. A thread is a single sequential flow of control with one
point of execution on a single processor at any instant. Multiple threads can coexist in a single process.
DCE RPC uses threads internally for its own operations. DCE RPC also provides an environment where
RPC applications can use thread services.

The DCE RPC runtime provides RPC applications with a programming interface to the DCE Security
Service. The RPC authentication interface enables RPC clients and servers to mutually authenticate (that
is, prove the identity of) each other. An authenticated RPC provides client authorization information and
authentication information to servers. Authorization information includes the privileges a client has and the
identities a client is associated with at the time of a call. By comparing client authorization information to
access control lists, a server can find out whether a client is eligible to use a requested remote procedure.
Client authentication information identifies a client to a server.

To help RPC clients find RPC servers, RPC applications typically use a namespace. A namespace is a
collection of information about applications, systems, and any other relevant computing resources. A
namespace is maintained by a directory service, such as the Cell Directory Service (CDS). DCE RPC
provides a Name Service Interface (NSI) that is independent of any particular directory service.

NSI communicates with supported directory services for both RPC applications and the RPC control
program. NSI insulates RPC applications from the intricacies of using a directory service. An RPC server
uses NSI to store information about itself in a namespace, and a client uses NSI to access information
about a server that meets the client's requirements for a specific RPC interface and object, among other
things. The client uses this information to establish a relationship, known as a binding, with the server.

Threads in RPC Applications

Each remote procedure call occurs in a run time context called a thread. A thread is a single sequential
flow of control with one point at which it runs on a single processor at any instant. A thread created and
managed by application code is an application thread.

Traditional processing occurs exclusively within local application threads. Local application threads run
within the confines of one address space on a local system and pass control exclusively among local code
segments, as illustrated in Figure 17 on page 86.

 Copyright IBM Corp. 1994, 2001 85

Traditional application

Calling
code

Called
procedure

Single address space

local application thread

Figure 17. Local Application Thread During a Procedure Call

RPC applications also use application threads to issue both RPCs and runtime calls, as follows:

� An RPC client contains one or more client application threads; that is, a thread that runs client
application code that makes one or more RPCs.

� A DCE RPC server contains one server application thread; that is, a thread that runs the server
application code that listens for incoming calls.

In addition, in order to run called remote procedures, an RPC server uses one or more call threads
provided by the RPC runtime. As part of initiating listening, the server application thread specifies the
maximum number of concurrent calls it will run. The maximum number of call threads in multithreaded
applications depends on the design of the application. The RPC runtime creates the same number of call
threads in the server process. To determine the number of call threads created by the RPC runtime, see
“Dynamic Executor Threads” on page 208.

The number of call threads is significant to application code. When using only one call thread, application
code does not have to protect itself against concurrent resource use. When using more than one call
thread, application code must protect itself against concurrent resource use.

Figure 18 shows a multithreaded server with a maximum of four concurrently running calls. Of the four
call threads for the server, only one is currently in use; the other three threads are available for running
calls.

Server

Remote procedures

Available call threads

The server
application thread
(listening for calls)

Remote procedure
executing in
call thread

Single
address
space

Maximum concurrent calls = 4

Figure 18. Server Application Thread and Multiple Call Threads

86 Application Development Guide: Core Components

 RPC Threads

In distributed processing, a call extends to and from client and server address spaces. Therefore, when a
client application thread calls a remote procedure, it becomes part of a logical run time thread known as
an RPC thread. An RPC thread is a logical construct that encompasses the various phases of a remote
procedure call as it extends across actual threads and the network. After making an RPC, the calling
client application thread becomes part of the RPC thread. Usually, the RPC thread maintains control until
the call returns.

The RPC thread of a successful remote procedure call moves through the phases as illustrated in
Figure 19.

Client

Calling
code

Called
remote
procedure

RPC thread

Server

Client application thread Call thread

Remote procedure call

1 2

45

3

Figure 19. Phases of an RPC Thread

The phases of an RPC thread in the preceding figure include the following:

�1� The RPC thread begins in the client process, as a client application thread makes an RPC to its stub.
At this point, the client thread becomes part of the RPC thread.

�2� The RPC thread extends across the network to the server address space.

�3� The RPC thread extends into a call thread, where the remote procedure runs.

While a called remote procedure is running, the call thread becomes part of the RPC thread. When
the call finishes running, the call thread ceases being part of the RPC thread.

�4� The RPC thread then retracts across the network to the client.

�5� When the RPC thread arrives at the calling client application thread, the remote procedure call returns
any call results and the client application thread ceases to be part of the RPC thread.

Figure 20 on page 88 shows a server running remote procedures in its two call threads, while the server
application thread listens.

 Chapter 7. RPC and Other DCE Components 87

Client

Calling
code

Called
remote
procedure

RPC thread

Server

Client application thread

Client

Calling
code

Called
remote
procedure

Concurrent remote procedure calls

Call thread

Server
application
thread

Single
address
space

Maximum concurrent calls = 2

RPC thread

Figure 20. Concurrent Call Threads Running in Shared Address Space

Note: Although a remote procedure can be viewed logically as running within the exclusive control of an
RPC thread, some parallel activity does occur in both the client and server.

An RPC server can concurrently run as many RPCs as it has call threads. When a server is using all of
its call threads, the server application thread continues listening for incoming remote procedure calls.
While waiting for a call thread to become available, DCE RPC server runtimes can queue incoming calls.
Queuing incoming calls avoids RPCs failing during short-term congestion. The queue capacity for
incoming calls is implementation dependent. Most implementations offer a small queue capacity. The
queuing and routing of incoming calls is discussed in “Queuing Incoming Calls” on page 206.

 Cancel Operations

DCE RPC uses and supports the synchronous cancel capability provided by POSIX threads (pthreads).
A cancel operation is a mechanism by which a thread informs another thread (the canceled thread) to end
as soon as possible. Cancels operate on the RPC thread exactly as they would on a local thread, except
for an application-specified, cancel-time-out period. A cancel-time-out period is an optional value that
limits the amount of time the canceled RPC thread has before it releases control.

During an RPC, if its thread is canceled and the cancel-time-out period expires before the call returns, the
calling thread regains control and the call is orphaned at the server. An orphaned call may continue to run
in the call thread. However, the call thread is no longer part of the RPC thread, and the orphaned call
cannot return results to the client.

A client application thread can cancel any other client application thread in the same process (it is
possible, but unlikely, for a thread to cancel itself). While running as part of an RPC thread, a call thread
can be canceled only by a client application thread.

88 Application Development Guide: Core Components

A cancel operation goes through several phases. Figure 21 on page 89 indicates the point in the RPC
thread where each of these phases occurs.

.
Client

Calling
code

Called
remote
procedure

RPC thread

Server

Client application thread Call thread

1 2

3

Figure 21. Phases of a Cancel in an RPC Thread

The phases of a cancel in Figure 21 include the following:

�1� A cancel that becomes pending at the client application thread at the start of or during an RPC
becomes pending for the entire RPC thread. Thus, while still part of the RPC thread, the call thread
also has this cancel pending.

�2� If the call thread of an RPC thread makes a cancelable call when cancels are not deferred and a
cancel is pending, the cancel exception is raised.

�3� The RPC thread returns to the canceled client application thread with one of the following outcomes:

� If a cancel exception has not been taken, the RPC thread returns normal call results (output
arguments, return value, or both) with a pending cancel.

� If the remote procedure is using an exception handler, a cancel exception can be handled. The
procedure resumes, and the RPC thread returns normal call results without pending any cancel.
(For information on the use of exception handlers, see Chapter 16, “Using the DCE Threads
Exception-Returning Interface” on page 337.)

� If the remote procedure failed to handle a raised cancel exception, the RPC thread returns with
the cancel exception still raised. This is returned as a fault.

� If the cancel-time-out period expires, the RPC thread returns either a cancel-time-out exception or
status code, depending on how the application sets up its error handling. This is true for all cases
where any abnormal ending is returned.

Multithreaded RPC Applications

DCE RPC provides an environment for RPC applications that create multiple application threads
(multithreaded applications). The application threads of a multithreaded application share a common
address space and much of the common environment. If a multithreaded application must be thread-safe
(ensuring that multiple threads can run simultaneously and correctly), the application is responsible for its
own concurrency control. Concurrency control involves programming techniques, such as controlling
access to code that can share a data structure or other resource, to prevent conflicting access by separate
threads.

A multithreaded RPC application can have diverse activities going on simultaneously. A multithreaded
client can make concurrent RPCs, and a multithreaded server can handle concurrent RPCs. Using
multiple threads allows an RPC client or server to support local application threads that continue

 Chapter 7. RPC and Other DCE Components 89

processing independently of RPCs. Also, multithreading enables the server application thread and the
client application threads of an RPC application to share a single address space as a joint client/server
instance. A multithreaded RPC application can also create local application threads that are not involved
in the RPC activity of the application.

Figure 22 shows an address space where application threads are running concurrently.

Calling
code

Called
remote
procedure

RPC thread

Remote Server

Remote Server

Client application thread

Calling
code

Called
remote
procedure

RPC thread

Concurrent remote procedure calls

Call thread

Single address space

The server application
thread

A call thread

(listening)

(available)

Local application thread
(engaged in non-RPC activity)

Multithreaded RPC application

Figure 22. A Multithreaded RPC Application Acting as Both Server and Client

The application threads in Figure 22 are performing the following activities:

� The server application thread is listening for calls.

� A call thread is available to run an incoming remote procedure call.

� One client application thread has separated from an RPC thread and another is currently part of an
RPC thread.

� A local application thread is engaging in non-RPC activity.

90 Application Development Guide: Core Components

Security and RPC: Using Authenticated RPC

DCE RPC supports authenticated communications between clients and servers. Authenticated RPC works
with the authentication and authorization services provided by the DCE Security Service.

On the application level, a server makes itself available for authenticated communications by registering its
principal name and the authentication service that it supports with the RPC runtime. The server principal
name is the name used to identify the server as a principal to the Registry Service provided by DCE
Security Service. In practice, this name is usually the same as the name that the server uses to register
itself with the DCE Directory Service.

A client must establish the authentication service, protection level, and authorization service that it wants
to use in its communications with a server. The client identifies the intended server by means of the
principal name that the server has registered with the RPC runtime. Once the required authentication,
protection, and authorization parameters have been established for the server binding handle, the client
issues RPCs to the server as it normally does.

The DCE Security Service, in conjunction with the RPC runtime, assumes responsibility for the following:

� Authenticating the client and server in accordance with the requested authentication service

� Applying the requested level of protection to communications between the client and server

� Providing client authorization data to the server in a form determined by the requested authorization
service.

Note: For a detailed discussion of authenticated RPC within the context of DCE Security, refer to Part 5,
“Using the DCE Security APIs” on page 395.

 Authentication

When a client establishes authenticated RPC, it must indicate the authentication service that it wants to
use. The possible values are the following:

rpc_c_authn_none No authentication

rpc_c_authn_dce_secret DCE shared-secret key authentication

rpc_c_authn_dce_public DCE public key authentication (reserved for future use)

rpc_c_authn_default DCE default authentication service

Note: Only the dce_secret and none authentication services are supported by z/OS DCE.

The value rpc_c_authn_none is used to turn off authentication already established for a binding handle.
The default authentication is DCE shared-secret authentication, which is described in detail in Part 5,
“Using the DCE Security APIs” on page 395.

Before a client and server can engage in authenticated RPC, they must agree on which authentication
service to use. Specifically, the server must register the agreed on authentication service with the RPC
runtime, along with the server’s principal name. For its part, the client must select the same service for
the server’s binding handle. The client indicates the appropriate server by supplying the server’s principal
name. If the client does not know the server’s name, it can use the
rpc_mgmt_inq_server_princ_name() routine to determine the name. The actual RPC routines used by
both the client and the server to establish authenticated RPC are described in “Authenticated RPC
Routines” on page 94.

 Chapter 7. RPC and Other DCE Components 91

Note: All application servers should log in to DCE on their own using the sec_login_ APIs. Otherwise,
when starting multiple application servers which inherit the same login context, you need to either
stagger the initiation of each server or initiate a single server prior to initiating the other servers.
Otherwise you may receive a sec_rgy_server_unavailable status from any authentication RPC
call. There is no problem for a single application server inheriting a login instance from a job, for
example, if you log in to DCE prior to starting a single instance of an application server.

Cross-Cell Authentication: A client can engage in authenticated RPC with a target server that is
in the client’s cell or in a foreign cell. In the case of cross-cell authentication, DCE Security performs the
necessary additional steps on behalf of the client.

To establish authenticated RPC with a foreign server, a client must supply the fully qualified principal
name of the server. A fully qualified name includes the name of the cell as well as the name of the
principal and takes the following form:

/.../cell_name/principal_name

Protection Levels: When a client establishes authenticated RPC, it can specify the level of
protection to be applied to its communications with the server. The protection level determines how much
of client/server messages are encrypted. Generally, the more restrictive the protection level, the greater
the affect on performance. Different levels are provided so that applications can control the protection
versus performance trade-offs.

The protection level is entirely a client responsibility. When a server registers its supported authentication
service with the RPC runtime, it does not specify any protection information for that service. However, the
server can include the protection level used for a particular operation when deciding if the caller is
authorized to perform the operation.

Authenticated RPC supports the following protection levels:

rpc_c_protect_level_default Uses the default protection level for the specified authentication
service.

rpc_c_protect_level_none There is no protection level.

rpc_c_protect_level_connect Performs protection only when the client establishes a relationship
with the server. This level performs an encrypted communication
signal exchange when the client first communicates with the server.
Encryption or decryption is not performed on the data sent between
the client and server, although the successful communication signal
exchange indicates that the client is active on the network.

rpc_c_protect_level_call Performs protection only at the beginning of each RPC when the
server receives the request. This level attaches a verifier to each
client call and server response.

This level does not apply to RPCs made over a connection-based
protocol sequence, that is, ncacn_ip_tcp. If this level is specified
and the binding handle uses a connection-based protocol sequence,
the routine uses the rpc_c_protect_level_pkt level instead.

rpc_c_protect_level_pkt Ensures that all data received is from the expected client. This
level attaches a verifier to each message.

rpc_c_protect_level_pkt_integ Ensures and verifies that none of the data transferred between
client and server has been changed. This level computes a
cryptographic checksum of each message to verify that none of the

92 Application Development Guide: Core Components

data transferred between the client and server has been changed in
transit.

This is the highest protection level that is guaranteed to be present
in the RPC runtime.

rpc_c_protect_level_cdmf_priv Performs protection as specified by all of the previous levels and
also encrypts each remote procedure call argument value. This
level encrypts all user data in each call and provides a lower level
of packet privacy than rpc_c_protect_level_pkt_privacy. This is
the second highest protection level, but it is available only if one of
the User Data Privacy optional features (DES and CDMF, or CDMF
only) was installed.

rpc_c_protect_level_pkt_privacy Performs protection as specified by all of the previous levels and
also encrypts each RPC argument value. This level encrypts all
user data in each call.

This is the highest protection level, but it may not be available in the
RPC runtime.

If a client wants to use the default protection level but does not know what this level is, it can use the
rpc_mgmt_inq_dflt_protect_level() routine to determine the default level.

 Authorization

Authorization is the process of checking a client’s permissions to an object that is controlled by the server.
Access checking is entirely a server responsibility, and involves matching the client’s privilege attributes
against the permissions associated with the object. A client’s privilege attributes consist of the principal ID
and group memberships contained in the client’s network login context.

Authenticated RPC supports the following options for making client authorization information available to
servers for access checking:

rpc_c_authz_none No authorization information is provided to the server, usually because the server
does not perform access checking.

rpc_c_authz_name Only the client principal name is provided to the server. The server can then
perform authorization based on the provided name. This form of authorization is
sometimes referred to as name-based authorization.

rpc_c_authz_dce The client’s DCE Extended Privilege Attribute Certificate (EPAC) is provided to the
server with each RPC made with binding parameter. The server performs
authorization using the client EPAC. Generally, access is checked against DCE
ACLs.

When a client establishes authenticated RPC, it must indicate the authorization option that it wants to use.

It is the server’s responsibility to carry out the type of authorization appropriate for the objects that it
controls. When the server calls rpc_binding_inq_auth_client() to return information about an
authenticated client, it gets back either the client’s principal name or a pointer to the data structure that
contains the client’s EPAC. The value that is returned depends on the type of authorization the client
specified on its call to establish authenticated RPC with that server.

Each server is responsible for carrying out its own access checking by means of ACL managers. When a
server receives a client request for an object, the server runs the ACL manager appropriate for that type of
object and passes to the manager, the client’s authorization data. The manager compares the client
authorization data to the permissions associated with the object and either refuses or permits the

 Chapter 7. RPC and Other DCE Components 93

requested operation. For certified (EPAC-based) authorization, servers must carry out access checking
using the ACL facility provided by the DCE Security Service. ACL managers are described in more detail
in Part 5, “Using the DCE Security APIs” on page 395.

Name-Based Authorization: Name-based authorization (rpc_c_authz_name) provides a server
with the client’s principal name. The server call to rpc_binding_inq_auth_client() retrieves the name
from the binding handle associated with the client and returns it as a character string.

Do not use names for authorization. To perform access checking using client principal names, you must
store the names in the access lists associated with the protected objects. Each time a name is changed,
the change has to be spread through all the access lists in which the name is defined.

DCE Authorization: DCE authorization (rpc_c_authz_dce) provides a server with the client’s
EPAC.

EPACs offer a trusted mechanism for conveying client authorization data to authenticated servers. The
DCE Security Service generates a client EPAC in a tamper-proof manner. When a server receives a
client EPAC, it knows that the EPAC has been certified by DCE Security.

EPACs are designed to be used with the DCE ACL facility. The ACL facility provides an editor and a set
of API routines that support the implementation of access control lists and the managers to control them.

For a detailed description of EPACs and their use with DCE ACL facility, refer to Part 5, “Using the DCE
Security APIs” on page 395.

Authenticated RPC Routines

Authenticated RPC is carried out using a set of related RPC routines. Some of the routines are for use by
clients, some are for use by servers and their managers, and some are for use by both clients and
servers. The authenticated RPC routines are as follows:

rpc_binding_set_auth_info() A client calls this routine to establish an authentication service,
protection level, and authorization service for a server binding
handle. The client identifies the server by supplying the server’s
principal name. The RPC runtime, in conjunction with the DCE
Security Service, applies the authentication service and
protection level to all subsequent remote procedure calls made
using the binding handle.

rpc_binding_inq_auth_info() A client calls this routine to return the authentication service,
protection level, and authorization service that are in effect for a
specified server binding handle. This routine also returns the
principal name of the server associated with the binding handle.

rpc_mgmt_inq_dflt_protect_level() A client or a server calls this routine to learn the default
protection level that is in force for a given authentication service.

rpc_mgmt_inq_server_princ_name() A client, a server, or a server manager can call this routine to
return the principal name that a server has registered with the
RPC runtime with the rpc_server_register_auth_info() routine.
A client can identify the desired server by supplying a server
binding handle and the authentication service associated with the
registered principal name.

94 Application Development Guide: Core Components

rpc_server_register_auth_info() A server calls this routine to register an authentication service
that it wants to support and the server principal name to be
associated with the registered service. The server can also
supply the address of a key retrieval routine to be called by the
DCE Security Service as part of the client authentication
process. The routine is a user-supplied function whose purpose
is to provide the server’s key to the DCE Security runtime.

Note that the server registers only an authentication service. It
does not establish a protection level or an authorization service.
These are the responsibilities of the client.

rpc_binding_inq_auth_caller() A server calls this routine to return the authentication service,
protection level, and authorization service that is associated with
the binding handle of an authenticated client. This call also
returns the server principal name specified by the client on its
call to rpc_binding_set_auth_info().

rpc_binding_inq_auth_client() A server calls this routine to return the authentication service,
protection level, and authorization service that is associated with
the binding handle of an authenticated client. This call also
returns the server principal name specified by the client on its
call to rpc_binding_set_auth_info().

Note: This call is provided only for compatibility purposes with
DCE 1.1 applications. DCE release 1.1 and later applications
should use rpc_binding_inq_auth_caller().

rpc_mgmt_set_authorization_fn() A server calls this routine to establish a user-supplied
authorization function to validate remote client calls to the
server’s management routines. For example, the user function
can call rpc_binding_inq_auth_client() or
rpc_binding_inq_auth_caller() to return authentication and
authorization information about the calling client. The RPC
runtime calls the user-supplied function whenever it receives a
client request to run one of the following server management
routines:

 � rpc_mgmt_inq_if_ids()

 � rpc_mgmt_inq_server_princ_name()

 � rpc_mgmt_inq_stats()

 � rpc_mgmt_is_server_listening()

 � rpc_mgmt_stop_server_listening().

When an unauthenticated client calls a server that has specified authentication, the RPC runtime will not
perform any authentication, and the call will reach the application manager code. It is up to the manager
to decide how to deal with the unauthenticated call.

Typically, servers and clients establish authentication as follows:

� The server specifies an authentication service for a principal identity under which it runs by calling
rpc_server_register_auth_info(). The authentication service is specified by the authn_svc parameter
of this call. Servers may specify either DCE secret key authentication (by supplying either
rpc_c_authn_dce_secret or rpc_c_authn_default) or no authentication (by supplying
rpc_c_authn_none). The specified authentication service will be used if it is also requested by the
client.

 Chapter 7. RPC and Other DCE Components 95

� The client sets authentication for a binding handle by calling rpc_binding_set_auth_info(). The
choices are also either DCE secret key or no authentication. Client calls made on the binding handle
attempt to use the specified authentication service.

� The server manager code calls rpc_binding_inq_auth_client() to extract any authentication
information from the client binding for the call.

Directory Services and RPC: Using the Namespace

This section discusses how the DCE RPC Name Service Interface (NSI) configures directory service
entries and how RPC applications can use those entries. The following topics are included:

� Directory service entries defined by NSI

Describes the kinds of directory service entries NSI defines

� Searching the Namespace

Describes how the namespace is searched when a client requests binding information

� Strategies for using directory service entries

Outlines strategies for using each kind of entry

� The Service Model

Describes the service model for defining RPC servers and introduces NSI usage models intended to
guide application developers in assessing how to best use NSI for a given application

� The Resource Model

Describes the resource model for defining RPC servers

NSI Directory Service Entries

To store information about RPC servers, interfaces, and objects, NSI defines the following directory
service entries in the namespace: server entries, groups, and profiles. These directory service entries are
CDS objects.

� A server entry is a directory service entry that stores binding information and object UUIDs for an RPC
server.

� A group is a directory service entry that corresponds to one or more RPC servers that all offer certain
RPC interfaces or RPC object types (or both).

� A profile is a directory service entry that defines search paths in a namespace for a server that offers
a particular RPC interface and object.

The use of server entries, groups, and profiles determines how clients view servers. A server describes
itself to its clients by exporting binding information associated with interfaces and objects to one or more
server entries. A group corresponds to servers that offer a given interface, service, or object. Profiles
enable clients to access alternative directory service entries when searching for an interface or object.
Used together, groups and profiles offer sophisticated ways for RPC applications to maintain and use
directory service data.

96 Application Development Guide: Core Components

NSI Attributes: Usually, the distinct server entries, groups, and profiles concepts are adequate for
using the NSI. However, you can combine server entries, groups, and profiles into a single directory
service entry because of the way the NSI stores RPC information. To store information about RPC
applications in a directory service entry, the RPC directory service interface defines several RPC-specific
directory service attributes, or NSI attributes. NSI attributes contain information about RPC applications in
a directory service entry. The NSI attributes are as follows:

� NSI Binding attribute

The binding attribute stores binding information and interface identifiers (interface UUID and version
numbers) exported to the server entry. This attribute identifies a directory service entry as a server
entry.

� NSI Object attribute

The object attribute stores a list of one or more object UUIDs. Whenever a server exports any object
UUIDs to a server entry, the server entry contains an object attribute as well as a binding attribute.
When a client imports a binding from that entry, the import operation returns an object UUID from the
list stored in the object attribute.

� NSI group attribute

The group attribute stores the entry names of the members of a single group. This attribute identifies
a directory service entry as an RPC group.

� NSI profile attribute

The profile attribute stores a set of profile elements. This attribute identifies a directory service entry
as an RPC profile.

Figure 23 represents the correspondence between NSI attributes and the different directory service
entries: server entries, groups, and profiles.

Binding attribute

Object attribute

Group attribute

Profile attribute

Server entry

Group

Profile

NSI attributes

Key:
= Basic attribute that defines an NSI name service entry

= Optional attribute

Figure 23. NSI Attributes

Any directory service entry can contain any combination of the four NSI attributes. However, to facilitate
administrating directory service entries, avoid creating binding, group, and profile attributes in the same

 Chapter 7. RPC and Other DCE Components 97

entry. Instead, use distinct directory service entries for server entries, groups, and profiles. The object
attribute, in contrast, is designed as an adjunct to another NSI attribute, especially the binding attribute.

When using the resource model or when distinguishing server instances, a server entry contains an object
attribute as well as a binding attribute. On finding a server entry whose binding attribute contains
compatible binding information, an NSI search operation also looks in the entry for an object attribute. For
groups whose membership is selected according to a shared object or set of objects, it may be useful to
export those objects to the group. In this case, the directory service entry of the group contains both
group and object attributes. For reading the object UUIDs in the NSI object attribute in any directory
service entry, the NSI provides a set of object inquiry operations called using the
rpc_ns_entry_object_inq_{begin,next,done}() routines.

Using separate entries facilitates administration of the namespace, for example, by enabling entry names
to specifically describe their contents. Keeping server entries, profiles, and groups separate allows clear
references to each of them.

Note: In addition to any NSI attributes, a directory service entry contains other kinds of directory service
attributes. Every entry in a namespace contains standard attributes created by the directory
service. NSI operations rely on some standard attributes to identify and use an entry. Any
directory service entry can also contain additional attributes specified by non-RPC applications;
these are ignored by NSI operations.

Structure of Entry Names: Each entry in a namespace is identified by a unique global name
comprising a cell name and a cell-relative name.

A cell is a group of users, systems, and resources that share common DCE services. A cell configuration
includes at least one Cell Directory Server, one Security Server, and one Distributed Time Server. A cell’s
size can range from one system to thousands of systems. A host is assigned to its cell by a DCE
configuration file. For information on cells, see the z/OS DCE Administration Guide.

The following is an example of a global name:

/.../C=US/O=uw/OU=MadCity/LandS/anthro/Stats_host_2

The parts of a global name are as follows:

� Cell name (using X.500 name syntax):

 /.../C=US/O=uw/OU=MadCity

The symbol /... begins a cell name. The letters before the = (equal signs) are abbreviations for
Country (C), Organization (O), and Organization Unit (OU). For entries in the local cell, the cell name
can be represented by a /.: prefix, in place of the actual cell name, for example:

 /.:/LandS/anthro/Stats_host_2

The / (slash) to the right of the cell name represents the root of the cell directory (the cell root).

For NSI operations on entries in the local cell you can omit the cell name.

� Cell-relative name (using DCE name syntax):

Each directory service entry requires a cell-relative name, which contains a directory path name and a
leaf name.

– A directory path name follows the cell name and indicates the hierarchical relationship of the entry
to the cell root.

The directory path name contains the names of any subdirectories in the path; each subdirectory
name begins with a / (slash), as follows:

/sub-dir-a-name/sub-dir-b-name/sub-dir-c-name

98 Application Development Guide: Core Components

Directory path names are created by directory service administrators. If an appropriate directory
path name does not exist, ask your directory service administrator to extend an existing path
name or create a new one. In a directory path name, the name of a subdirectory should reflect its
relationship to its parent directory (the directory that contains the subdirectory).

– A leaf name identifies the specific entry.

The leaf name constitutes the right-hand part of a global name beginning with the rightmost /
(slash).

For example, /.:/LandS/anthro/Cal_host_4, where /.:/ represents the cell name, /LandS/anthro is
the directory path name, and /Cal_host_4 is the leaf name. If the directory service entry is located at
the cell root, the leaf name directly follows the cell name, for example, /.:/cell-profile.

Note: When the NSI is used with CDS, the cell-relative name is a CDS name.

Figure 24 shows the parts of a global name.

/.../C=Country_code/O=Org_code/OU=Location/Subdir_a/Subdir_b/Subdir_c/Name_service_entry

Cell name Cell-relative name

Directory pathname Leaf name

Figure 24. Parts of a Global Name

Server Entries: The NSI enables any RPC server or the DCE administrator with the necessary
directory service permissions to create and maintain server entries in a name service database. A server
can use as many server entries as it needs to advertise combinations of its RPC interfaces and objects.

Each server entry must correspond to a single server (or a group of interchangeable server instances) on
a given system. Interchangeable server instances are instances of the same server running on the same
system that offer the same RPC objects (if any). Only interchangeable server instances can share a
server entry.

Each server entry must contain binding information. Every combination of protocol sequence and network
addressing information represents a potential binding. The network addressing information can contain a
network address but lacks an endpoint, making the address partially bound. A server entry can also
contain a list of object UUIDs exported by the server. Each of the object UUIDs corresponds to an object
offered by the server. In a given server entry, the binding information is stored for each interface UUID,
and each interface identifier is associated with every object UUID.

Figure 25 on page 100 represents a server entry. This server entry was created by two calls to the
rpc_ns_binding_export() routine. The first call created the first column of the top half of the figure. The
routines’s binding_vec parameter has three elements, each of which is paired with the routine’s if_handle
parameter. The ellipsis points under the last box indicate that more elements in the routine’s binding_vec
argument would result in more interface UUID/binding information pairs in the first column.

The second call to the rpc_ns_binding_export() routine created the second column of the top half of the
figure. The routine’s binding_vec parameter has two elements, each of which is paired with the routine’s
if_handle parameter. For example, the first element could have contained binding information with the
ncacn_ip_tcp protocol sequence, and the second element could have contained binding information with

 Chapter 7. RPC and Other DCE Components 99

the ncadg_ip_udp protocol sequence. As in the first column, more elements in the routine’s binding_vec
parameter would result in more interface UUID/binding information pairs.

Subsequent calls to the rpc_ns_binding_export() routine would create more columns; the horizontal
ellipsis points indicate this expansion.

The rpc_ns_binding_export() routine optionally takes a vector of object UUIDs. The four object UUIDs in
the bottom half of the figure came from the two calls to the routine, or from another call to the routine with
no interface UUID/version and with no binding information, but with object UUIDs. The object UUIDs are
associated with no particular binding. Instead, they are associated with all the bindings. Subsequent calls
to the routine could create more object UUIDs; the three vertical dots indicate this expansion.

Note: To distinguish among RPC objects when using the CDS ACL editor, export the RPC objects to
separate directory service entries.

Objects

Bindings

One Server Entry

Interface UUID/Version pair 1
with binding information 1

Interface UUID/Version pair 1
with binding information 2

Interface UUID/Version pair 1
with binding information 3

Interface UUID/Version pair 2
with binding information 1

Interface UUID/Version pair 2
with binding information 3

...

...

...

...

...

Object UUID 1

Object UUID 2

Object UUID 3

Object UUID 4

Figure 25. Possible Information in a Server Entry

100 Application Development Guide: Core Components

Groups: Administrators or users of RPC applications can organize searches of a namespace for
binding information by having clients use an RPC group as the starting point for NSI search operations. A
group provides NSI search operations (rpc_ns_binding_import_next or rpc_ns_binding_lookup_next
operations) with access to the server entries of different servers that offer a common RPC interface or
object. A group contains names of one or more server entries, other groups, or both. Because a group
can contain group names, groups can be nested. Each server entry or group named in a group is a
member of the group. A group’s members must offer one or more RPC interfaces, the type of RPC
object, or both in common.

Figure 26 shows an example of the kinds of members a group can contain and how they correspond to
database entries.

Member name

Member name

Member name

Member name

Member name

Group A:

Group B:

Server entry 1:

Server entry 2:

Server entry 3:

Server entry 4:

Server entry 5:

= Member of Group A

Key:

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Figure 26. Possible Mappings of a Group

The members of Group A are Server Entry 1, Server Entry 2, and Group B. The members of the nested
group, Group B, are Server Entry 3 and Server Entry 4. An additional server entry that advertises the
common interface or object, Server Entry 5, is omitted from either group.

Profiles: Administrators or users of RPC applications can use profiles to organize searches of a
namespace to find binding information. Clients can use an RPC profile as the starting point for NSI
search operations. A profile is an entry in a namespace that contains a collection of profile elements. A
profile element is a database record that associates a single RPC interface with a server entry, group, or
profile. Each profile element contains the following information:

 � Interface identifier

This field is the key of the profile. The interface identifier consists of the interface UUID and the
interface version numbers.

 � Member name

The entry name of one of the following kinds of directory service entries:

– A server entry for a server offering the requested RPC interface

 Chapter 7. RPC and Other DCE Components 101

– A group corresponding to the requested RPC interface

 – A profile.

 � Priority value

The priority value (0 is the highest priority; 7 the lowest) is designated by the creator of a profile
element to help determine the order for using the element. NSI search operations will select among
like-priority elements at random.

Note that when you create an NSI profile, you should use priorities 1 through 7 to manage profile
elements. Priority 0 is a reserved priority that should only be used by the default profile element. If
priority 0 is used by profile elements other than the default profile element, then DCE will choose a
random binding from among the two. DCE does not always distinguish between priority 0 default
elements and priority 0 nondefault elements. Therefore, if you create an NSI profile it is better to use
priority 1 to denote the highest priority element in your profile instead of using priority 0. The other
lower priority elements in your profile can be given priorities 2 through 7 leaving priority 0 reserved for
the default element. This convention along with the fact that only one default element is allowed per
profile will prevent the high priority given to default elements from being abused.

 � Annotation string

The annotation string enables you to identify the purpose of the profile element. The annotation can
be any textual information, for example, an interface name associated with the interface identifier or a
description of a service or resource associated with a group.

Unlike the interface identifier field, the annotation string is not a search key.

Optionally, a profile can contain one default profile element. A default profile element is the element that
an NSI search operation uses when a search using the other elements of a profile finds no compatible
binding information, for example, when the current profile lacks any element corresponding to the
requested interface. A default profile element contains the nil interface identifier, a priority of 0, the entry
name of a default profile, and an optional annotation.

A default profile is a backup profile, referred to by a default profile element in another profile. A profile
designated as a default profile should be a comprehensive profile maintained by an administrator for a
major set of users, such as the members of an organization or the owners of computer accounts on a
LAN.

A default profile must not create circular dependencies between profiles. For example, when a public
profile refers to an application’s profile, the application’s profile must not specify that public profile as a
default profile.

Figure 27 on page 103 shows an example of the kinds of elements a profile can contain and how they
correspond to database entries.

102 Application Development Guide: Core Components

.

Member name

Member name

Profile A:

Default Profile:

Group:

Server entry:

Server entry:

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Server entry:

Server entry:

Server entry:

Server entry:

Server entry:

= Member of Profile A

Key:

Profile element:

Interface UUID
Interface version
member name
priority
annotation

Profile element:

Profile element:

Interface UUID
Interface version
member name
priority
annotation

Profile element:

Profile element:

Interface UUID
Interface version
member name
priority
annotation

Profile element:

Default profile
element:

Interface UUID
Interface version
member name
priority
annotation

Interface UUID
Interface version
member name
priority
annotation

Interface UUID
Interface version
member name
priority
annotation

Interface UUID
Interface version
member name
priority
annotation

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Figure 27. Possible Mappings of a Profile

NSI search operations use a profile to construct an NSI search path. When an NSI search operation
reads a profile, the operation dynamically constructs its NSI search path from the set of elements that
correspond to a common RPC interface.

A profile element is used only once per NSI search path. The construction of NSI search paths depends
partly on the priority rankings of the elements. A search operation uses higher-priority elements before
lower-priority elements. Elements of equal priority are used in random order, permitting some variation in
the NSI search paths between searches for a given interface. If nondefault profile elements do not satisfy
a search, the search path extends to the default profile element, if any.

Profiles meet the needs of particular individuals, systems, LANs, sites, organizations, and so forth, with
minimal configuration management. The administrator of a profile can set up NSI search paths that reflect

 Chapter 7. RPC and Other DCE Components 103

the preferences of the profile’s user or users. The profile administrator can set up profile elements that
refer (directly or indirectly) to only a subset of the server entries that offer a given RPC interface. The
administrator can also assign different search priorities to the elements for an interface.

Guidelines for Constructing Names of Directory Service Entries: A global name
includes both a cell name and a cell-relative name composed of a directory path name and a leaf name.
The cell name is assigned to a cell root at its creation. When you specify only a cell-relative name to an
NSI operation, the NSI automatically expands the name into a global name by inserting the local cell
name. When returning the name of a directory service entry, a group member, or a member in a profile
element, NSI operations return global names.

The directory path name and leaf name uniquely identify a directory service entry. The leaf name should
somehow describe the entry, for example, by identifying its owner or its contents. The remainder of this
section contains guidelines for choosing leaf names.

Note: Directory path names and leaf names are case sensitive.

Use the guidelines in the following three subsections for constructing names.

Naming a Server Entry: For a server entry that advertises an RPC interface or service offered by a
server, the leaf name must distinguish the entry from the equivalent entries of other servers. When a
single server instance runs on a host, you can ensure a unique name by combining the name of the
service, interface (from the interface definition), or the system name for the server’s host system.

For example, consider two servers, one offering a calendar service on host JULES and one on host
VERNE.

The server on JULES uses the following leaf name:

calendar_JULES

The server on VERNE uses the following leaf name:

calendar_VERNE

For servers that perform tasks on or for a specific system, an alternative approach is to create server
entries in a system-specific host directory within the namespace. Each host directory takes the name of
the host to which it corresponds. Because the directory name identifies the system, the leaf name of the
server entry name does not need to include the host name, for example:

/.:/LandS/host_1/Process_control

To construct names for the server entries used by distinctive server instances on a single host, you can
construct unique server entry names by combining the following information: the name of the server’s
service, interface, or object; the system name of the server’s host system; and a reusable instance
identifier such as an integer.

For example, the following leaf names distinguish two instances of a calendar service on the JULES
system:

calendar_JULES_01

calendar_JULES_02

Avoid automatically generating entry names for the server entries of server instances, for example, by
using unique data such as a timestamp (calendar_verne_15OCT91_21:25:32) or a process identifier
(calendar_jules_208004D6). When a server incorporates such unique data into its server entry names,
each server instance creates a separate server entry, causing many server entries. When a server

104 Application Development Guide: Core Components

instance stops running, it leaves an obsolete server entry that is not reused. The creation of a new entry
whenever a server instance starts may impair performance.

A server can use multiple server entries to advertise different combinations of interfaces and objects. For
example, a server can create a separate server entry for a specific object and the associated interfaces.
The name of such a server entry should correspond to a well-known name for the object. For example,
consider a server that offers a horticulture bulletin board known to users as horticulture_bb. The server
exports the horticulture_bb object, binding information, and the associated bulletin-board interface to a
server entry whose leaf name identifies the object, as follows:

horticulture_bb

Naming a Group: The leaf name of a group should indicate the interface, service, or object that
determines membership in the group. For example, for a group whose members are selected because
they advertise an interface named Statistics, the following is an effective leaf name:

Statistics

For a group whose members advertise laser printer print queues as objects, the following is an effective
leaf name:

laser-printer

Naming a Profile: The leaf name of a profile should indicate the profile users. For example, for a profile
that serves the members of an accounting department, the following is an effective leaf name:

accounting_profile

NSI Begin, Next, and Done Operations: NSI accesses a variety of search and inquire operations that
read NSI attributes in directory service entries. An NSI attribute is an RPC-defined attribute of a directory
service entry used by the DCE RPC directory service interface; an NSI attribute stores one of the
following:

 � Binding information

 � Object UUIDs

 � A group

 � Members

 � Profile elements.

Reading information from any attribute involves an equivalent set of search or inquire operations; that are
an integral set of begin, next, and done operations. An RPC application uses these operations as
follows:

1. The application creates a name service handle (a reference to the context of the ensuing series of
next operations) by calling an NSI begin operation.

2. The application calls the NSI next operation that corresponds to the begin operation one or more
times. Each next operation returns another value or list of values from the target RPC directory
service attribute. For example, an import_next operation returns binding information from a binding
attribute and an object from an object attribute.

Each call to an NSI next operation requires the directory service handle created in the associated NSI
begin operation. The directory service handle maintains state information for reading values from
directory service attributes; this is analogous to the function of a file pointer in the C language.

3. The application deletes the directory service handle by calling the corresponding NSI done operation.

Note: Search and inquire operations are also accessible interactively from within the RPC control
program.

 Chapter 7. RPC and Other DCE Components 105

The NSI next operations used by RPC applications are listed as follows:

Search Operation Attributes Traversed

rpc_ns_binding_import_next() Searches for binding and object attributes of a compatible server and
reads any NSI attribute in a search path. A compatible server is a
server that supports the same interface or object, and the same
transport protocol as the client.

Returns one binding handle that refers to a potential binding for a
compatible server.

rpc_ns_binding_lookup_next() Searches for binding and object attributes of a compatible server; reads
any NSI attribute in a search path.

Returns a vector of binding handles, each of which refers to a potential
binding for a compatible server.

Note that after calling the rpc_ns_binding_lookup_next operation, the
client must select one binding handle from the list. To select a binding
handle at random, the client can call the NSI binding select routine
(rpc_ns_binding_select()). For an alternative selection algorithm, the
client can define and call its own application-specific select algorithm.

Inquire Operation Attributes Traversed

rpc_ns_group_mbr_inq_next() Reads a group attribute and returns a compatible member name.

rpc_ns_profile_elt_inq_next() Reads a profile attribute and returns the fields of a compatible profile
element.

Selecting the Starting Entry: When searching a namespace for an RPC interface and object, a
client supplies the name of the directory service entry where the search begins. The entry can be a
server entry, group, or profile. Generally, an NSI search starts with a group or profile. The group or profile
defines a search path that ends at a server entry containing the requested interface identifier, object UUID,
and compatible binding information.

A user may know in advance what server instance to use. In this case, starting with a server entry for the
server instance is appropriate.

Environment Variables: DCE RPC provides predefined environment variables that a client can use
for NSI operations. An environment variable is a variable that stores information, such as a name, about a
particular environment. The NSI interface uses two environment variables, RPC_DEFAULT_ENTRY and
RPC_DEFAULT_ENTRY_SYNTAX. They describe the NSI starting entry and its syntax.

When a client searches for binding information, the search starts with a specific entry name. Optionally, a
client can specify this entry name as the value of the RPC_DEFAULT_ENTRY variable. A client can also
specify the name syntax of the starting entry as the value of the RPC_DEFAULT_ENTRY_SYNTAX
variable; the default name syntax is dce.

Note: The dce name syntax is the only syntax supported by the DCE Cell Directory Service. Because
the NSI is independent of any specific directory service, it may support one or more alternative
directory services that use different name syntaxes.

106 Application Development Guide: Core Components

Searching a Namespace for Binding Information: Searching the namespace for binding
information requires that a client specify a starting point for the search. A client can start with a specific
server entry. However, this is a limiting approach because the client is restricted to using one server. To
avoid this restriction, a client can start searching with a group or a profile instead of with a server entry.
Searches that start with a profile or a group should encounter the server entry of a compatible server. If
such an entry is not encountered, a search operation returns the rpc_s_no_more_bindings status code
to the client. When calling the rpc_ns_binding_import_next() or rpc_ns_binding_lookup_next()
routine, a client must track whether the routine returns this status code.

The Import and Lookup Search Algorithm: The NSI search operations (the
rpc_ns_binding_import_next and rpc_ns_binding_lookup_next operations) traverse one or more
entries in the namespace when searching for compatible binding information. In each directory service
entry, these operations ignore non-RPC attributes and process the NSI attributes in the following order:

1. Binding attribute (and object attribute, if present)

 2. Group attribute

 3. Profile attribute.

If an NSI search path includes a group attribute, the path can encompass every entry named as a group
member. If a search path includes a profile attribute, it can encompass every entry named as the member
of a profile element that contains the target interface identifier. A search finishes only when it finds a
server entry containing compatible binding information and the non-nil object UUID, if requested. Search
operations take the following steps when traversing a directory service entry:

Step 1: Binding attribute

In each entry, the search operation starts by searching for a compatible interface identifier in the
binding attribute, if present.

The absence of a binding attribute or of any compatible interface identifier causes the search
operation to go directly to step 2.

The presence of any compatible interface identifier indicates that compatible potential bindings
may exist in the binding attribute. At this point, object UUIDs may affect the search, as follows:

� If the client specified the nil object UUID, object UUIDs do not affect the success or failure of
the search. The search returns compatible binding information for one or more potential
bindings.

� If the client specified a non-nil object UUID, the search reads the object attribute, if present,
to look for the requested object UUID. This search for an object UUID has one of the
following outcomes:

– On finding the specified object UUID, the search returns the object UUID along with
compatible binding information for one or more potential bindings.

– If a requested object UUID is absent, the search continues to step 2.

Note: If a search involves a series of import_next or lookup_next operations, a subsequent
next operation resumes the search at the point in the search path where the preceding
operation left off.

Step 2: Group attribute

If the binding attribute does not lead to compatible binding information, or if a series of import
next or lookup next operations uses up the compatible binding information, the search continues
by reading the group attribute, if present. If the directory service entry lacks a group attribute,
the search goes directly to step 3.

 Chapter 7. RPC and Other DCE Components 107

The search operation selects a member of the group at random, goes to the entry of that
member, and resumes the search at step 1. Unless a group member leads the search to
compatible binding information, the search looks at all the members of the group, one by one in
random order, until none remain.

Step 3: Profile attribute

If the binding and group attributes do not lead to compatible binding information, the search
continues by reading the profile attribute, if present. If the directory service entry lacks a profile
attribute, the search fails.

The search operation identifies all the profile elements containing the requested interface
identifier and searches them in order of their priority beginning with the 0 (zero) priority elements.
Profile elements of a given priority are searched in random order. For the selected profile
element, the search reads the member name and goes to the corresponding directory service
entry. There, the search resumes at step 1. Unless a profile element leads the search to
compatible binding information, the search eventually looks at all the profile elements with the
requested interface identifier, one by one, until none remain.

If the starting entry does not contain NSI attributes, or if none of the steps satisfies the search, the search
operation returns an rpc_s_no_more_bindings status code to the client.

Note: The inquire next (inq_next) operations for objects, groups, or profiles look at only the entry
specified in its corresponding inquire begin (inq_begin) operation. The search ignores nested
groups or nested profiles.

The flow chart in Figure 28 on page 109 illustrates the three steps of the rpc_ns_binding_import_next
and rpc_ns_binding_lookup_next search operations.

108 Application Development Guide: Core Components

Binding
attribute

?

Group
attribute

?

Profile
attribute

?

rpc_s_no_more_bindings

No

Yes

Yes

Yes

Yes

No

No No

No

Compatible
binding

info.
?

Compatible
object
UUID

?

Search
STARTS

For each
potentially
compatible
binding, DO

compatible
binding

information

RETURNS

for each group
member, DO

For each profile element of a
compatible interface id, DO

Step 1

Step 2

Step 3

Yes

Figure 28. Import and Lookup Search Algorithm within a Single Entry

Note: The inquire next (inq_next) operations for objects, groups, or profiles look at only the entry
specified in its corresponding inquire begin (inq_begin) operation. The search ignores nested
groups or nested profiles.

 Chapter 7. RPC and Other DCE Components 109

Examples of Searching for Server Entries: This subsection contains several examples of how
the NSI import and lookup operations search for binding information associated with a given RPC
interface and object in a namespace.

The following examples use the following conventions:

� To simplify the examples, each member name is represented by a leaf name preceded by the symbol
that represents the local cell (/.:). For example, the full global name of the group for the
bulletin_board_interface is:

/.../C=US/O=uw/OU=MadCity/LandS/bb_grp

The abridged name is /.:/LandS/bb_grp.

Note: For a summary of global name syntax, see “Structure of Entry Names” on page 98 on naming
directory service entries.

� Except for the nil interface UUID of the default profile, the examples avoid string representations of
actual UUIDs. Instead, the examples represent a UUID as a value consisting of the name of the
interface and the string if-uuid, or of the name of the object and the string object-uuid. For example:

 calendar-if-uuid,1.0

 laser-printer-object-uuid

� Profile elements in the examples are organized as follows (annotations are not displayed):

interface-identifier member-name priority

For example,

2fac8900-31f8-11ca-b331-08002b13d56d,1.0 /.:/LandS/C_host_7 0

which in the following examples is represented as:

 calendar-if-uuid,1.0 /.:/LandS/C_host_7 0

Note: The priority is a value of 0 to 7, with 0 having the highest search priority and 7 having the
lowest.

The first two examples begin with the personal profile of a user, Molly O'Brian, whose user name is
molly_o and whose profile has the leaf name of molly_o_profile. To use this profile, Molly must specify
its entry name to the client. Usually, a client either uses the predefined RPC environment variable
RPC_DEFAULT_ENTRY or prompts for an entry name. For a client to use RPC_DEFAULT_ENTRY, the
client or user must have already set the variable to a directory service entry.

The following example illustrates six profile elements from the individual user profile used in the first two
examples. The six elements include five nondefault elements for some frequently used interfaces and a
default profile element. Each profile element is displayed on three lines, but in an actual profile all the
fields occupy a single record. The fields are the interface identifier (interface UUID and version numbers),
member name, priority, and annotation.

 /.:/LandS/anthro/molly_o_profile contents:

 ec1eeb60-5943-11c9-a309-08002b102989,1.0
 /.../C=US/O=uw/OU=MadCity/LandS/Cal_host_7
 0 Calendar_interface_V1.0

 ec1eeb60-5943-11c9-a309-08002b102989,2.0
 /.../C=US/O=uw/OU=MadCity/LandS/Cal_host_4
 1 Calendar_interface_V2.0

 62251ddd-51ed-11ca-852c-08002b1bb4f6,2.0
 /.../C=US/O=uw/OU=MadCity/bb_grp
 2 Bulletin_board_interface_V2.0

110 Application Development Guide: Core Components

 62251ddd-51ed-11ca-852c-08002b1bb4f6,2.1
 /.../C=US/O=uw/OU=MadCity/bb_grp
 3 Bulletin_board_interface_V2.1

 9e18d295-51ec-11ca-9cc0-08002b1bb4f5,1.0
 /.../C=US/O=uw/OU=MadCity/LandS/anthro/Zork_host_2
 0 Zork_interface_V1.0

 00000000-0000-0000-0000-000000000000,0.0
 /.../C=US/O=uw/OU=MadCity/cell-profile
 0 Default_profile_element

Example 1: Importing for an Interface with Multiple Versions

Target Interface: Calendar V2.0

1. The search for binding information associated with Calendar V2.0 starts with the entry
molly_o_profile:

/.../C=US/O=uw/OU=MadCity/LandS/anthro/molly_o_profile contents:

 calendar-if-uuid,1.0 /.:/LandS/C_host_7 0

 calendar-if-uuid,2.0 /.:/LandS/C_host_4 1

 bulletin_board-if-uuid,2.0 /.:/LandS/bb_grp 2

 bulletin_board-if-uuid,2.1 /.:/LandS/bb_grp 3

 Zork-if-uuid,1.0 /.:/Eng/Zork_host_2 0

 00000000-0000-0000-0000-000000000000,0.0 /.:/cell_ profile 0

The search operation examines only the two profile elements that refer to the Calendar interface:

a. The operation rejects the first profile element for the interface because it refers to the wrong
version numbers.

b. In the next profile element, the operation finds the correct version numbers (2.0). The search
proceeds to the associated server entry, /.:/LandS/Cal_host_4.

2. The search ends with the indicated server entry, where the binding information requested by the client
resides:

/.:/LandS/Cal_host_4 contents:

 calendar-if-uuid,2.0

 binding-information

Example 2: Using a Default Profile for Importing an Interface

Target Interface: Statistics V1.0

1. The search for binding information associated with Statistics V1.0 starts with the entry
molly_o_profile. However, the profile lacks any elements for the interface. Therefore, the search
reaches the default profile element, which provides the entry name for the default profile,
/.:/cell-profile:

/.:/LandS/anthro/molly_o_profile contents:

calendar-if-uuid,1.0 /.:/LandS/C_host_7 0

 Chapter 7. RPC and Other DCE Components 111

calendar-if-uuid,2.0 /.:/LandS/C_host_4 1

bulletin_board-if-uuid,2.0 /.:/LandS/bb_grp 2

bulletin_board-if-uuid,2.1 /.:/LandS/bb_grp 3

Zork-if-uuid,1.0 /.:/Eng/Zork_host_2 0

00000000-0000-0000-0000-000000000000,0.0 /.:/cell-profile 0

2. The search continues to the indicated default profile, /.:/cell-profile, which contains a profile element
for the requested Statistics 1.0 interface:

/.:/LandS/cell-profile contents:

 .
 .
 .

Statistics-if-uuid,1.0 /.:/LandS/Stats_host_6 0
 .
 .
 .

3. The search ends at the indicated server entry, /.:/LandS/Stats_host_6, where a server address for
the requested interface resides:

/.:/LandS/Stats_host_6 contents:

 Statistics-if-uuid,1.0

 binding-information

Example 3: Importing an Interface and an Object

Target Interface: Print Server V2.1

Target Object: Laser Printer Print Queue

1. The search starts with the entry /.:/Bldg/Print_queue_grp, which contains the entry names of
several server entries that advertise the Print_server interface and the object UUID of a given
Laser_printer print queue. The search begins by randomly selecting a member name. In this
instance, the search selects /.:/Bldg/Print_server_host_3:

/.:/Bldg/Print_queue_grp contents:

 /.:/Bldg/Print_server_host_3
 /.:/Bldg/Print_server_host_7
 /.:/Bldg/Print_server_host_9

2. The search continues with the /.:/Bldg/Print_server_host_3 entry. There it finds the requested
Version 2.1 of the Print_server interface. However, the search continues, because the entry lacks
the object UUID of the requested Laser_printer queue:

/.:/Bldg/Print_server_host_3 contents:

 print_server-if-uuid,2.1

112 Application Development Guide: Core Components

 binding-information

 line_printer_queue-object-uuid

3. The search returns to the previous entry, /.:/Bldg/Print_queue_grp, to select another entry name, in
this instance, /.:/Bldg/Print_server_host_9:

/.:/Bldg/Print_queue_grp contents:

 /.:/Bldg/Print_server_host_3
 /.:/Bldg/Print_server_host_7
 /.:/Bldg/Print_server_host_9

4. The search selects the /.:/Bldg/Print_server_host_9 entry. This entry contains both a server
address for the requested Version 2.1 of the interface and the requested object UUID of the
Laser_printer queue:

/.:/Bldg/Print_server_host_9 contents:

 print_server-if-uuid, 2.1

 binding-information

 laser_printer_queue-object-uuid

The search returns binding information from this entry to the client.

Expiration Age of a Local Copy of Directory Service Data: To prevent the unnecessary
access of a namespace, previously requested directory service data is sometimes stored on the system
where the request originated. A local copy of directory service data (also called the CDS cache) which is
maintained by the CDS Clerk daemon, is not automatically updated at each request. Automatic updating
of the local copy occurs only when it exceeds its expiration age. The expiration age is the amount of time
that a local copy of directory service data from an NSI attribute can remain unchanged before a request
from an RPC application for the attribute requires updating of the local copy. When an RPC application
begins running, the RPC runtime randomly specifies a value between 8 and 12 hours as the default
expiration age for that instance of the application. Most applications use only this default expiration age,
which is global to the application.

An expiration age is used by an NSI next operation, which reads data from directory service attributes.
For a given search or inquire operation, you can override the default expiration age by calling the
rpc_ns_mgmt_handle_set_exp_age() routine after the operation’s begin routine. Specifying a low
default age will result in increased network updates among the name servers in your cell. Because this
activity will adversely affect the performance of all network traffic, use the default whenever possible. If
you must override the default age, specify a number high enough to avoid frequent updates of local data.

An NSI next operation usually starts by looking for a local copy of the attribute data being requested by an
application. In the absence of a local copy, the NSI next operation creates one with fresh attribute data
from the namespace. If a local copy already exists, the operation compares its actual age to the
expiration age used by the application. If the actual age exceeds the expiration age, the operation
automatically tries to update the local copy with fresh attribute data. If updating is impossible, the old local
data remains in place and the NSI next operation fails, returning the rpc_s_name_service_unavailable
status code.

 Chapter 7. RPC and Other DCE Components 113

Note: If your client successfully imports the bindings for its server but receives a communications failure
status, comm_status, when it attempts the RPC, it is possible that the server has been transferred
to another machine and the local directory service data is no longer current.

You can handle this situation in your client’s error recovery code by disabling the local directory
service cache by setting the expiration age to 0 (zero). You can use
rpc_ns_mgmt_set_exp_age() to modify the global expiration age that the application uses, or you
can use rpc_ns_mgmt_handle_set_exp_age() to set the expiration age for a specific name
service handle in the case of a multithreaded application. By setting the expiration age to 0, your
application accesses the directory service data directly from the CDS server. See z/OS DCE
Application Development Reference for details on using the above APIs.

As stated above, setting this expiration age to a low value will result in increased network traffic
and will deteriorate your application’s performance.

Strategies for Using Directory Service Entries

When developing an RPC application, decide how an application will use the namespace and design your
application accordingly. The following subsections discuss issues associated with how servers use
different types of directory service entries.

Using Server Entries: Each server entry requires a unique cell-relative entry name. (See
“Guidelines for Constructing Names of Directory Service Entries” on page 104 for the guidelines for
constructing directory name service entries.) If a server adheres to a simple and consistent arrangement
of server entries, use server initialization code to automatically generate a name for each server entry and
to ensure that the entry exists. However, some servers will need to obtain the entry name of a server
entry from an external source such as a command-line argument or a local database belonging to the
application.

Identical servers on different hosts should be identified by separate server entries. For example, if a
server offering the calendar service runs on two hosts, JULES and VERNE, one server entry is necessary
for the server on JULES and another is necessary for the server on VERNE.

Some applications, such as a process-control application, require only one server instance per system.
Many applications, however, can accommodate multiple server instances on a system. When multiple
instances of a server run simultaneously on a single system, all instances on a host can use a single
server entry, or every instance can use separate server entries. Alternatively, the instances can be
classified into subsets, with a separate server entry. A client importing from a shared server entry cannot
distinguish among the server instances that export to the entry. Therefore, the recommended strategy for
a server on a given system depends on which server instances are viewed by clients as interchangeable
entities and which are viewed as unique entities as follows:

� Interchangeable server instances

When clients consider all the server instances on a host as equivalent alternatives, all of the instances
can (and should) share a server entry. For example, multiple instances of the calendar service
running on host JULES can all export to the calendar_JULES entry.

� Unique server instances

A unique server instance possesses a significant difference from other instances of the same host.
Unique server instances require separate server entries. Each server instance must export unique
information to its own server entry; this unique information can be either a server-specific, well-known
endpoint or an object UUID belonging exclusively to the one server instance.

114 Application Development Guide: Core Components

Before exporting, each server instance must acquire the entry name of its server entry from an
external source. When a unique server instance stops running, its server entry becomes available.
To reuse an available server entry for a new instance of that server, provide the existing entry’s name
for the new server instance to use with the export operation. If any existing server entries are
unavailable, a new server instance requires a new server entry name.

Note: For a discussion of removing the binding information from its server entry, see
rpc_ns_binding_unexport in z/OS DCE Application Development Reference.

Using Groups: When a server is first installed on a system, the server or the installer creates one or
more server entries for the server. When installing the first instance of the server within a cell, the installer
usually creates one or more groups for the application. Note that this notion of group, associated with the
CDS namespace, is not the same as the notion of a POSIX user group used in the UNIX System Services
Shell. For any application, the local system and directory service administrators can create site-specific
groups whose members are server entries, groups, or both. Typically, a server adds a server entry to at
least one group.

Design decisions for defining groups may reflect a number of possible factors. Typical factors that help
define effective groups include the proximity of services or resources to clients, the types of any resources
offered by servers, the uses of UUIDs, and the types of users that require a specific server.

For example, for a print server, proximity to the clients and the type of supported file formats are both
relevant. These factors may affect print servers as follows:

 � Proximity

If the proximity of a server is important to clients, assign servers to groups according to their locations.
For example, print servers that are located together can use their own group. (For example, print
servers in building 1 use the group bldg_1_print_servers.) Each server instance can add its own
entry to the group, or a system administrator can add server entries using the RPC control program.

To select randomly among servers in a given location, a client imports a binding using the name of a
group that corresponds to those servers (or of a profile that refers to that group).

Note: If proximity is the key factor in selecting among servers, name each server entry for the
server’s location; for example, bldg_1_pole_27_print_server.

 � Object types

If accessing specific classes of resources is important to clients, you can group server instances
based on the type of object they offer.

For servers that advertise resources in server entries, groups often use subset server entries
according to the resources they advertise. For example, print servers can be grouped according to
supported file formats. In this case, an administrator creates a group entry for each file format, for
example, post_printers, sixel_printers, and ascii_printers. Each print server entry is a member
of one or more groups.

Users that specify a group for a file format must find the printer that processes the print command. To
help the user find the printer, the client can obtain the name of the server entry that supplied the
server binding information (by calling rpc_ns_binding_inq_entry_name()) and then display the name
for the user. If the server entry name indicates the location of the print server (for example,
floor_3_room_45A_print_server), the user can find the printer.

An application can set up groups according to different factors for different purposes. For example, the
print server application can set up groups of neighboring print servers and a group of print servers for
each of the file formats. The same server is a member of at least one group of each kind. Clients require
users to specify the name of a directory service entry as a command-line argument of remote print
commands. The user specifies the name of the appropriate group.

 Chapter 7. RPC and Other DCE Components 115

Note: If a user wants a specific print server and knows the name of its server entry, the user can specify
that name to the client instead of a group.

Using Profiles: Profiles are tools for managing NSI searches (performed by
rpc_ns_binding_import_next or rpc_ns_binding_lookup_next operations). Often profiles are set up as
public profiles for the users of a particular environment, such as a directory service cell, a system, a
specific application, or an organization. For example, the administrator of the local directory service cell
should set up a cell profile for all RPC applications using the cell, and the administrator of each system in
the distributed computing environment should set up a system profile for local servers.

For each application, a directory service administrator or the owner of an application should add profile
elements to the public profiles that serve the general population, for example, a cell profile, a system
profile, or a profile of an organization. Each profile element associates a profile member (represented in
the member field of an element as the global name of a directory service entry) with an interface identifier,
access priority, and optional annotation. A candidate for membership in a cell profile is a group or another
profile, for example, a group that refers, directly or indirectly, to the servers of an application installed in
the local cell or an application-specific profile.

An application can benefit from an application-specific profile. For example, an administrator at a specific
location, such as a company’s regional headquarters, can assign priorities to profile elements based on
the proximity of servers to the headquarters, as illustrated in Figure 29. When assigning profile element
priorities, use 1 through 7 and avoid using priority 0 as the highest priority. See page 102 for a
description of why you should adhere to this convention.

Priority 7

Priority 5

Priority 3

Priority 1

Regional
Headquarters

Local City

Rest of region

Other regions

Figure 29. Priorities Assigned on Proximity of Members

An individual user can have a personalized user profile that contains elements for interfaces the user uses
regularly and a default element that specifies a public profile, such as the cell profile, as the default profile.
NSI searches use the default profile when a client needs an RPC interface that lacks an element in the
user profile.

116 Application Development Guide: Core Components

The Service Model for Defining Servers

The NSI operations accommodate two distinct models for defining servers: the service model and the
resource model. These models express different views of how clients use servers and how servers can
present themselves in the directory service database. The models are not mutually exclusive, and an
application may need to use both models to meet diverse goals. By evaluating these models before
designing an RPC application, you can make informed decisions about whether and how to use object
UUIDs, how many server entries to use per server, how to distinguish among instances of a server on a
system, whether and how to use groups or profiles or both, and so forth. The two models are the Service
model and the Resource model.

The Service model views a server exclusively as a distributed service composed of one or more
application-defined interfaces that meet a common goal independently of specific resources. The service
model is used by applications whose servers offer identical services and whose clients do not request an
RPC resource when importing an interface. Often, with the service model, all the server instances of an
application are equivalent and are viewed as interchangeable. However, the service model can
accommodate applications that view each server instance as unique. Because the implications of whether
server instances are viewed as interchangeable or unique are significant, the following subsections
address these alternatives separately.

Interchangeable Server Instances: With the service model, servers offer an identical service
that operates the same way on all host systems. For example, an application that uses the service model
is a collection of equivalent print servers that support an identical set of file formats installed on printers in
a single location. The print servers in any location can be segregated from print servers elsewhere by
using a location-specific group.

Figure 30 on page 118 shows interchangeable print servers offering an identical print service on different
hosts. To access this service, clients request the Print V1.0 interface and specify the nil object UUID. In
this illustration, the starting entry for the NSI search is a group corresponding to local print servers. A
client may be able to reach this print server group by starting from a profile or another group. To simplify
the illustrations of the usage models, the contents of server entries are represented without listing any
binding information.

 Chapter 7. RPC and Other DCE Components 117

Print V1.0 interface

Error_reports V2.0 interface

Print V1.0 interface

Error_reports V2.0 interface

Name service database

Interface ID for Print V1.0 Interface ID for Print V1.0

/.:/Bldg/Print_server_1 /.:/Bldg/Print_server_2

Exporting Exporting

/.../C=US/O=TheU/OU=MadCity/Bldg/Print_server_1

/.../C=US/O=TheU/OU=MadCity/Bldg/Print_server_2

/.:/Bldg/Printer_server_group

Print server 1 Print server 2

Search Requirements

Target interface:

Target object:

Starting entry:

Maximum number of traversed entries:

Printer V1.0

none

/.:/Bldg/Print_server_group
2

Figure 30. Service Model: Interchangeable Instances on Two Hosts

The number of entries traversed by a search operation is unrelated to the number of binding handles it
returns.

Figure 31 on page 119 shows interchangeable server instances offering an identical statistics service on
a single host. To access this service, clients request the Statistics V1.0 interface and specify the nil object
UUID. The starting entry for the NSI search is a group corresponding to local servers that offer the
service (or a profile that refers to that group).

118 Application Development Guide: Core Components

Statistics V1.0 interface
Report_writer V2.0 interface

Statistics V1.0 interface
Report_writer V2.0 interface

Name service database

Interface ID for Statistics V1.0 Interface ID for Statistics V1.0

/.:/LandS/Statistics_service_AZTEC /.:/LandS/Statistics_service_MAYA

Exporting Exporting

/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_AZTEC
/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_MAYA

/.:/LandS/Statistics_service_grp

MAYA system
Statistics-service server instance 1

MAYA system
Statistics-service server instance 2

Search Requirements

Target interface:
Target object:
Starting entry:
Maximum number of traversed entries:

Statistics V1.0
NONE

/.:/LandS/Statistics_service_grp
2

Figure 31. Service Model: Interchangeable Instances on One Host

If an application with interchangeable server instances uses the connectionless RPC protocol, the default
behavior of the endpoint map service is to always return the endpoint from the first map element for that
set of server instances. To avoid having clients using only one of the instances, before making a remote
procedure call to the server, each client must inquire for an endpoint. For a random selection, a client
calls the rpc_ep_resolve_binding() routine. Alternatively, a client can call the
rpc_mgmt_ep_elt_inq_...() routines to obtain all the map elements for compatible server instances, and
then use an application-specific selection algorithm to select one of the returned elements.

Distinct Server Instances on a Single Host: With the service model, when multiple server
instances on a given host are somehow unique, each instance must export to a separate server entry.
The exported binding information must contain one or more instance-specific well-known endpoints or an
object UUID that represents an instance (that is, an instance UUID). Well-known endpoints and instance
UUIDs are used under the following circumstances:

 � Well-known endpoints

An instance-specific, well-known endpoint must be provided to a server instance as part of its
installation, for example, as a command-line argument. Before calling the export operation, the server
instance tells the RPC runtime to use each of its well-known endpoints; it does this by calling
rpc_server_use_protseq_ep(). The runtime includes these endpoints in the instance’s binding
information, which the runtime makes available to the instance through a list of server binding handles.

 Chapter 7. RPC and Other DCE Components 119

The server instance uses this list of binding handles to export its binding information, including the
well-known endpoints. The server also uses this list of binding handles to register its well-known
endpoint with the local endpoint map; it does this by calling rpc_ep_register() or
rpc_ep_register_no_replace()). Remote calls made using an imported well-known endpoint from a
server entry are guaranteed by the RPC runtime to go only to the server instance that exported the
endpoint to that entry.

Note: Only one server instance per system can use a well-known endpoint obtained from a given
interface specification.

 � Instance UUID

Create an instance UUID only for a new server entry. Generating a new instance UUID each time a
server instance exports its bindings to a server entry will result in many instance UUIDs that are
difficult to manage. It may also affect performance as new instance UUIDs are constantly added to
server entries. If a new server instance inherits a currently unused server entry left behind by an
earlier instance, before exporting bindings, the new server instance should inquire for an instance
UUID in the server entry; this is done by calling the rpc_ns_entry_object_inq_{begin,next, done}()
routines. If the inherited entry contains an instance UUID, the server uses it for an instance UUID,
rather than creating and exporting a new instance UUID. If an inherited entry lacks an instance UUID,
the server must create a UUID and export it to the server entry. Note that every server instance must
register its instance UUID along with its endpoints in the local endpoint map.

Figure 32 on page 121 shows distinct instances of a statistics-service server on the same host. Each
server instance uses an instance UUID to identify itself to clients. The instance UUID is the only object
UUID a server instance exports to its server entry. Starting at the statistics-service group, clients import
the statistics interface.

After finding a server entry with compatible binding information for the statistics interface, the import
operation returns an instance UUID along with binding information. Every RPC made with that binding
information goes to the server instance that exported the instance UUID.

120 Application Development Guide: Core Components

Statistics V1.0 interface
Report_writer V2.0 interface

Statistics V1.0 interface
Report_writer V2.0 interface

Name service database

Interface ID for Statistics V1.0

Instance UUID for Instance 1

Interface ID for Statistics V1.0

Instance UUID for Instance 2

/.:/LandS/Statistics_service_MAYA_01 /.:/LandS/Statistics_service_MAYA_02

Exporting Exporting

/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_MAYA_01

/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_MAYA_02

/.:/LandS/Statistics_service_grp

MAYA system
Statistics-service server instance 1

MAYA system
Statistics-service server instance 2

Search Requirements

Target interface:
Target object:
Starting entry:
Maximum number of traversed entries:

Statistics V1.0
NONE

/.:/LandS/Statistics_service_grp
2

Figure 32. Service Model: Distinct Instances on One Host

The Resource Model for Defining Servers

The Resource model views servers and clients as manipulating resources. A server and its clients use
object UUIDs to identify specific resources. With the resource model, any resource an application’s
servers and clients manipulate using an object UUID is considered an RPC resource. Typically, an RPC
resource is a physical resource such as a database. An RPC resource can also be abstract, for example,
a print format such as ASCII. An application that uses the resource model for one context may use the
service model for another.

Applications in which a client requests a server to operate on a particular RPC resource use the resource
model. Each server accesses one or more resources, such as print servers or databases. Applications
use object UUIDs to refer to resources as follows:

1. Servers offer resources by assigning an object UUID to each specific resource.

2. Clients obtain those object UUIDs and use them to learn about a server that offers a given resource.
Clients that use the resource model cannot use automatic binding.

3. When making an RPCcall, a client requests a resource by passing its UUID as part of the server
binding information.

 Chapter 7. RPC and Other DCE Components 121

Each RPC resource or type of resource requires its own object UUID. A calendar server, for example,
may require a distinct UUID to identify each calendar.

RPC interfaces can be defined to operate with different types of resources and can be carried out
separately for each type, for example, a print server application that supports sixel, ASCII, and PostScript
file formats. When using different implementations of an interface (different managers), servers must
associate the object UUID of a resource, such as an ASCII file format and its manager, by assigning them
a single type UUID. To request the resource, a client specifies its object UUID in the server binding
information. When a print server receives the RPC, it looks up the corresponding type UUID and selects
the associated manager.

Choosing between Service and Resource Models: When developing an RPC application,
you need to decide whether to use object UUIDs to identify RPC resources and, if so, what sorts of
resources receive UUIDs that servers export to the namespace. When making these decisions, consider
the following questions:

� Will users need to select a server entry from the namespace based on what object UUIDs the entry
contains (and what the client needs)?

If yes, then a client must specify an object UUID to the import operation.

� Does the type of resource you are using last for a long time (months or years), so you can advertise
object UUIDs efficiently in the namespace?

The information kept in a namespace should be static or rarely change. For example, print queues
are appropriate RPC resources. In contrast, quickly changing information, such as the jobs queued for
the printer, owners of the jobs, or the time the job was added to the queue, should not be viewed as
RPC resources. Such short-lived data may be viewed as local objects, which are stored and
managed at a specific server. Programming with local objects is in the area of regular object-oriented
programming and is independent of an application’s use of RPC resources.

� Is the number of objects belonging to the type of resource bounded (to avoid placing high demands on
the directory service)? If not, use the service model.

� Will the server use an interface for different types of a resource, such as different forms of calendar
databases or different types of queues?

If yes, then the server must classify objects into types. For each type, the server generates a non-nil
UUID for the type UUID, sets the type UUID for every object of the type, and specifies that type as the
manager type when registering the interface. When making an RPC to the interface, a client must
supply an object UUID to specify an RPC resource.

� Is control over specific resources an important factor for distinguishing among server instances on a
host?

If yes, then each server must generate an object UUID for each of its resources.

For some applications, such as those accessing a database that many people use, shared access to one
or more objects may be essential. However, not all objects accommodate such shared access.
Generally, use the service model whenever possible because it facilitates a simpler client implementation.

122 Application Development Guide: Core Components

Using Objects and Groups Together: Servers can associate object UUIDs with a group. Each
server exports one or more object UUIDs (without exporting any binding information) to the directory
service entry of the group; this involves specifying the NULL interface identifier to the export operation
along with the list of object UUIDs. The object UUIDs reside in the directory service entry of the group. If
a server stops offering an advertised object, a server must unexport its object UUID from the group entry
to keep its object list up to date.

Clients use objects in a group entry as follows:

1. The client inquires for an object UUID from the group entry by calling the
rpc_ns_entry_object_inq_{begin,next,done} () routines. This routine selects one object UUID at
random and returns it to the client.

2. The client imports binding information for the returned object UUID (and the interface of the called
remote procedure), specifying the group for the start of the search.

3. The import operation returns a binding handle that refers to the requested object UUID and binding
information for a server that offers the corresponding object.

4. The client issues the RPC using that binding handle.

5. The server looks up the type of the requested object.

6. The server assigns the RPC to the manager that carries out the called remote procedure for that type
of object.

System-Specific Applications: For some applications, the clients need to import an RPC
resource that belongs to a specific system, and the clients can specify a server entry name to learn about
a server on that system. For example, a process server that allows clients to monitor and control
processes on a remote machine is useful only to that machine. Figure 33 on page 124 illustrates this
type of system-specific interpretation of the resource model.

 Chapter 7. RPC and Other DCE Components 123

Process_control V1.2 interface Process_control V1.2 interface

Name service database

Interface ID for Process_control V1.2
Object UUID for AZTEC's process-status file

Interface ID for Process_control V1.2
Object UUID for MAYA's process-status file

/.:/hosts/AZTEC/Process_control /.:hosts/MAYA/Process_control

Exporting Exporting

AZTEC system
Process-control server

MAYA system
Process-control server

Search Requirements

Target interface:
Target object:
Starting entry:
Maximum number of traversed entries:

Process_control V1.2
Process-status file of MAYA system
/.:/hosts/MAYA/Process_control

1

AZTEC's
process stats

file

MAYA's
process stats

file

Figure 33. Resource Model: A System-Specific Application

Because clients usually find a system-specific server by specifying its server entry to the import operation,
groups are usually not part of the NSI search path for system-specific applications. Groups are a
management tool for such applications. A group containing the names of the server entries of all the
current servers can act as an accounting database. Also, a group for the servers on each set of related
systems, such as the members of a LAN or an administrative grouping, permits a client to sequentially use
the application on every system in the set. An application with system-specific servers should not use
profiles.

Exporting Multiple Object UUIDs to a Single Server Entry: Often a single server offers
more than one resource or several types of resources. Where a server instance has a large number of
object UUIDs, the application should place multiple object UUIDs into a single server entry. Typically, an
application places all of its object UUIDs into one server entry. However, you may need to segregate
them into several server entries according to factors such as object type, location, or who uses the
different types of objects. When you are dividing resources, try to assign each resource to a single set so
that its object UUID is exported to only one server entry. Figure 34 on page 125 illustrates a single
server entry implementation for each server for the resource model.

124 Application Development Guide: Core Components

Calendar V1.1 interface Calendar V1.1 interface

Name service database

/.:/LandS/anthro/calendars_AZTEC /.:/LandS/anthro/calendars_MAYA

Exporting Exporting

/.../C=US/O=TheU/OU=MadCity/LandS/anthro/calendars_AZTEC
/.../C=US/O=TheU/OU=MadCity/LandS/anthro/calendars_MAYA

/.:/LandS/anthro/personal_calendars_grp

AZTEC system
Calendar server

MAYA system
Calendar server

Search Requirements
Target interface:
Target object:
Starting entry:
Maximum number of traversed entries:

Calendar V1.1
A specific personal calendar
/.:/LandS/anthro/personal_calendars_grp

3

Mac's
calendar

Dick's
calendar

Pete's
calendar

Jane's
calendar

Margy's
calendar

Molly's
calendar

Interface ID for Calendar V1.1
Object UUIDs for: Mac's calendar

Dick's calendar
Pete's calendar

Interface ID for Calendar V1.1
Object UUIDs for: Jane's calendar

Margy's calendar
Molly's calendar

Figure 34. Resource Model: A Single Server Entry for Each Server

Exporting Every Object UUID to a Separate Server Entry: For some applications,
exporting each object UUID to a separate server entry is a practical strategy. To avoid excessive
demands on directory service resources, however, this strategy requires that the set of objects remain
small. Applications with many RPC resources should have each server create a single server entry for
itself and export the object UUIDs of the resources it offers to that server entry. For example, an
application that accesses a different personal calendar for every member of an organization needs to
avoid using a separate server entry for each calendar.

For some applications, however, you can use a separate server entry for each object UUID, for example,
a print server application that supports a small number of file formats. Each server can create a separate
server entry for each supported file format and export its object UUID to that server entry. The server
entries for a file format are members of a distinct group.

To import binding information for a server that supports a required file format, a client specifies the nil
UUID as the object UUID and the group for that format as the starting entry. The import operation selects

 Chapter 7. RPC and Other DCE Components 125

a group member at random and goes to the corresponding server entry. Along with binding information,
the operation returns the server’s object UUID for the requested file format from the server entry. When
the client issues an RPC to the server, the imported object UUID correctly identifies the file format the
client needs. Figure 35 illustrates this use of object UUIDs.

.

Print V1.0 interface Print V1.0 interface

Name service database

Exporting Exporting

Print server 1 Print server 2

Search Requirements

Target interface:
Target object:
Starting entry:
Maximum number of traversed entries:

Print V1.0
ASCII file format (client specifies nil object UUID)
/.:/Bldg/ASCII_FF_group

2

ASCII
format

Postscript
format

ASCII
format

EBCDIC
format

Postscript
format

/.:/Bldg/PrintServer_1_FF/ASCII

Interface ID for Print V1.0
Object UUID for ASCII format

/.:/Bldg/PrintServer_1_FF/Post

Interface ID for Print V1.0
Object UUID for Postscript format

/.:/Bldg/PrintServer_2_FF/ASCII

Interface ID for Print V1.0
Object UUID for ASCII format

/.:/Bldg/PrintServer_2_FF/Post

Interface ID for Print V1.0
Object UUID for Postscript format

/.:/Bldg/PrintServer_2_FF/Sixel

Interface ID for Print V1.0
Object UUIDs for Sixel format

/.:/Bldg/PrintServer_1_FF_group

/.:/Bldg/PrintServer_1_FF/ASCII
/.:/Bldg/PrintServer_1_FF/Post

Figure 35. Resource Model: A Separate Server Entry for Each Object

126 Application Development Guide: Core Components

Applications that use a separate entry for each object UUID need to use groups cautiously. Keeping
groups small when clients are requesting a specific object is essential, because an NSI search looks up
the group members in random order. Therefore, the members of a group form a localized flat NSI search
path rather than the hierarchical path. Flat search paths are inefficient because the average search will
look at half the members. Small groups are not a problem. For example, if a group contains only 4
members, each referring to a server entry that advertises a distinct set of RPC resources, the average
number of server entries accessed in each search is 2 and the maximum is only 4. The larger the group,
however, the more inefficient the resulting search path. For example, for a group containing 12 members,
each referring to a server entry that advertises a distinct set of object UUIDs, the average search
accesses 6 entries, and some searches access all 12 server entries.

Some RPC resources belong exclusively to a single server instance, for example, print queues. Some
resources can be shared among server instances, for example, a file format or an airline-reservation
database. For server instances on the same system, sharing a resource means that the object UUID
cannot be used to distinguish between the two instances. For a print server, this is unlikely to be a
problem, assuming that each printer runs only one instance of the print server. In contrast, an application
with a widely accessed database, such as an airline reservation application, may need to ensure that
clients can distinguish server instances from each other. An application can distinguish itself by supplying
its clients with instance-specific information, for example, a well-known endpoint or an instance UUID.

Note: Multiple server instances that access the same set of resources can introduce concurrency control
problems, such as two instances accessing a tape drive at the same time. Where the system
provides concurrency control, servers may compete and have to wait for resources such as
databases. Dealing with delayed access to shared resources may require an application-specific
mechanism, such as queuing access requests.

 Chapter 7. RPC and Other DCE Components 127

128 Application Development Guide: Core Components

Chapter 8. DCE Data Representation Support Considerations

The prime function of DCE is to provide interoperability and access to data across heterogeneous
systems. Naturally there are wide variations in the way data is represented on these systems. The
challenge for a heterogeneous computing environment is to solve the variations between code pages and
numeric representations among these systems.

A code page is the hexadecimal encoding of all available glyphs, and a glyph is the printed appearance of
a character. Each code page is intended to serve one linguistic environment. z/OS systems use many
Extended Binary Coded Decimal Interchange Code (EBCDIC) code pages. AIX and UNIX-based systems
typically use American National Standard Code for Information Interchange (ASCII) code pages.

For numeric data, System 370 machines use the System 370 format to represent floating point and integer
data.

The DCE Model

The DCE model deals with the above problem of multiple code pages by making the z/OS machine
appear to be like an ASCII machine to the rest of the DCE network. That is, it ensures that all outgoing
character data is converted from the local code page to ASCII code page ISO8859-1 (IBM code page 819)
on the wire. Conversely, it ensures that all incoming character data is converted from ASCII ISO8859-1
(on the wire) to the local code page on the z/OS machine.

For numeric data, the outgoing data is sent as is on the wire. The receiver of the numeric data converts
this incoming numeric data to the local representation.

See Figure 36 on page 130 for the DCE model.

 Copyright IBM Corp. 1994, 2001 129

D locale
C locale

B locale

Code
Set

Locale
Definition

Localedef

A locale

DCE Client Application

main()
{

main()

DCE RPC Runtime DCE RPC Runtime

DCE Server Application

Converts character
data from/to local code
page to/from ISO
8859/1 on-the-wire.

Converts character
data from/to local code
page to/from ISO
8859/1 on-the-wire.

Network Code Page Is ISO 8859/1
(IBM 819)

Creating a Locale

.

.

setlocale(category, *locale);

/* Establish Client's Code Page */

.

.

my_rpc();

.

.

return(0);

}

{

.

.

setlocale(category, *locale);

/* Establish Server's Code Page */

.

.

my_op();

.

.

return(0);

}

Numeric data is sent "as is".
Receiver converts to the

local representation.

Figure 36. The DCE Model for Handling Multiple Code Pages

Data Type Considerations for Users

When developing DCE applications, you must consider the following data types:

 � Floating-point data
 � Integer data
� Single-byte character data
� Double-byte character data.

These are discussed in the following sections.

130 Application Development Guide: Core Components

 Floating-Point Data

There are several data representation formats for floating single-precision and double-precision
floating-point, such as:

� IEEE single and double floating-point

� VAX F_floating and G_floating formats

� Cray floating-point format

� IBM long and short formats.

If data formats are different, DCE RPC automatically converts the data at the receiver’s end
(receiver-makes-right) so that the arguments passed to the remote procedure, and the results returned to
the caller are interpreted correctly. This conversion is done using the Network Data Representation
(NDR) protocol that defines how the structured values supplied in a call to a remote interface are encoded
into byte stream format for transmission on the wire. z/OS DCE always converts floating point data
received from the network to IBM long and short format for the local z/OS system.

 Integer Data

Integer data can have four sizes:

small 8-bit integer (1 byte)

short 16-bit integer (2 bytes)

long 32-bit integer (3 bytes)

hyper 64-bit integer (4 bytes)

The NDR protocol represents signed integers in two’s complement notation, and unsigned integers as
unsigned binary numbers. The byte sequence of integer data is represented in two ways:

big-endian format Consecutive bytes of the byte stream representation are ordered from the most
significant byte to the least significant byte.

little-endian format Consecutive bytes of the byte stream representation are ordered from the least
significant byte to the most significant byte.

If the ordering of bytes is different between machines, DCE RPC automatically converts the data at the
receiver’s end (receiver-makes-right) to the local system representation.

Of the above data types, you must pay particular attention to both single-byte and double-byte character
data.

 Character Data

To maintain interoperability with other DCE implementations, all outgoing character data is converted to
the ASCII code page, ISO8859/1, for transmission on the wire while all incoming character data is
converted to the local code page that you select using setlocale(). The RPC runtime automatically
converts parameters marked as char to the code page associated with the current locale. “Establishing a
Current Locale” on page 137 describes the process for establishing a code page in your application using
setlocale(). A detailed explanation of the process is provided in the z/OS C/C++ Programming Guide,
SC09-4765.

 Chapter 8. DCE Data Representation Support Considerations 131

Notes:

1. When you define an IDL data type to char, make sure you put only single-byte character data in that
data type.

2. If you have a structure which contains mixed data, for example, a structure containing integer, binary
and character fields, and you define the structure data type as character, RPC converts the whole
structure. This is clearly not the intention of the user and will typically result in a user error.

There are three levels of character data that you should consider in your DCE applications:

� EBCDIC variant characters
� POSIX Portable Character Set (PPCS) characters
� SAA Latin-1 characters outside the PPCS.

Figure 37 represents the universe of SAA Latin-1 characters. Within that universe is a subset of 95
characters that are defined in the PPCS. Within the PPCS there is a further subset of 13 variant
characters whose hexadecimal representations vary across IBM EBCDIC systems.

Ä

ä

µ

W
Å

¿

ñ

ç

å

ê ô

û

Æ

æ

ý
ø

ë

Ø

Ü

&

b

0

8

X %,
*S

>

(K

A
+

q

H

= 2) <

$

]|

~ #

\

{ @

‘

!

} [

^

EBCDIC Variant Characters
(Internationalized Applications)

POSIX Portable Character Set
(DCE Data and Application Data)

SAA Latin-1 Characters
(Application Data only)

¤

¥

§ ¶

Þ

ß

ð
þ

Ð

Figure 37. How SAA Latin-1 Characters are Used in DCE

EBCDIC Variant Characters: There are thirteen characters whose hexadecimal representations
vary across IBM’s EBCDIC code pages. Table 5 lists these thirteen SAA variant characters.

Table 5 (Page 1 of 2). SAA Variant
Characters

Variant Character Symbol

backslash \

right brace }

left brace {

132 Application Development Guide: Core Components

You may have a variant character problem if you have data stored in a different code set than the code
set that your application is running, and the data contains EBCDIC variant characters. If you do not
perform any conversions, the variant character data that is stored will not display properly at a terminal.
Similarly, if you update the data to a file, the data will get stored in the code set of your process, and the
file data may become erroneous. To avoid this problem, you need to be aware of the code set of both
your process and the file you are updating. The solution is to perform the proper code page conversions
to normalize the data while reading it from the external medium to the application’s code page. There is
no such problem if your application process and data code page are identical. This code page conversion
issue is purely a local system issue.

Consider Figure 38 where a user updates and reads data from a terminal using a database program.

User Process

IBM Code Page
1047

IBM Code Page
1047

IBM Code Page
280

display

read

Figure 38. Code Page Conversions

In this scenario, the user must ensure that all the incoming or outgoing data is in EBCDIC code page
1047. If the user is retrieving data from a database that contains data of a different code page, say
EBCDIC code page 280, the data is displayed incorrectly at the terminal if variant characters are used. To

Table 5 (Page 2 of 2). SAA Variant
Characters

Variant Character Symbol

right bracket]

left bracket [

circumflex ^

tilde ˜

exclamation mark !

number sign #

vertical bar |

dollar sign $

commercial at @

grave accent `

 Chapter 8. DCE Data Representation Support Considerations 133

illustrate this problem, Table 6 on page 134 shows how some variant characters are represented in code
page 1047 and code page 280.

Table 6. Variant Characters — Code Point Representation

Character EBCDIC Code Page 1047
Codepoint

EBCDIC Code Page 280
Codepoint

Left bracket ([) X'AD' X'90'

Right bracket (]) X'BD' X'51'

If incoming data is in code page 280, the left and right square brackets will be erroneously displayed as Ý
(Y acute) and ¨ (umlaut) unless the database application is internationalized, or the terminal is set up to
handle code page 280.

Eliminating the EBCDIC Character Variation Problem: The EBCDIC variant character
issue is resolved by using the setlocale() and LC_SYNTAX facilities of z/OS C/C++.

DCE internally uses the LC_SYNTAX solution provided by the z/OS C/C++ product. If your application has
a sensitivity to any of the variant characters, and you expect to run it in multiple code pages, use the
LC_SYNTAX capability of z/OS C/C++. See the z/OS C/C++ Programming Guide, SC09-4765 on this
solution. To enable your DCE application for national language support, use setlocale() as shown in
“Internationalization Considerations for DCE Applications” on page 136. If you are working with a single
EBCDIC code page in your distributed environment in addition to ASCII, you do not have to address
EBCDIC variant characters in your DCE applications.

See the z/OS C/C++ documentation for additional guidelines on writing code page independent code and
how to write code that will be exported, that is, how to write code that will be run in a locale that uses a
different code page than that used to initially develop the source. This information applies to DCE
applications that are run on z/OS.

POSIX Portable Character Set: To avoid any network interoperability problems with your DCE
applications whose client or server portion can run on other DCE platforms, you should restrict the data
used by DCE daemons to the PPCS. The PPCS is defined by the POSIX 1003.2 standard. Data used by
DCE typically includes data that is exported to the CDS namespace and stored in the Security Registry.
This restriction does not apply to data used by your application; that is, data passed between your client
and server. For example, if you use the German Ü (U umlaut) character in a CDS name or in a DCE
principal name, your applications will fail. There is no assurance that the platform where the DCE
daemons run can handle the non-PPCS characters; however, this does not mean that data exchanged
between your client and server application cannot contain the U umlaut or other non-PPCS characters.
Table 24 on page 537 lists the characters in the POSIX Portable Character Set, with their symbolic name
and the graphic symbol for the character. Some of the characters, such as the hyphen, also have
alternate symbolic names.

Non-POSIX Portable Character Set Data: You can use characters outside the PPCS for your
application data only. You should not use characters outside the PPCS for data used by DCE daemons
or your DCE applications may fail due to interoperability problems. Note that there is no validation or
checking performed on this data, so you must ensure that data passed to the DCE daemons
(non-application data) are within the PPCS.

134 Application Development Guide: Core Components

z/OS DCE Supported Code Pages: With z/OS DCE, you can run your DCE applications using
the code pages listed in 7.

Table 7 (Page 1 of 2). Locales supported by z/OS DCE

Locale Name as
setlocale() argument

Language Country Code Page

Da_DK.IBM-277 Danish Denmark IBM-277

Da_DK.IBM-1047 Danish Denmark IBM-1047

De_CH.IBM-500 German Switzerland IBM-500

De_CH.IBM-1047 German Switzerland IBM-1047

De_DE.IBM-273 German Germany IBM-273

De_DE.IBM-1047 German Germany IBM-1047

En_GB.IBM-285 English United Kingdom IBM-285

En_GB.IBM-1047 English United Kingdom IBM-1047

En_JP.IBM-1027 English Japan IBM-1027

En_US.IBM-037 English United States IBM-037

En_US.IBM-1047 English United States IBM-1047

Es_ES.IBM-284 Spanish Spain IBM-284

Es_ES.IBM-1047 Spanish Spain IBM-1047

Fi_FI.IBM-278 Finnish Finland IBM-278

Fi_FI.IBM-1047 Finnish Finland IBM-1047

Fr_BE.IBM-500 French Belgium IBM-500

Fr_BE.IBM-1047 French Belgium IBM-1047

Fr_CA.IBM-037 French Canada IBM-037

Fr_CA.IBM-1047 French Canada IBM-1047

Fr_CH.IBM-500 French Switzerland IBM-500

Fr_CH.IBM-1047 French Switzerland IBM-1047

Fr_FR.IBM-297 French France IBM-297

Fr_FR.IBM-1047 French France IBM-1047

Is_IS.IBM-871 Iceland Iceland IBM-871

Is_IS.IBM-1047 Iceland Iceland IBM-1047

It_IT.IBM-280 Italian Italy IBM-280

It_IT.IBM-1047 Italian Italy IBM-1047

Ja_JP.IBM-939 Japanese Japan IBM-939

Ja_JP.IBM-1027 Japanese Japan IBM-1027

Nl_BE.IBM-500 Dutch Belgium IBM-500

Nl_BE.IBM-1047 Dutch Belgium IBM-1047

Nl_NL.IBM-037 Dutch Netherlands IBM-037

Nl_NL.IBM-1047 Dutch Netherlands IBM-1047

No_NO.IBM-277 Norwegian Norway IBM-277

No_NO.IBM-1047 Norwegian Norway IBM-1047

 Chapter 8. DCE Data Representation Support Considerations 135

Double-Byte Character Data

Your DCE applications may need to exchange Double-Byte Character Set (DBCS) data between the client
and server. For example, your application may need to exchange data using an international character
set such as Kanji. To handle double-byte character data, such as Kanji, use the byte attribute in the IDL
file to declare the data type. Declaring data as byte prevents any data format conversion by the DCE
RPC mechanism.

Since DBCS data is exchanged as a byte string, you have to correctly convert this data to your local code
page when receiving data, and conversely, convert this data to the remote code page when transmitting it.
This requires that you know the code page used on both your remote and local machine to properly make
the conversions. z/OS DCE does not perform this conversion for data declared as byte.

For more information on using the byte attribute, see “The byte Type” on page 239.

Internationalization Considerations for DCE Applications

Internationalization for DCE applications require that you consider all code page, translation, and data
format issues when designing your application. Methods that help you internationalize your applications
include using the setlocale() and iconv() routines.

Localization and Code Page Conversions: A locale is the definition of a user’s environment
that is dependent on language and cultural conventions. Locales are defined by POSIX standards. A
locale consists of several categories that group information pertaining to an aspect of the language and
cultural specific data. An example is LC_TIME, which specifies culturally specific rules regarding date and
time. The following example shows how the sixth day of the ninth month of the year 1990 is represented
in United States (US) and United Kingdom (UK) date formats:

Country Date Format

United States 9/6/1990 (M/D/Y)

United Kingdom 6/9/1990 (D/M/Y)

Typically, a locale is made up of eight categories as follows:

Category Purpose

LC_COLLATE Affects the behavior of the strcoll() and strxfrm() C functions.

LC_CTYPE Affects the behavior of the character handling functions.

LC_MESSAGES Defines the format and values for positive and negative responses.

LC_MONETARY Affects monetary information returned by the localeconv() C function.

Table 7 (Page 2 of 2). Locales supported by z/OS DCE

Locale Name as
setlocale() argument

Language Country Code Page

Pt_PT.IBM-037 Portuguese Portugal IBM-037

Pt_PT.IBM-1047 Portuguese Portugal IBM-1047

Sv_SE.IBM-278 Swedish Sweden IBM-278

Sv_SE.IBM-1047 Swedish Sweden IBM-1047

136 Application Development Guide: Core Components

LC_NUMERIC Affects the decimal point character for the formatted input/output and string
conversion functions, and the nonmonetary formatting information returned by the
localeconv() C function.

LC_SYNTAX Defines the variant characters from the Portable Character Set.

LC_TIME Affects the behavior of the strftime() C function.

LC_TOD Defines the rules used to define the beginning, end, and duration of daylight savings
time, and the difference between local time and Greenwich Mean Time (GMT).

For related information on creating your own locales, supported categories and locale source file
commands, see z/OS C/C++ Programming Guide, SC09-4765.

A large number of locales are shipped with the z/OS C/C++ product and are stored in local databases. To
refer to a locale, you use a string format. Each locale has a code page associated with it at creation time.
This code page is also part of the string name used to refer to the locale.

The generalized format of a string representing a locale is as follows:

language[_territory][.code page][@modifier]

The following example shows a Danish locale with language set to Da for Danish, the optional territory set
to DK for Denmark, and the optional code page set to IBM-1047.

Da_DK.IBM-1047

Each DCE process or application has an associated current locale. For each category in the current
locale, a different locale may be referenced, or a single locale may be referenced for all of the categories.

Establishing a Current Locale: The z/OS model follows the POSIX/XPG model of using
environment variables and locales. In the POSIX model, the code page is associated with the locale
identified by the LANG environment variable. Your program adopts the desired code page using the
setlocale(LC_ALL, "") function call. Refer to z/OS C/C++ Run-Time Library Reference, SA22-7821, for a
definition of locales. Note that you should establish your locale prior to running any DCE APIs, otherwise
your application runs in the default locale for your system. Figure 36 on page 130 shows how locales are
established in DCE applications and the conversions performed from the network code page to the
application code page at runtime.

If you want to use a locale other than the system's locale in your DCE client or server application, you
must establish that locale by using setlocale() prior to calling any DCE API. The setlocale() function is
not supported for multiple POSIX threads. Since DCE uses multiple POSIX threading, you should run
setlocale() prior to any DCE API in your application. All threads in the process run in the same locale.
Since setlocale() is process sensitive and not thread sensitive, all threads in the process run in the same
locale.

The POSIX definition states that if the setlocale() function is not called, the default current locale will be
the C or POSIX locale. The default current locale is usually set on a system by the DCE Administrator
through environment variables representing each locale category. If you want to change the current locale
used in your program, use the ANSI C setlocale() function, by declaring it as follows:

char $ setlocale(int category, const char $ locale);

Use the setlocale() function to adopt to the user’s environment as follows:

 Chapter 8. DCE Data Representation Support Considerations 137

/$ Set all categories based on the environment variable $/
/$ settings for the process $/

 setlocale(LC_ALL, "");

This sets all the locale categories for your application to the current locale categories for your system. To
establish a specific locale for your application, use the following call:

 setlocale(LC_ALL, locale);

For example, to establish the supplied locale for the French language in Canada with code page IBM-037,
use the following call:

 setlocale(LC_ALL, Fr_CA.IBM-037);

This establishes Fr_CA as the current locale. The code page used with this locale is IBM-037. This code
page was established and defined in the charmap file that was used to define this supplied locale.

You can also select a locale by using environment variables to specify the names of locale categories.
Specifying the environment variables at run time has the same effect as issuing the setlocale() function
for a category. For example, the following call initializes the environment variable LANG to
Da_DK.IBM-1047:

setenv("LANG", "Da_DK.IBM-1047", 1);

The names of the environment variables that you can set match the names of the locale categories. For
more information on setting the locale environment categories using environment variables, see z/OS
C/C++ Run-Time Library Reference, SA22-7821. For more information on the LANG environment
variable, see the section that discusses NLS Considerations in z/OS DCE Messages and Codes.

Note: Once a current locale has been established, you must ensure that all of the character data that is
input to your application is in the same code page of that application. If differences in code pages
exist, problems may result if variant characters are used in character data. See Figure 38 on
page 133.

Distributed locale Considerations: With DCE applications, servers may service clients that are
running with different locales at the same time. But the server can run in one locale at a time. Depending
on how sensitive your server program is to locale dependent items such as sorting, displaying of currency,
and so on, you may need to add additional code to your client to fully internationalize your DCE
application. To minimize locale sensitive problems, you should run all DCE applications on the local
system in the same locale wherever possible.

As previously illustrated, you should not run in multiple code pages on the local system or you may
experience a problem handling variant characters. Requests from remote systems are handled for you by
normalization of code pages to ISO8859-1 on the wire.

Code Page Considerations

138 Application Development Guide: Core Components

Homogeneous Code Page Considerations

If your environment includes multiple z/OS machines that are all running in the same code page, and you
want to use a single copy of your application’s object code, the situation is simple. You can use the
default code page for UNIX System Services, IBM-1047 or any of the supported code pages listed in
Table 7 on page 135, provided you compile your application in the same code page as it will be run, and
observe the guidelines for character data presented above.

Heterogeneous Code Page Considerations

If your environment includes multiple z/OS machines, each running in a different code page, and you want
to use one copy of your application’s object code, you must fully enable your application for National
Language Support.

 DCE-specific Considerations

Following are additional considerations in the areas of:

� Code Page Restrictions
� Client Application Data Considerations

 � CDS Clerk.

Code Page Restrictions

With z/OS DCE code page support, you can utilize your national code page in your DCE applications, but
you need to observe the following restrictions:

� On a given UNIX System Services host system running z/OS DCE, you should use one code page for
all DCE applications running on that system. The only exception is a DCE application that uses
well-known endpoints and does not use DCE CDS or DCE Security data.

� You should only transmit multiple byte character set data such as Kanji as-is; that is, declare them as
byte. Network to local host system code page conversions do not support Kanji or other multiple byte
character sets.

� uuidgen must be run in code page IBM-1047.

� IDL and ACF files used with z/OS DCE must be coded in code page IBM-1047. If you port your IDL
file from another platform, ensure that it is converted to code page IBM-1047. Note that the output
files from the z/OS DCE IDL compiler (header files, client and server stub files) will also be in code
page IBM-1047.

� The envar file, which contains settings for z/OS DCE environment variables, must be maintained in
the IBM-1047 code page.

� dcecp scripts, which can contain commonly used DCE administration routines, must be in IBM-1047
code page when used. If you port a script file from another platform, be sure that it is converted to
code page IBM-1047.

� The cds_attributes, cds_globalnames, and xoischema files, all of which contain information related
to CDS, must be maintained in code page IBM-1047.

� When running a control program in interactive mode, the subcommands and arguments entered must
be in the local code page. This also applies when running the control program command in batch.

To see the hexadecimal representation of the characters in each code page, refer to Appendix B, “IBM
Code Pages” on page 541.

 Chapter 8. DCE Data Representation Support Considerations 139

Client Application Data Considerations

To ensure interoperability with other DCE implementations, client applications should restrict themselves to
using character data that belongs to the Portable Character Set (PCS) as defined by POSIX. Only
single-byte data should be used, that is; your applications should not use DBCS data when interacting with
DCE. Double-byte user data is tolerated within DCE when defined as a transparent byte stream.

All source code for the z/OS C/C++ compiler (including the generated DCE stubs) and user data passed in
RPC calls should be stored using the same user-selected code page.

CDS Clerk: For z/OS DCE, there is only one CDS clerk to service all of the client application requests.
The clients connect with the clerk through local sockets. The CDS clerk daemon process which runs in
the system locale is usually started by the DCE Administrator. If your applications use EBCDIC variant
characters, they must run in the same code page as the CDS clerk process on the local system. If a
mismatch occurs, client applications may have problems with EBCDIC variant characters, and this can
happen even within the PPCS.

To understand this restriction, refer to Figure 39.

Local Cell

CDS Clerk

IBM Code Page
037 IBM Code Page

819

CDS Server

DCE client
process

DCE client
process

IBM Code Page
037

IBM Code Page
037

ASCII Code Page
ISO 8859/1

(Network Code Page)

Sockets
Connection

Sockets
Connection

Figure 39. Restriction on DCE Client Code Set

When character data is passed between the client and the clerk through the local socket interface, it is
passed transparently. No data conversions are performed. Therefore, your client application and the clerk
must have the same code page. Because the clerk has the code page of the system associated with it,
your client must match this code set. This is a common limitation with interprocess communication on the
local system. Note that the DCE Administrator typically sets the CDS Clerk locale. See z/OS DCE
Administration Guide for the procedure to set the Clerk’s locale.

140 Application Development Guide: Core Components

For information on how ASCII and EBCDIC interoperability is achieved and how CDS data is stored in
z/OS DCE, refer to z/OS DCE Administration Guide.

 Chapter 8. DCE Data Representation Support Considerations 141

142 Application Development Guide: Core Components

Chapter 9. Writing Internationalized RPC Applications

An "internationalized" DCE RPC application is one that

� Uses the operating system platform's locale definition functions to establish language-specific and
culture-specific conventions for the user and programming environment.

� Uses DCE RPC-provided or user-defined character and code set evaluation and automatic conversion
features to ensure character and code set interoperability during the transfer of international characters
in remote procedure calls between RPC clients and servers.

A “locale” defines the subset of a user's environment that depends upon language and cultural
conventions. A locale consists of categories; each category controls specific aspects of some operating
system components' behaviors. Categories exist for character classification and case conversion, collation
order, date and time formats, numeric non-monetary formatting, monetary formatting, and formats of
informative and diagnostic messages and interactive responses. The locale also determines the character
sets and code sets used in the environment. The syntax and use of a locale definition function depends
on the operating system platform in use with DCE. See the z/OS C/C++ Programming Guide for a
description of the system's locale definition functions and locale categories.

The remainder of this chapter describes the DCE RPC features for character and code set interoperability
in remote procedure calls that are available to programmers who are developing internationalized DCE
RPC applications. The first section describes the concepts of character sets, code sets and code set
conversion and explains the default character and code set conversion mechanism that the RPC runtime
protocol supports for remote procedure calls. The remaining sections describe the execution of a remote
procedure call when it uses the DCE RPC features for character and code set interoperability, and explain
how to build an RPC application that uses these features.

Note: In order to use the internationalization support, z/OS DCE clients and servers must support a code
set interface that is at least version 2.0. The code sets interface version is located in codesets.idl in the
/usr/lpp/dce/share/include/dce directory.

Character Sets, Code Sets, and Code Set Conversion
A “character set” is a group of characters, such as the Latin-1 alphabet, Japanese Kanji, or the European
character set. To enable world-wide connectivity, DCE guarantees that a minimum group of characters is
supported in DCE. The DCE RPC communications protocol ensures this guarantee by requiring that all
DCE RPC clients and servers support the DCE Portable Character Set (PCS). The IDL base type
specifiers char and idl_char identify DCE PCS characters.

A “code set” is a mapping of the members of a character set to specific numeric code values. Examples
of code sets include ASCII, JIS X0208 (Japanese Kanji), and ISO 8859-1 (Latin 1). The same character
set can be encoded in different code sets; consequently, DCE can contain RPC clients and servers that
use the same character set but represent that character set in different numeric encodings. “Code set
conversion” is the ability for a DCE RPC client or server to convert character data between different code
sets.

The OSF DCE RPC communications protocol, through the Network Data Representation (NDR) transfer
syntax, provides automatic code set conversion for DCE PCS characters encoded in two code sets: ASCII
and EBCDIC. The RPC communications protocol automatically converts character data declared as char
or idl_char between ASCII and EBCDIC encodings, as necessary, for all DCE RPC clients and servers.
Remember that z/OS always converts char or idl_char data to ISO8859-1 (ASCII) before sending it over
the network.

 Copyright IBM Corp. 1994, 2001 143

The DCE RPC communications protocol does not provide support for the recognition of characters outside
of the DCE PCS, nor does it provide automatic conversion for characters encoded in code sets other than
ASCII and EBCDIC.

However, DCE RPC does provide IDL constructs and RPC runtime routines that programmers can use to
write RPC applications that exchange non-PCS, or “international” character data that is encoded in code
sets other than ASCII and EBCDIC. These features provide mechanisms for international character and
code set evaluation and automatic code set conversion between RPC clients and servers. Using these
features, programmers can design their applications to run in a DCE environment that supports multiple
heterogeneous character sets and code sets.

The next section describes the remote procedure call execution model when the DCE RPC features for
character and code set interoperability are used.

Remote Procedure Call with Character/Code Set Interoperability

Table 2 on page 40 illustrates the basic tasks of an RPC application. Table 8 shows these basic tasks
integrated with the additional tasks required to implement an RPC that provides character and code set
interoperability.

Table 8 (Page 1 of 2). Tasks of an Internationalized RPC Application

Client Tasks Server Tasks

 1. Set locale
2. Select network protocols
3. Register RPC interfaces
4. Advertise RPC interfaces and objects in the

namespace
5. Get supported code sets and register them in the

namespace
6. Listen for calls

 7. Set locale
8. Establish character and code sets evaluation

routine
9. Find compatible servers that offer the procedures

10. Call the remote procedure
11. Establish a binding relationship with the server
12. Get code set tags from binding handle
13. Calculate buffer size for possible conversion of

input arguments from local to network code set
14. Convert input arguments from local to network

code set (if necessary)
15. Marshall input arguments
16. Transmit arguments to the server's runtime

17. Receive call
18. Get code set tags sent from client
19. Calculate buffer size for possible conversion of input

arguments from network to local code set
20. Unmarshall input arguments
21. Convert input arguments from network to local code

set (if necessary)
22. Locate and invoke the called procedure
23. Execute the remote procedure
24. Calculate buffer size for possible conversion of

output arguments from local to network code set

144 Application Development Guide: Core Components

Table 8 (Page 2 of 2). Tasks of an Internationalized RPC Application

Client Tasks Server Tasks

25. Convert output arguments from local to network code
set (if necessary)

26. Marshall output arguments and return value
27. Transmit results to the client's runtime
28. Remove code set information from namespace on

exit
29. Receive results
30. Calculate buffer size for possible conversion of

output arguments from network to local code set
31. Unmarshall output arguments
32. Convert output arguments from network to local

code set (if necessary)
33. Pass to the calling code the results and return

control to it

Following is a list that describes, in more detail, the additional tasks required to implement an
“internationalized” RPC application.

1. Both client and server invoke a platform-dependent function to set their locale during initialization.
This step establishes the client's and the server's local character and code set; that is, the character
and code set currently in use by processes on the client host and processes on the server host.

2. The server, as part of its initialization phase, calls a DCE RPC routine that retrieves information about
code sets support on the server's host. The RPC routine examines the host's locale environment and
its code set registry to determine the host's “supported code sets”; that is, code sets for which
conversion routines exist that processes on the host can use to convert between code sets, if
necessary.

The code set registry is a per-host file that contains mappings between string names for the supported
code sets and their unique identifiers. OSF assigns the unique identifiers for the code sets. DCE
licensees assign their platform string names for the code sets. The DCE RPC routines for character
set and code set interoperability depend upon a code set registry existing on each DCE host. For
more information about the code set registry, see the z/OS DCE Administration Guide.

The routine returns a list of the supported code sets to the server; the list consists of each code set's
unique identifier.

3. The server next calls a new RPC NSI routine to register the supported code sets information in the
name service database. Recall that a server can use the NSI to store its “binding information”
(information about its interfaces, objects, and addresses) into its own namespace entry, called a
“server entry.” The new RPC NSI routine adds the supported code sets information as an attribute that
is associated with the server entry, which the server created when it used the NSI export operation to
export its binding information into the name service database. Placing the code sets information into
the name service database gives RPC clients access to this information.

4. Before it calls the RPC NSI routines that locate a server that offers the desired remote procedure, the
client calls a new RPC routine that sets up a character and code sets compatibility evaluation routine.

5. The client calls RPC NSI routines to locate a compatible server. The RPC NSI routines invoke the
character and code sets compatibility evaluation routine set up by the client to evaluate potential
compatible servers for character and code set compatibility with the client.

6. The evaluation routine imports the server's supported code sets information from the name service
database, retrieves the client's supported code sets information from the client host, and compares the
two. If the client and the server are using the same local code set, no code set conversion is
necessary, and no data loss will result.

 Chapter 9. Writing Internationalized RPC Applications 145

If client and server are using different local code sets, then it is possible that the server is using a
different character set than the client. The client does not want to bind to a server that is using a
different character set, since significant data loss would result during character data conversion.
Consequently, the evaluation routine uses the server's code set information to determine its supported
character sets, and rejects servers using incompatible character sets. For example, if a client is using
the Japanese Kanji character set (such as JIS0208), the evaluation routine rejects a server that offers
the desired remote procedure but which is using the Korean character set (such as KS C 5601).

If the client and server are character set compatible, and they support a common code set into which
one or the other (or both) can convert, the evaluation routine deems the server to be compatible with
the client. The NSI import routines return this server's binding information to the client.

7. The client makes the remote procedure call.

8. A client stub is called, with the character data represented in the local form and in the local code set.

9. Before marshalling the input arguments, the client stub calls a new stub support routine that retrieves
code set identifying information that the evaluation routine established in the binding handle.

10. The client stub next calls a new stub support routine that determines, based on the code set
identifying information, whether the character data needs to be converted to another code set, and if
so, whether the buffer that currently holds the character data in the local form and code set is large
enough to hold the data once it is converted. If the routine determines that conversion is necessary
and a new buffer is required, it calculates the size of that buffer and returns the value to the client
stub.

11. The client stub next calls a new stub support routine that converts, based on the code set identifying
information, the character data from the local code set to the appropriate code set to be used to
transmit the data over the network to the server (called the “network code set”).

12. The client stub then marshalls the input arguments and transmits them to the server runtime along
with code set identifying information.

13. The server stub is called, with the character data represented in the network form (which is always
idl_byte) and in the network code set.

14. The server stub calls a new stub support routine that determines, based on the code set identifying
information passed in the client call, whether the character data needs to be converted from the
network code set to the server's local code set, and if so, whether the buffer that currently holds the
character data in the network format and code set is large enough to hold the data once it is
converted. If the routine determines that conversion is necessary and a new buffer is required, it
calculates the size of that buffer and returns the value to the server stub.

15. The server stub next unmarshalls the input arguments.

16. The server stub next calls a new stub support routine that converts, based on the code set identifying
information, the character data from the code set used on the network to the server's local code set.

17. The server stub invokes the manager routine to execute the remote procedure.

18. Before marshalling the results of the remote procedure (the output arguments and return values), the
server calls a new stub support routine to determine whether conversion from the server's local code
set is necessary, based on the code set identifying information it received from the client, and whether
or not the buffer currently holding the character data is large enough to accommodate the converted
data. If a new buffer is required, the stub support routine calculates the size of this new buffer and
returns it to the server stub.

19. The server stub next calls a new stub support routine that converts, based on the code set identifying
information from the client, the character data from the server's local code set to the network code set.

20. The server stub marshalls the converted output arguments and transmits them to the client runtime
along with code set identifying information.

146 Application Development Guide: Core Components

21. The server initialization procedure also contains a call to a new RPC routine that removes the code
set information from server entry in the name service database if the server exits or is terminated.

22. The client stub is called, with the character data in network format and code set.

23. The client stub calls a new stub support routine that determines, based on the code set identifying
information passed by the server, whether the character data needs to be converted from the network
code set to the client's local code set, and if so, whether the buffer that currently holds the character
data in the network format and code set is large enough to hold the data once it is converted. If the
routine determines that conversion is necessary and a new buffer is required, it calculates the size of
that buffer and returns the value to the client stub.

24. The client stub next unmarshalls the output arguments.

25. The client stub next calls a new stub support routine that converts, based on the code set identifying
information, the character data from the code set used on the network to the client's local code set.

26. The client stub passes the data to the client in the local format and code set.

Note that the stub conversion routines do not implement code set conversion. Instead, they call
POSIX-compliant iconv code set conversion routines, which are part of the local operating system. As a
result, if the platform to which DCE is ported does not provide these POSIX conversion routines, DCE
applications that run on this platform cannot use the DCE RPC character and code set interoperability
features.

Building an Application for Character and Code Set Interoperability
An application programmer who wishes to design his or her RPC application for character and code set
interoperability performs the following steps:

1. Writes the interface definition file (.idl) to include constructs that will enable automatic code set
conversion during remote procedure execution

2. Writes an associated attribute configuration file (.acf) for the interface that includes ACF attributes that
will enable automatic code set conversion during remote procedure execution

3. Writes the stub support routines that client and server stubs use to carry out automatic code set
conversion during a remote procedure call. You can omit this step if you use the stub support routines
supplied with DCE.

4. Writes the server code and includes the steps to get the server's supported code sets and export them
to the name service database, and to remove them from the name service database upon termination
or exit.

5. Writes the client code and includes the steps to set up the character and code set evaluation
mechanism.

6. Writes the character and code set compatibility evaluation routine. You can omit this step if you use
one of the evaluation routines supplied with DCE.

Note that building an RPC application for character and code set interoperability imposes some restrictions
on the application. For example, an application that uses the RPC character and code set interoperability
features cannot use customized binding handles. See “The cs_char Attribute” on page 298 for more
details on internationalized RPC application restrictions.

The next sections describe the steps just outlined in more detail.

 Chapter 9. Writing Internationalized RPC Applications 147

Writing the Interface Definition File
The interface definition file is where the set of remote operations that constitute the interface are defined.
The first step in writing an interface definition file that supports automatic code set conversion is to create
a special typedef that, when used in operation parameters, represents international character data that
can be automatically converted, if necessary, before marshalling and unmarshalling at client and server
sites. As described in “The byte Type” on page 239, the data representation for a byte data type is
guaranteed not to change when the data is transmitted by the RPC communications protocol.
Consequently, the special international character data type defined in the .idl is always declared to be a
byte type so that the RPC protocol will not automatically treat it as a DCE PCS character and convert it
between ASCII and EBCDIC.

The second step in writing an interface definition file that supports automatic code set conversion is to
define, for each operation that will transmit the special international character data type, a maximum of
three operation parameters that will “tag” the international characters being passed in the operation's input
and output parameters with code set identifying information established during the client-server evaluation
and binding procedure. These parameters are:

� The sending tag, which indicates the code set the client is using for international characters it
transmits over the network. The sending tag has the in parameter attribute, and is applied to
international character data declared in the operation's input parameters. If the operation does not
specify any international character data as input, then it is not necessary to create this parameter.

� The desired receiving tag, which indicates the code set in which the client prefers to receive
international character data sent back from the server as output. The desired receiving tag has the in
parameter attribute. If the operation does not specify any international character output data, then it is
not necessary to create this parameter.

� The receiving tag, which indicates the code set the server is using for international characters it
transmits over the network. The receiving tag has the out parameter attribute, and is applied to
international character data declared in the operation's output parameters. If the operation does not
specify any international character output data, then it is not necessary to create this parameter.

You must define these code set tag parameters as unsigned long integers or unsigned long integers
passed by reference. The receiving tag parameter must be declared as a pointer to the receiving tag
unsigned long integer.

When international character data is to be unmarshalled, the client or server stub needs to have received
a description of the code set being used before it receives the data. For this reason, the sending tag
parameter must occur in an operation's parameter list before any in international character data, and the
receiving tag parameter must occur in an operation's parameter list before any out international character
data. The requirement that a tag must be received before the data it relates to is received also means
that a customized binding handle cannot include international characters. This is because a binding
handle must be the first parameter in a parameter list.

Here is an example .idl file for an interface named “cs_test” that uses the special international character
type definition and the code set tag parameters for input and output parameters that are fixed arrays of
characters from an international character set:

[
uuid(b076a320-4d8f-11cd-b453-08000925d3fe),
version(1.0)
]
interface cs_test
{

const unsigned short SIZE = 100;
typedef byte net_byte;

error_status_t cs_fixed_trans (

148 Application Development Guide: Core Components

[in] handle_t IDL_handle,
[in] unsigned long stag,
[in] unsigned long drtag,
[out] unsigned long $p_rtag,
[in] net_byte in_string[SIZE],
[out] net_byte out_string[SIZE]

);
}

Writing the Attribute Configuration File
The next step in building an RPC application that supports character and code set interoperability is to
create an attribute configuration file (.acf) to be associated with the .idl file. This .acf file uses the
following attributes:

� The cs_char attribute, which associates the local data type that the application code uses to represent
international characters in the local code set with the special typedef defined in the .idl file. This is a
required ACF attribute for an RPC application that passes international character data. “The cs_char
Attribute” on page 298 provides complete details on how to specify the cs_char ACF attribute and the
programming restrictions associated with its use.

� The cs_stag, cs_drtag, and cs_rtag attributes, for each operation in the interface that specifies
sending tag, desired receiving tag, and/or receiving tag parameters. These ACF attributes declare the
tag parameters defined in the corresponding .idl file to be special code set tag parameters.
Operations defined in the .idl that specify international character in input parameters must use the
cs_stag attribute. Operations defined in the .idl that specify international character in output
parameters must use the cs_drtag and cs_rtag attributes. “The cs_stag, cs_drtag, and cs_rtag
Attributes” on page 302 provides complete details on how to specify the cs_stag, cs_drtag, and
cs_rtag ACF attributes.

� The cs_tag_rtn attribute, which specifies the name of a routine that the client and server stubs will
call to set an operation's code set tag parameters to specific code set values. The cs_tag_rtn
attribute is an optional ACF attribute for internationalized RPC applications; application developers can
use it to provide code set tag transparency for callers of their application's operations. See “The
cs_tag_rtn Attribute” on page 303 for complete details on how to specify the cs_tag_rtn attribute.
“Writing the Stub Support Routines” on page 150 provides more information on the role of the
tag-setting routine.

Here is the companion .acf file for the “cs_test” interface defined in “Writing the Interface Definition File”
on page 148:

[
explicit_handle
]
interface cs_test
{
 include "dce/codesets_stub";

typedef [cs_char(cs_byte)] net_byte;

[comm_status, cs_tag_rtn(rpc_cs_get_tags)] cs_fixed_trans
 (
 [cs_stag] stag,
 [cs_drtag] drtag,

[cs_rtag] p_rtag);
}

Note: If you are doing a batch compile, modify the include statement for the previous .acf file to be
include "dce/codestub";.

 Chapter 9. Writing Internationalized RPC Applications 149

The ACF for “cs_test” uses the cs_char attribute to define net_byte as a data type that represents
international characters. Note that the local type specified in the cs_char attribute definition is cs_byte.
This local type is analogous to the byte type. The ACF for “cs_test” also uses the cs_tag_rtn attribute to
specify a tag-setting routine.

Writing the Stub Support Routines
When you use the cs_char attribute to define an international character data type, you must provide stub
support routines that check the buffer storage requirements for character data to be converted and stub
support routines that perform the conversions between the local and network code sets. If you use the
cs_tag_rtn attribute, you must provide the routine that sets the code set tag parameters for the operations
in the application that transfer international characters.

DCE RPC provides several buffer-sizing routines and one tag-setting routine. You can use the DCE RPC
routines, or you can develop your own customized buffer-sizing and tag-setting routines; the choice
depends upon your application's requirements. The next sections describe these types of stub support
routines in more detail.

Buffer Sizing Routines: Different code sets use different numbers of bytes to encode a single
character. Consequently, there is always the possibility that the converted string can be larger than the
original string when converting data from one code set to another. The function of the buffer sizing
routines is to first calculate the necessary buffer size for code set conversion between local and network
code sets. The buffer sizing routines will then return their findings to the client and server stubs, which
call these routines before marshalling and unmarshalling any international character data. The stubs
allocate a new buffer, if necessary, before calling the code set conversion routines.

You must provide the following buffer sizing routines for each local type that you define with the cs_char
attribute:

local_type_name_net_size() Calculates the necessary buffer size for code set conversion from a
local code set to a network code set. Client and server stubs call this
routine before they marshall any international character data.

local_type_name_local_size() Calculates the necessary buffer size for code set conversion from a
network code set to a local code set. Client and server stubs call this
routine before they unmarshall any international character data.

You specify the name for the local data type in the local_type_name portion of the function name and the
appropriate suffix name (_net_size or _local_size).

DCE RPC provides buffer sizing routines for the cs_byte data type. The cs_byte data type is equivalent
to the byte type.

The DCE RPC buffer sizing routines are:

cs_byte_net_size() Calculates the necessary buffer size for code set conversion from a local code set
to a network code set when the cs_byte type has been specified as the local
data type in the .acf file.

cs_byte_local_size() Calculates the necessary buffer size for code set conversion from a network code
set to a local code set when the cs_byte type has been specified as the local
data type in the .acf file.

If your internationalized RPC application uses cs_byte as the local type in the ACF, it can use these DCE
RPC buffer sizing routines; in order to do so, simply link with the DCE library when compiling your
application. The example ACF shown earlier in this chapter uses the cs_byte type as the local type.
Consequently, the client and server stubs will use the cs_byte_ buffer sizing routines. Refer to the z/OS

150 Application Development Guide: Core Components

DCE Application Development Reference for a description of the cs_byte_ routine signatures and
functions.

Applications that use data types other than cs_byte as their local data types will need to provide their own
buffer sizing routines. User-provided buffer sizing routines must follow the same signature as the DCE
RPC-provided buffer sizing routines. See the z/OS DCE Application Development Reference for a
description of the cs_byte_ required routine signatures.

Note: Do not send wide character data over the network using the cs_byte data type. Always convert
the data back to its multi-byte format before making the RPC call.

Code Set Conversion Routines: When RPC clients and servers exchange international character
data, the data being exchanged needs to be understood by both client and server. Both client and server
need to understand a character set, and both client and server need to understand the way that character
set is expressed. Code set conversion provides a way for a character set to be represented in a form that
both client and server can understand, given that the client and server are using a compatible character
set. (In general, character set conversion is not recommended; it is unlikely that clients and servers would
want to map, for example, German characters to Chinese characters due to the data loss that would occur
as a result.)

The stub support routines for code set conversion provide the mechanism for the stubs to use to convert
between different code sets, given that character set compatibility has been established. The code set
conversion routines translate a character set from one encoding to another. Consequently, the code set
conversion routines provide the way for a character set to be represented in a form that both client and
server can understand.

You must provide the following code set conversion routines for each local type that you define with the
cs_char attribute:

local_type_name_to_netcs() Converts international character data from a local code set to a
network code set. Client and server stubs call this routine before they
marshall any international character data.

local_type_name_from_netcs() Converts international character data from a network code set to a
local code set. Client and server stubs call this routine after they
unmarshall any international character data.

You specify the name for the local data type in the local_type_name portion of the function name and the
appropriate suffix name _to_netcs or _from_netcs.

DCE RPC provides code set conversion routines for the cs_byte data type. These routines are:

cs_byte_to_netcs() Converts international character data from a local code set to a network code
set when the cs_byte type has been specified as the local data type in the .acf
file.

cs_byte_from_netcs() Converts international character data from a network code set to a local code
set when the cs_byte type has been specified as the local data type in the .acf
file.

If your application uses the cs_byte data type as the local type, it can use these DCE RPC code set
conversion routines; in order to do so, simply link with the DCE library when compiling your application.
Refer to the z/OS DCE Application Development Reference for a description of the cs_byte_ routine
signatures and functions.

Applications that use data types other than cs_byte as their local data types will need to provide their own
code set conversion routines. User-provided code set conversion routines must follow the same signature

 Chapter 9. Writing Internationalized RPC Applications 151

as the DCE RPC-provided code set conversion routines. See the z/OS DCE Application Development
Reference for a description of the cs_byte_ routine signatures and functions.

Note: Do not send wide character data over the network using the cs_byte data type. Always convert
the data back to its multi-byte format before making the RPC call.

The DCE code set conversion routines depend upon the presence of the XPG4 iconv code set conversion
facility in the underlying operating system platform. The iconv facility consists of the following routines:

iconv_open() Code conversion allocation function; returns a conversion descriptor that describes a
conversion from the code set specified in one string pointer argument to the code set
specified in another string pointer argument.

iconv() Code conversion function; converts the sequence of characters from one code set into a
sequence of corresponding characters in another code set.

iconv_close() Code conversion deallocation function; deallocates the conversion descriptor and all
associated resources allocated by the iconv_open() function.

Note that the iconv facility identifies a code set by a string name. This string name is the name that the
local platform uses to refer to the code set. However, all of the stub support routines for automatic code
set conversion use the unique identifier assigned to the code set in the code set registry to identify a code
set. Before the DCE code set conversion routines can invoke the iconv facility, they must access the
code set registry to retrieve the platform-specific string names associated with the local and network code
set identifiers.

The DCE code set conversion routines use the dce_cs_loc_to_rgy() and dce_cs_rgy_to_loc() routines
to access the code set registry and translate between code set string names and their corresponding
unique identifiers. The z/OS DCE Application Development Reference provides a description of these
routines' signatures and functions; developers who are writing their own code set conversion routines and
who are using the iconv facility for conversion may want to use these DCE routines to convert between
code set names and identifiers. See the z/OS DCE Administration Guide for the code set registry shipped
with z/OS.

Tag-Setting Routine: Recall from “Writing the Interface Definition File” on page 148 that operations
that specify international characters as input and output parameters declare special code set tag
parameters. The purpose of these parameters is to hold the unique identifier for the code set into which
the input or output data is to be encoded when it is transferred over the network.

The function of the tag-setting routine is to provide a way to set an operation's code set tag parameters to
specific code set values from within the stubs rather than in the application code. The application
specifies the name of the tag-setting routine as the argument to the cs_tag_rtn ACF attribute. The client
and server stubs call this routine to set the tag parameters to specific network code set values before they
call the stub support routines for buffer sizing and code set conversion. The stubs use the network code
set values returned by the tag-setting routine as input to the buffer sizing and conversion routines. In turn,
these routines compare the network code set values to be used for input and output data to the local code
set in use for the data, and determine whether or not new buffer allocation and code set conversion are
necessary.

When called from the client stub, the tag-setting routine sets the sending tag parameter to the code set to
use for input character data. If the client expects output character data from the server, the routine also
sets the desired receiving tag parameter to the code set that the client prefers the server to use for
sending back the output data. On the client side, the local_type_name_net_size() buffer sizing routine
and the local_type_name_to_netcs() code set conversion routines use the value in the sending tag as the
network code set value to use for transmitting the input data. When the input data arrives at the server
side, the server stub uses the sending tag as input to the local_type_name_local_size() buffer sizing

152 Application Development Guide: Core Components

routine and the local_type_name_from_netcs() code set conversion routines. These routines use the
value to determine whether new buffer allocation and conversion is necessary from the network code set
to the local code set.

When called from the server stub, the tag-setting routine sets the receiving tag parameter to the code set
to use for transmitting the output character data back to the server. The routine can use the desired
receiving tag value as input to determine the most appropriate code set in which to encode output data for
the client. On the server side, the local_type_name_net_size() buffer sizing routine and the
local_type_name_to_netcs() code set conversion routines use the value in the receiving tag as the
network code set value to use for transmitting the output data. When the output data arrives at the client
side, the client stub uses the receiving tag as input to the local_type_name_local_size() buffer sizing
routine and the local_type_name_from_netcs() code set conversion routines. These routines use the
value to determine whether or not new buffer allocation and conversion is necessary from the network
code set to the local code set.

DCE RPC provides one tag-setting routine named rpc_cs_get_tags() that applications can use to set
code set tag values within the stubs. To use this routine, specify its name as the argument to the
cs_tag_rtn attribute and link your application with the DCE library. The example ACF for the “cs_test”
interface specifies the rpc_cs_get_tags() routine.

Note that the rpc_cs_get_tags() routine always sets the receiving tag value on the server side to the
value that the client specified in the desired receiving tag. See the z/OS DCE Application Development
Reference for an explanation of this routine's signature and function.

RPC application programmers who are developing their own tag-setting routines can also refer to the z/OS
DCE Application Development Reference to obtain the required signature for their user-written routine.

The tag-setting routine generally obtains the code set tag values from the binding handle. These values
are usually determined by the character and code sets evaluation routine invoked during the server
binding import process, although they can be explicitly set in the binding handle by using the
rpc_cs_binding_set_tags() routine. However, applications can design the tag-setting routine to perform
evaluation within the stubs rather than in the application (client) code. For example, when called from the
client side, the DCE RPC tag-setting routine rpc_cs_get_tags() performs character and code set
compatibility evaluation itself if it does not find the tag values in the binding handle. See “Writing the
Evaluation Routine” on page 163 for more information on deferred evaluation.

Writing the Server Code
A programmer who is developing an RPC server that supports character and code set interoperability
needs to add the following steps to the server's initialization functions in addition to the normal initialization
functions it carries out for RPC:

� Setting the server's locale

� Establishing the server's supported code sets

� Registering the server's supported code sets in the name service database

� Establishing a cleanup function that removes the server's supported code sets from the name service
database on the server's termination or exit.

The next sections explain these steps in detail.

 Chapter 9. Writing Internationalized RPC Applications 153

Setting the Server's Locale: The server initialization code needs to include a platform-specific
routine that sets the locale environment for the server. This step establishes

� The name of the server's “local code set,” which is the code set that processes on the host will use to
encode character data.

� The names of the code sets for which converters exist on the host and consequently, into which
processes that run on the host can convert if necessary.

An example of a locale-setting function is the POSIX, XPG3, XPG4 setlocale() function, which is defined
in locale.h. The server code should call the locale-setting function as the first step in the initialization
code, before calling the DCE RPC routines that register the interface and export the binding information.

The locale-setting function also establishes the value for two platform-specific macros that indicate:

� The maximum number of bytes the local code set uses to encode one character.

� The maximum number of bytes that any of the supported code sets on the host will use to encode one
character.

On POSIX, XPG3, and XPG4 platforms, these macros are MB_CUR_MAX and MB_LEN_MAX and are
defined in stdlib.h and limits.h, respectively. The buffer sizing routines use MB_CUR_MAX when
calculating the size of a new buffer to hold converted character data.

Note that all hosts that are members of an “internationalized” DCE cell, that is, a cell that supports
internationalized RPC applications, must provide converters that convert between their supported code
sets and the ISO 10646 “universal” code set. The DCE RPC functions for character and code set
interoperability use the universal code set as the default “intermediate” code set into which a client or
server can convert if there are no other compatible code sets between them. “Writing the Evaluation
Routine” on page 163 discusses code set evaluation in more detail.

Establishing the Server's Supported Code Sets: The next step in writing an
internationalized RPC server is to add to the server's initialization code a call to the DCE RPC routine
rpc_rgy_get_codesets(). This routine gets the supported code set names defined in the locale
environment and translates those names to their unique identifiers by accessing the code set registry on
the host. The server initialization code should call this routine after it has registered the interface and
created a server entry for its binding information in the name service database (by calling the DCE RPC
NSI binding export routine rpc_ns_binding_export()).

The routine returns an array of unique identifiers from the code set registry that correspond to the server's
local code set and the code sets into which the server can convert, if necessary; this data structure is
called the “code sets array.” The code sets array also contains, for each code set, the maximum number
of bytes that code set uses to encode one character. For an example of the z/OS code set registry, see
the z/OS DCE Administration Guide.

The purpose of this step is to obtain the registered unique identifiers for the server's supported code sets
for use by the DCE character and code set interoperability features, rather than using the string names for
the code sets. The DCE features for character and code set interoperability do not use string names
because different operating systems commonly use different string names to refer to the same code set.
Clients and servers passing international characters in a cell of heterogeneous platforms need to ensure
that they both refer to the same code set when establishing compatibility. The code set registry provides
the means for clients and servers to uniquely identify a code set while permitting different platforms and
the code set converters offered on those platforms to continue to use the string names for the code sets.

See the z/OS DCE Application Development Reference for a description of the rpc_rgy_get_codesets()
routine's signature and arguments.

154 Application Development Guide: Core Components

Registering the Server's Supported Code Sets in the Namespace: The next step in
writing an internationalized RPC server is to make a call in the server's initialization code to the DCE RPC
routine rpc_ns_mgmt_set_attribute(), which takes the code sets array returned by
rpc_rgy_get_codesets() and exports it to the server's entry in the name service database. The routine
creates a “code sets” NSI attribute in the name service database and associates it with the server entry
created by the NSI export operation.

The purpose of this step is to register the server's supported code sets into the name service database so
that clients can gain access to the information. Note, then, that server entries for internationalized RPC
servers will have code sets attributes in addition to the binding attributes and object attributes for the
servers. For a general discussion of NSI attributes, see “Directory Services and RPC: Using the
Namespace” on page 96. Refer to the z/OS DCE Application Development Reference for a description of
the rpc_ns_mgmt_set_attribute() routine's signature and arguments.

Establishing a Cleanup Function for the Namespace: The last step in writing an
internationalized RPC server is to add a call to the DCE RPC routine rpc_ns_mgmt_remove_attribute()
to the cleanup code within the server's initialization code. This DCE RPC routine will remove the code
sets attribute associated with the server entry from the name service data base when it is called from the
cleanup code as the result of a server crash or exit. See the z/OS DCE Application Development
Reference for a description of the rpc_ns_mgmt_remove_attribute() routine's signature and arguments.

Sample Server Code: Here is an example of an internationalized RPC server that exports the
“cs_test” interface defined in “Writing the Interface Definition File” on page 148.

#include <stdio.h>
#include <stdlib.h>
#include <dce/rpc.h>
#include <dce/nsattrid.h>
#include <dce/dce_error.h>
#include <locale.h>
#include <pthread.h>
#include <dce/codesets.h>
#include "cs_test.h"

/$
 $ Macro for result checking
 $/

#define CHECK_STATUS(t, func, returned_st, expected_st) \
{ \

if (returned_st == expected_st) { \
 } \

else { \
 dce_error_inq_text(returned_st, \

(unsigned char $)unexpected, &dce_status); \
 dce_error_inq_text(expected_st,\

(unsigned char $)expected, &dce_status); \
 printf("FAILED %s()\nresult: %s\nexpected: %s\n\n", \

func, unexpected, expected); \
if (t) \

 return; \
 } \
 } \
} \

static unsigned char unexpected[dce_c_error_string_len];
static unsigned char expected[dce_c_error_string_len];
static int dce_status;

 Chapter 9. Writing Internationalized RPC Applications 155

int
main(int argc, char $argv[])
{
 error_status_t status;
 int i;
 rpc_ns_handle_t inq_contxt;
 rpc_binding_vector_t $binding_vector;
 rpc_codeset_mgmt_p_t arr;

pthread_t this_thread = pthread_self();
 sigset_t sigset;
 char nsi_entry_name[256];
 char $get_nsi_entry_name;
 char $server_locale_name;

error_status_t expected = rpc_s_ok;
 int server_pid;

/$ The environment variable I18N_SERVER_ENTRY needs
$ to be set before running this program. This is
$ not a DCE environment variable, so you can set up
$ your own environment variable if you like.

 $/

get_nsi_entry_name = getenv("I18N_SERVER_ENTRY");
 strcpy(nsi_entry_name, get_nsi_entry_name);

 (void)pthread_mutex_init(&mutex, pthread_mutexattr_default);

/$ Set the locale. In this way, the current locale
$ information is extracted from XPG/POSIX defined
$ environment variable LANG or LC_ALL.

 $/

 setlocale(LC_ALL, "");

 /$
$ Get supported code sets.

 $/
 rpc_rgy_get_codesets (
 &arr,
 &status);

CHECK_STATUS(TRUE, "rpc_rgy_get_codesets", status, expected);

 rpc_server_register_if (
 cs_test_v1_0_s_ifspec,
 NULL,
 NULL,
 &status);

CHECK_STATUS(TRUE, "rpc_server_register_if", status, expected);

 rpc_server_use_all_protseqs (
 rpc_c_protseq_max_reqs_default,
 &status);

CHECK_STATUS(TRUE, "rpc_server_use_all_protseqs", status, expected);

 rpc_server_inq_bindings (
 &binding_vector,
 &status);

156 Application Development Guide: Core Components

CHECK_STATUS(TRUE, "rpc_server_inq_bindings", status, expected);

 rpc_ep_register (
 cs_test_v1_0_s_ifspec,
 binding_vector,
 NULL,
 NULL,
 &status);

CHECK_STATUS(TRUE, "rpc_ep_register", status, expected);

 rpc_ns_binding_export (
 rpc_c_ns_syntax_default,
 (unsigned_char_p_t)nsi_entry_name,
 cs_test_v1_0_s_ifspec,
 binding_vector,
 NULL,
 &status);

CHECK_STATUS(TRUE, "rpc_ns_binding_export", status, expected);

 /$
$ Register the server's supported code sets into the name space.

 $/

 rpc_ns_mgmt_set_attribute (
 rpc_c_ns_syntax_default,
 (unsigned_char_p_t)nsi_entry_name,
 rpc_c_attr_codesets,
 (void $)arr,
 &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_set_attribute", status, expected);

 /$
$ Free memory allocated by getting code sets.

 $/
rpc_ns_mgmt_free_codesets (&arr, &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codeset", status, expected);

 sigemptyset(&sigset);
 sigaddset(&sigset, SIGINT);

if (pthread_signal_to_cancel_np(&sigset, &this_thread) != 0)
 {
 printf("pthread_signal_to_cancel_np failed\n");
 exit(1);
 }
 TRY
 {

server_pid = getpid();

printf("Listening for remote procedure calls...\n");

 rpc_server_listen (
 rpc_c_listen_max_calls_default,
 &status);

CHECK_STATUS(TRUE, "rpc_server_listen", status, expected);

 Chapter 9. Writing Internationalized RPC Applications 157

 /$
$ Remove code set attributes from namespace on return.

 $/

 rpc_ns_mgmt_remove_attribute (
 rpc_c_ns_syntax_default,
 (unsigned_char_p_t)nsi_entry_name,
 rpc_c_attr_codesets,
 &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_remove_attribute", status, expected);

 rpc_ns_binding_unexport (
 rpc_c_ns_syntax_default,
 (unsigned_char_p_t)nsi_entry_name,
 cs_test_v1_0_s_ifspec,
 (uuid_vector_p_t)NULL,
 &status);

CHECK_STATUS(TRUE, "rpc_ns_binding_unexport", status, expected);

 rpc_ep_unregister (
 cs_test_v1_0_s_ifspec,
 binding_vector,
 NULL,
 &status);

CHECK_STATUS(TRUE, "rpc_ep_unregister", status, expected);

 rpc_binding_vector_free (
 &binding_vector,
 &status);

CHECK_STATUS(TRUE, "rpc_binding_vector_free", status, expected);

 rpc_server_unregister_if (
 cs_test_v1_0_s_ifspec,
 NULL,
 &status);

CHECK_STATUS(TRUE, "rpc_server_unregister_if", status, expected);

 (void)pthread_mutex_destroy(&mutex);
 }
 CATCH_ALL
 {
 /$

$ Remove code set attribute from namespace on a signal.
 $/

 rpc_ns_mgmt_remove_attribute (
 rpc_c_ns_syntax_default,
 (unsigned_char_p_t)nsi_entry_name,
 rpc_c_attr_codesets,
 &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_remove_attribute", status, expected);

 rpc_ns_binding_unexport (
 rpc_c_ns_syntax_default,
 (unsigned_char_p_t)nsi_entry_name,
 cs_test_v1_0_s_ifspec,
 (uuid_vector_p_t)NULL,

158 Application Development Guide: Core Components

 &status);

CHECK_STATUS(TRUE, "rpc_ns_binding_unexport", status, expected);

 rpc_ep_unregister (
 cs_test_v1_0_s_ifspec,
 binding_vector,
 NULL,
 &status);

CHECK_STATUS(TRUE, "rpc_ep_unregister", status, expected);

 rpc_binding_vector_free (
 &binding_vector,
 &status);

CHECK_STATUS(TRUE, "rpc_binding_vector_free", status, expected);

 rpc_server_unregister_if (
 cs_test_v1_0_s_ifspec,
 NULL,
 &status);

CHECK_STATUS(TRUE, "rpc_server_unregister_if", status, expected);

 (void)pthread_mutex_destroy(&mutex);
 }
 ENDTRY;
 }

Writing the Client Code
A programmer who is developing an RPC client that supports character and code set interoperability
needs to add the following steps to the client code in addition to the basic functions for RPC:

� Setting the client's locale

� Establishing a character and code sets compatibility evaluation routine that the NSI server binding
import routines will call to evaluate potential servers for character and code set compatibility

The next sections explain these steps in detail.

Setting the Client's Locale: The first step in developing an internationalized RPC client is to add
a call within the client code to a platform-specific function that sets the locale environment for the client.
This step establishes:

� The name of the client's “local code set,” which is the code set that processes on the host will use to
encode character data.

� The names of the code sets for which converters exist on the host and consequently, into which
processes that run on the host can convert if necessary.

The call to the locale-setting function must be the first call made within the client code. An example of a
locale-setting function is the POSIX, XPG3, XPG4 setlocale() function, which is defined in locale.h.

The locale-setting function also establishes the value for two platform-specific macros that indicate:

� The maximum number of bytes the local code set uses to encode one character.

� The maximum number of bytes that any of the supported code sets on the host will use to encode one
character.

 Chapter 9. Writing Internationalized RPC Applications 159

On the POSIX, XPG3, XPG4 platform, these macros are MB_CUR_MAX and MB_LEN_MAX and are
defined in stdlib.h and limits.h, respectively. The buffer sizing routines use the MB_CUR_MAX macro
when calculating the size of a new buffer to hold converted character data.

Note that all hosts that are members of an internationalized DCE cell must provide converters that convert
between their supported code sets and the ISO 10646 “universal” code set. The DCE RPC functions for
character and code set interoperability use the universal code set as the default “intermediate” code set
into which a client or server can convert if there are no other compatible code sets between them.
“Writing the Evaluation Routine” on page 163 discusses code set evaluation in more detail.

Establishing the Compatibility Evaluation Routine: The last step in writing an
internationalized RPC client is to call the DCE RPC NSI routine rpc_ns_import_ctx_add_eval(). The
purpose of this NSI routine is to add evaluation routines to the import context created by the
rpc_ns_binding_import_begin() routine that the NSI routine rpc_ns_binding_import_next() will call to
perform additional compatibility evaluation on potential servers.

The internationalized RPC client code calls the rpc_ns_import_ctx_add_eval() routine to set up one or
more character and code sets compatibility evaluation routines to be called from
rpc_ns_binding_import_next(). The client code must make the call to rpc_ns_import_ctx_add_eval()
once for each compatibility routine that it wants to add to the import context for
rpc_ns_binding_import_next(). See the z/OS DCE Application Development Reference for a description
of the rpc_ns_import_ctx_add_eval() routine's signature and arguments.

The rpc_ns_import_ctx_add_eval() must be used in conjunction with the
rpc_ns_binding_import_begin/next/done() suite of RPC NSI binding functions, because these functions
provide an import context argument. If you want to use the
rpc_ns_binding_lookup_begin/next/done/select() suite of RPC NSI routines, your client code will need
to perform character and code set evaluation logic on the binding handle returned by
rpc_ns_binding_select(). “Example Character and Code Sets Evaluation Logic” on page 166 provides a
sample client that performs character and code set evaluation in conjunction with the “lookup” and “select”
RPC NSI routines.

Sample Client Code: Here is an example of an internationalized RPC client that calls the operation
defined in the “cs_test” interface shown in “Writing the Interface Definition File” on page 148. The client
establishes the DCE RPC evaluation routine rpc_cs_eval_without_universal() as the character and code
sets evaluation routine to use.

#include <stdio.h>
#include <locale.h>
#include <dce/rpc.h>
#include <dce/rpcsts.h>
#include <dce/dce_error.h>

#include "cs_test.h" /$ IDL generated include file $/

/$
 $ Result check MACRO
 $/
#define CHECK_STATUS(t, func, returned_st, expected_st) \
{ \

if (returned_st == expected_st) { \
/$
 $ Do nothing.
 $/

} else { \
 dce_error_inq_text(returned_st,\

(unsigned char $)unexpected, &dce_status); \

160 Application Development Guide: Core Components

 dce_error_inq_text(expected_st, \
(unsigned char $)expected, &dce_status); \
printf("FAILED %s()\nresult: %s\nexpected: %s\n\n", \

func, unexpected, expected); \
if (t) \

 return; \
 } \
 } \
} \

static unsigned char unexpected[dce_c_error_string_len];
static unsigned char expected[dce_c_error_string_len];
static int dce_status;

void
main(void)
{
 rpc_binding_handle_t bind_handle;
 rpc_ns_handle_t import_context;
 error_status_t status;
 error_status_t temp_status;
 cs_byte net_string[SIZE];
 cs_byte loc_string[SIZE];
 unsigned char err_buf[256];
 char nsi_entry_name[256];
 char $get_nsi_entry_name;
 char $client_locale_name;
 int i, rpc_num;
 FILE $fp_in, $fp_out;

/$ The environment variable I18N_SERVER_ENTRY needs
$ to be set before running this program. This is
$ not a DCE environment variable, so you can set up
$ your own environment variable if you like.

 $/

get_nsi_entry_name = getenv("I18N_SERVER_ENTRY");
 strcpy(nsi_entry_name, get_nsi_entry_name);

 setlocale(LC_ALL, "");

 rpc_ns_binding_import_begin (
 rpc_c_ns_syntax_default,
 (unsigned_char_p_t)nsi_entry_name,
 cs_test_v1_0_c_ifspec,
 NULL,
 &import_context,
 &status);

CHECK_STATUS(TRUE, "rpc_ns_binding_import_begin", status, rpc_s_ok);

 /$
$ Add code set compatibility checking logic to the context.

 $/
 rpc_ns_import_ctx_add_eval (
 &import_context,
 rpc_c_eval_type_codesets,
 (void $)nsi_entry_name,
 rpc_cs_eval_without_universal,
 NULL,
 &status);

CHECK_STATUS(TRUE, "rpc_ns_import_ctx_add_eval", status, rpc_s_ok);

 Chapter 9. Writing Internationalized RPC Applications 161

while (1) {
 rpc_ns_binding_import_next (
 import_context,
 &bind_handle,
 &status);

CHECK_STATUS(FALSE, "rpc_ns_binding_import_next", status, rpc_s_ok);
if (status == rpc_s_ok)

 break;
 else
 {
 return;
 }
 }

 rpc_ns_binding_import_done (
 &import_context,
 &status);

CHECK_STATUS(TRUE, "rpc_ns_binding_import_done", status, rpc_s_ok);

 rpc_ep_resolve_binding (bind_handle,
 cs_test_v1_0_c_ifspec,
 &temp_status);

CHECK_STATUS(TRUE, "rpc_ep_resolve_binding", temp_status, rpc_s_ok);

 if(rpc_mgmt_is_server_listening(bind_handle, &status)
&& temp_status == rpc_s_ok)

 {
; /$ Do nothing. $/

 }
 else
 {

dce_error_inq_text ((unsigned long)status,
err_buf, (int $)&temp_status);

printf("is_server_listening error -> %s\n", err_buf);
 }

 /$
$ This program reads the data from a file.

 $/

fp_in = fopen("./i18n_input_data", "r");

if (fp_in == NULL)
 {

printf("i18n_input_data open failed\n");
 return;
 }

fp_out = fopen("./i18n_method_fixed_result_file", "w");

if (fp_out == NULL)
 {

printf("i18n_result_file open failed\n");
 fclose(fp_in);
 return;
 }

rpc_num = 1;
(void)fgets((char $)net_string, SIZE, fp_in);

 while (!feof(fp_in))

162 Application Development Guide: Core Components

 {

temp_status = cs_fixed_trans(bind_handle, net_string, loc_string);

if (temp_status != rpc_s_ok)
 {
 dce_error_inq_text(temp_status, err_buf,
 (int $)&status);

printf("FAILED %ld MSG: %s\n", (unsigned long)temp_status, err_buf);
 }
 else
 {

printf("PASSED rpc #%d\n", rpc_num++);
(void)fputs((char $)loc_string, fp_out);

 (void)fputs("\n", fp_out);
 }

(void)fgets((char $)net_string, SIZE, fp_in);
 }

 fclose(fp_in);
 fclose(fp_out);

 return;
}

Writing the Evaluation Routine
Recall from the z/OS DCE Application Development Guide: Introduction and Style and Chapter 4,
“Developing a Simple RPC Application” on page 39 that when a prospective client attempts to import
binding information from a namespace entry that it looks up by name, the NSI import routine checks the
binding for compatibility with the client by comparing interface UUIDs and protocol sequences. If the
UUIDs match and the protocol sequences are compatible, the NSI operation considers the binding handle
contained in the server entry to be compatible and returns it to the client. Internationalized clients need to
perform additional compatibility checking on potential server bindings: they need to evaluate the server for
character and code set compatibility.

The purpose of the character and code sets compatibility evaluation routine is to determine:

� Whether the character set the server supports is compatible with the client's character set, since
incompatible character sets result in unacceptable data loss during character conversion.

� The level of code sets compatibility between client and server, which determines the “conversion
method” that the client and server will use when transferring character data between them.

A conversion method is a process for converting one code set into another. There are four conversion
methods:

� Receiver Makes It Right (RMIR) — the recipient of the data is responsible for converting the data from
the sender's code set to its own code set. This is the method that the RPC communications protocol
uses to convert PCS character data between ASCII and EBCDIC code sets.

� Client Makes It Right (CMIR) — the client converts the input character data to be sent to the server
into the server's code set before the data is transmitted over the network, and converts output data
received from the server from the server's code set into its local code set.

� Server Makes It Right (SMIR) — the server converts the input character data received from the client
into its local code set from the client's code set and converts output data to be sent to the client into
the client's code set before the data is transmitted over the network.

 Chapter 9. Writing Internationalized RPC Applications 163

� Intermediate — Both client and server convert to a common code set. DCE defines a default
intermediate code set to be used when there is no match between the client and server's supported
code sets; this code set is the ISO 10646 “universal” code set.

A character and code sets compatibility evaluation routine generally employs a “conversion model” when
determining the level of code sets compatibility. A conversion model is an ordering of conversion
methods, for example, “CMIR first, then SMIR, then intermediate.” Consequently, the actual conversion
method used is determined at runtime.

DCE RPC Evaluation Routines: DCE RPC provides two character and code sets compatibility
evaluation routines: rpc_cs_eval_with_universal() and rpc_cs_eval_without_universal(). To use either
one of these routines, specify their names in the evaluation function argument to the
rpc_ns_import_ctx_add_eval() routine. (The sample client code shown in “Sample Client Code” on
page 160 specifies a DCE RPC character and code sets evaluation routine.)

The rpc_cs_eval_with_universal() routine first compares the client's local code set with the server's local
code set. If they are the same, client-server character and code set compatibility exists. The routine
returns to the NSI import routine, which returns the server binding to the client.

If the routine finds that the client and server local code sets differ, it calls the routine
rpc_cs_char_set_compat_check() to determine client-server character set compatibility. If the client and
server are using the same character set, it will be safe for them to exchange character data despite their
use of different encodings for the character data. Clients and servers using different character sets are
considered to be incompatible, since the process of converting the character data from one character set
to the other will result in significant data loss.

Using the client and server's local code set identifiers as indexes into the code set registry, the
rpc_cs_char_set_compat_check() routine obtains the registered values that represent the character
set(s) that the specified code sets support. If the client and server support just one character set, the
routine compares the values for compatibility. If the values do not match, then the client-server character
sets are not compatible; for example, the client is using the German character set and the server is using
the Korean character set. In this case, the routine returns the status code
rpc_s_ss_no_compat_charsets to the evaluation routine so that binding to that server will be rejected.

If the client and server support multiple character sets, the rpc_cs_char_set_compat_check() routine
determines whether at least two of the sets are compatible. If two or more sets match, the routine
considers the character sets compatible, and returns a success status code to the evaluation routine.

In the case where the client and server are character set compatible, the rpc_cs_eval_with_universal()
routine uses the following model to determine a conversion method:

� RMIR (receiver makes it right)

� SMIR (client uses its local, server converts to and from it)

� CMIR (server uses its local, client converts to and from it)

� Use the universal (ISO 10646) code set as the intermediate code set

This conversion model translates into the following steps:

� The rpc_cs_eval_with_universal() routine takes the client's local code set and searches through the
server's code sets array to determine whether it has a converter for the client's local set. Then it takes
the server's local code set and searches through the client's code sets array to see if it has a
converter for the server's local code set.

� If both client and server support converters for each others' local code sets, that is, they can convert
to and from each other's local code set, the routine sets the conversion method to RMIR.

164 Application Development Guide: Core Components

� If the server can convert to and from the client's local code set, but the client cannot convert from the
server's local code set, the routine sets the conversion method to SMIR.

� If the client can convert to and from the server's local code set, but the server cannot convert to and
from the client's local code set, the routine sets the conversion method to CMIR.

If the conversion method is SMIR or RMIR, the rpc_cs_eval_with_universal() routine sets both the
sending tag and the desired receiving tag to the code set value that represents the client's local code
set. In the case of CMIR, the routine sets both the sending tag and the desired receiving tag to the
code set value that represents the server's local code set.

� If neither the client nor server support each other's local code set, the routine sets the sending tag and
desired receiving tag to the code set value that represents the ISO 10646 universal code set, which is
the default intermediate code set that all DCE clients and servers support.

The rpc_cs_eval_without_universal() routine uses the following conversion model to determine a
conversion method:

 � RMIR

� SMIR (client uses its local, server converts to and from it)

� CMIR (server uses its local, client converts to and from it)

� Reject for code set incompatibility

Consequently, the rpc_cs_eval_without_universal() uses the same evaluation logic as
rpc_cs_eval_with_universal() except that it rejects the server binding if the client and server do not
support each other's local code set.

Writing Customized Evaluation Routines: Programmers writing internationalized RPC
applications can develop their own character and code sets compatibility evaluation routines if their
applications' needs are not met by the DCE RPC evaluation routines. These programmers may want to
use the following DCE RPC routines within their evaluation routine:

� The rpc_rgy_get_codesets() routine

� The rpc_cs_char_set_compat_check() routine

� The rpc_cs_binding_set_tags() routine

� The dce_cs_loc_to_rgy() routine

� The rpc_ns_mgmt_read_codesets() routine

� The rpc_ns_mgmt_free_codesets() routine

Refer to the z/OS DCE Application Development Reference for complete details about these routines.

Programmers who write their own evaluation routines can also select when evaluation is performed; that
is, they can defer evaluation from occurring in the client code, or they can defer evaluation completely at
the client side and let it take place in the server instead. Programmers who desire to defer evaluation to
the client stub can write an evaluation routine that sets the client's and server's supported code sets into
the binding handle returned by the client, then write the evaluation logic into the stub support routine for
tag-setting so that it performs evaluation within the client stub.

Applications that do evaluation in the client stub take the chance that the binding handle that is evaluated
is the only binding handle available. For example, suppose there are three binding handles. Two are
character and code set compatible, and one is incompatible. The incompatible binding is selected for
RPC. If you evaluate in the tag-setting routine, you cannot reselect to get the other compatible bindings.

 Chapter 9. Writing Internationalized RPC Applications 165

In general, it is recommended that character and code sets evaluation take place in the client, rather than
the server, for performance reasons. Also, once the server is selected and a connection is established
between it and the client, the client cannot typically reselect the server because the code sets are
incompatible.

Within the client, it is recommended that evaluation be performed in the client code rather than in client
stub, because deferring evaluation to occur in the client stub removes any way for the client to gain
access to other potential binding handles.

Notes about Tag-Setting: The DCE RPC character and code sets compatibility evaluation routines
set the method and the code set tag values into a data structure in the binding handle returned to the
client. These routines always set the sending tag and desired receiving tag to the same code set value.

In addition, if the application uses the DCE RPC routine rpc_cs_get_tags() to set the code set tags for
the stubs, the value of the server's receiving tag will always be the value of what the client sent to it in the
desired receiving tag. If RMIR is used, the desired receiving tag is the server's current code set.

RPC application programmers that do not want to use the DCE RPC-provided evaluation routines can use
the rpc_cs_binding_set_tags() routine to set the code set tag values into a binding handle.

Example Character and Code Sets Evaluation Logic: Here is an example client program of
the “cs_test” interface that provides its own character and code sets evaluation logic. This example client
uses the rpc_cs_binding_set_tags() routine to set the code set tags within the client code rather than
using a tag-setting routine to set them within the stub code.

#include <stdio.h>
#include <locale.h>
#include <dce/rpc.h>
#include <dce/rpcsts.h>
#include <dce/dce_error.h>

#include "cs_test.h" /$ IDL generated include file $/

/$
 $ Result check MACRO
 $/
#define CHECK_STATUS(t, func, returned_st, expected_st) \
{ \

if (returned_st == expected_st) { \
; /$ No operation $/

} else { \
 dce_error_inq_text(returned_st,\

(unsigned char $)unexpected, &dce_status); \
 dce_error_inq_text(expected_st,\

(unsigned char $)expected, &dce_status); \
 printf("FAILED %s()\nresult: %s\nexpected: %s\n\n", \

func, unexpected, expected); \
if (t) \

 return; \
 } \
 } \
} \

static unsigned char unexpected[dce_c_error_string_len];
static unsigned char expected[dce_c_error_string_len];
static int dce_status;

166 Application Development Guide: Core Components

void
main(void)
{
 rpc_binding_handle_t bind_handle;
 rpc_ns_handle_t lookup_context;
 rpc_binding_vector_p_t bind_vec_p;
 unsigned_char_t $entry_name;
 unsigned32 binding_count;
 cs_byte net_string[SIZE];
 cs_byte loc_string[SIZE];

int i, k, rpc_num;
int model_found, smir_true, cmir_true;

 rpc_codeset_mgmt_p_t client, server;
 unsigned32 stag;
 unsigned32 drtag;
 unsigned16 stag_max_bytes;
 error_status_t status;
 error_status_t temp_status;
 unsigned char err_buf[256];
 char nsi_entry_name[256];
 char $get_nsi_entry_name;
 char $client_locale_name;
 FILE $fp_in, $fp_out;

get_nsi_entry_name = getenv("I18N_SERVER_ENTRY");
 strcpy(nsi_entry_name, get_nsi_entry_name);

 setlocale(LC_ALL, "");

 rpc_ns_binding_lookup_begin (
 rpc_c_ns_syntax_default,
 (unsigned_char_p_t)nsi_entry_name,
 cs_test_v1_0_c_ifspec,
 NULL,
 rpc_c_binding_max_count_default,
 &lookup_context,
 &status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_begin", status, rpc_s_ok);

 rpc_ns_binding_lookup_next (
 lookup_context,
 &bind_vec_p,
 &status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_next", status, rpc_s_ok);

 rpc_ns_binding_lookup_done (
 &lookup_context,
 &status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_done", status, rpc_s_ok);

 /$
$ Get the client's supported code sets

 $/
 rpc_rgy_get_codesets (
 &client,
 &status);

CHECK_STATUS(TRUE, "rpc_rgy_get_codesets", status, rpc_s_ok);

binding_count = (bind_vec_p)->count;
for (i=0; i < binding_count; i++)

 Chapter 9. Writing Internationalized RPC Applications 167

 {
if ((bind_vec_p)->binding_h[i] == NULL)

 continue;

 rpc_ns_binding_select (
 bind_vec_p,
 &bind_handle,
 &status);

CHECK_STATUS(FALSE, "rpc_ns_binding_select", status, rpc_s_ok);

if (status != rpc_s_ok)
 {
 rpc_ns_mgmt_free_codesets(&client, &temp_status);
 return;
 }

 rpc_ns_binding_inq_entry_name (
 bind_handle,
 rpc_c_ns_syntax_default,
 &entry_name,
 &status);

CHECK_STATUS(FALSE, "rpc_ns_binding_inq_entry_name", status, rpc_s_ok);
if (status != rpc_s_ok)

 {
 rpc_ns_mgmt_free_codesets(&client, &temp_status);
 return;
 }

 /$
$ Get the server's supported code sets from NSI

 $/
 rpc_ns_mgmt_read_codesets (
 rpc_c_ns_syntax_default,
 entry_name,
 &server,
 &status);

CHECK_STATUS(FALSE, "rpc_ns_mgmt_read_codesets", status, rpc_s_ok);

if (status != rpc_s_ok)
 {
 rpc_ns_mgmt_free_codesets(&client, &temp_status);
 return;
 }

 /$
 $ Start evaluation
 $/

if (client->codesets[0].c_set == server->codesets[0].c_set)
 {
 /$

$ client and server are using the same code set
 $/

stag = client->codesets[0].c_set;
drtag = server->codesets[0].c_set;

 break;
 }

 /$
$ check character set compatibility first

 $/
 rpc_cs_char_set_compat_check (

168 Application Development Guide: Core Components

client, server, &status);

 CHECK_STATUS(FALSE, "rpc_cs_char_set_compat_check",
 status, rpc_s_ok);

if (status != rpc_s_ok)
 {
 rpc_ns_mgmt_free_codesets(&server, &temp_status);
 rpc_ns_mgmt_free_codesets(&client, &temp_status);
 return;
 }

smir_true = cmir_true = model_found = 0;

for (k = 1; k < server->count; k++)
 {
 if (smir_true)
 break;

 if (client->codesets[0].c_set
 == server->codesets[k].c_set)
 {

smir_true = 1;
model_found = 1;

 }
 }

for (k = 1; k < client->count; k++)
 {
 if (cmir_true)
 break;

 if (server->codesets[0].c_set
 == client->codesets[k].c_set)
 {

cmir_true = 1;
model_found = 1;

 }

 }

 if (model_found)
 {

if (smir_true && cmir_true)
 {

/$ RMIR model works $/
stag = client->codesets[0].c_set;
drtag = server->codesets[0].c_set;

 stag_max_bytes
 = client->codesets[0].c_max_bytes;
 }

else if (smir_true)
 {

/$ SMIR model $/
stag = client->codesets[0].c_set;
drtag = client->codesets[0].c_set;

 stag_max_bytes
 = client->codesets[0].c_max_bytes;
 }
 else
 {

/$ CMIR model $/
stag = server->codesets[0].c_set;

 Chapter 9. Writing Internationalized RPC Applications 169

drtag = server->codesets[0].c_set;
 stag_max_bytes
 = server->codesets[0].c_max_bytes;
 }

 /$
$ set tags value to the binding

 $/
 rpc_cs_binding_set_tags (
 &bind_handle,
 stag,
 drtag,
 stag_max_bytes,
 &status);

 CHECK_STATUS(FALSE, "rpc_cs_binding_set_tags",
 status, rpc_s_ok);

if (status != rpc_s_ok)
 {
 rpc_ns_mgmt_free_codesets(&server, &temp_status);
 rpc_ns_mgmt_free_codesets(&client, &temp_status);
 return;
 }
 }
 else
 {
 /$

$ try another binding
 $/
 rpc_binding_free (
 &bind_handle,
 &status);

CHECK_STATUS(FALSE, "rpc_binding_free", status, rpc_s_ok);
if (status != rpc_s_ok)

 {
 rpc_ns_mgmt_free_codesets(&server, &temp_status);
 rpc_ns_mgmt_free_codesets(&client, &temp_status);
 return;
 }
 }
 }

 rpc_ns_mgmt_free_codesets(&server, &status);
CHECK_STATUS(FALSE, "rpc_ns_mgmt_free_codesets", status, rpc_s_ok);

 rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets", status, rpc_s_ok);

 if (!model_found)
 {

printf("FAILED No compatible server found\n");
 return;
 }

 rpc_ep_resolve_binding (bind_handle,
 cs_test_v1_0_c_ifspec,
 &temp_status);

CHECK_STATUS(TRUE, "rpc_ep_resolve_binding", temp_status, rpc_s_ok);

 if(rpc_mgmt_is_server_listening(bind_handle, &status)
&& temp_status == rpc_s_ok)

 {

170 Application Development Guide: Core Components

 printf("PASSED rpc_mgmt_is_server_listening()\n");
 }
 else
 {

dce_error_inq_text ((unsigned long)status, err_buf,
 (int $)&temp_status);

printf("is_server_listening error -> %s\n", err_buf);
 }

fp_in = fopen("./i18n_input_data", "r");

if (fp_in == NULL)
 {

printf("i18n_input_data open failed\n");
 return;
 }

fp_out = fopen("./i18n_tags_fixed_result_file", "w");

if (fp_out == NULL)
 {

printf("i18n_result_file open failed\n");
 return;
 }

rpc_num = 1;
(void)fgets((char $)net_string, SIZE, fp_in);

 while (!feof(fp_in))
 {

temp_status = cs_fixed_trans(bind_handle, net_string, loc_string);

if (temp_status != rpc_s_ok)
 {

dce_error_inq_text(temp_status, err_buf, (int $)&status);

printf("FAILED %ld MSG: %s\n", (unsigned long)temp_status, err_buf);
 }
 else
 {

printf("PASSED rpc #%d\n", rpc_num++);
(void)fputs((char $)loc_string, fp_out);

 (void)fputs("\n", fp_out);
 }

(void)fgets((char $)net_string, SIZE, fp_in);
 }

 fclose(fp_in);
 fclose(fp_out);

 return;
}

 Chapter 9. Writing Internationalized RPC Applications 171

172 Application Development Guide: Core Components

Chapter 10. Topics in RPC Application Development

This chapter describes special features of DCE RPC for application development. The topics include:

 � Memory management

 � Error handling

 � Context handles

 � Pipes

� Nested calls and callbacks

 � Routing RPCs

� Portable data and the IDL encoding services

 Memory Management

When called to handle a remote operation, RPC client stubs allocate and free memory using whatever
memory management scheme is currently in effect. Client code, that is, generic code that can be called
from either RPC clients or RPC servers, can use DCE RPC stub support routines to control which memory
management scheme the stubs will use.

If client code has not explicitly set the memory management routines, the RPC client stubs use the
following defaults:

� When called from manager code, and the operation contains one or more parameters that are full or
unique pointers, or the ACF attribute enable_allocate has been applied, the client stubs use the
rpc_ss_allocate() and rpc_ss_free() routines.

� When called from any other context, the RPC client stubs use the operating system allocation and free
routines, for example malloc() and free() on POSIX platforms.

Note that the memory management scheme established, whether explicitly or by default, is on a
per-thread basis.

RPC server stubs do not allocate memory. Instead, they rely on the manager code, that is, the code that
the server stubs call, to allocate it for them.

The following sections give guidelines for how client code and manager code should use the various
allocation and free routines provided with DCE.

Note: DCE provides two versions of DCE RPC stub support routines. The rpc_ss_ routines raise an
exception, while the rpc_sm routines return an error status value. In all other ways, the routines
are identical. It is generally recommended that you use the rpc_sm routines instead of the rpc_ss
routines for compliance with Application Environment Specification for DCE RPC.

 Copyright IBM Corp. 1994, 2001 173

Using the Memory Management Defaults

If it does not matter to the client code which memory allocation routine the RPC client stubs use, the client
code should call the rpc_ss_client_free() routine to free any memory that the client stub allocates and
returns. The rpc_ss_client_free() routine uses the current free routine that is in effect. Client code that
uses rpc_ss_client_free() must use caution if it calls other routines before it frees all of the pieces of
allocated storage with rpc_ss_client_free(), because it is possible that the called code has been written
so that it swaps in a different allocation/free pair without re-establishing the previous allocation/free pair on
exit.

Using rpc_ss_allocate and rpc_ss_free

Both client code and manager code can use rpc_ss_allocate() and rpc_ss_free(). The following sections
describe how.

Using rpc_ss_allocate and rpc_ss_free in Manager Code: Manager code uses either the
rpc_ss_allocate() and rpc_ss_free() routines or the operating system allocation and free routines to
allocate and free memory.

Manager code uses rpc_ss_allocate() to allocate storage for data that the server stub is to send back to
the client. Manager code can either use rpc_ss_free() to free the storage explicitly, or it can rely on the
server stub to free it. After the server stub marshalls the output parameters, it releases any storage that
the manager code has allocated with rpc_ss_allocate().

Manager code can also use the rpc_ss_free() routine to release storage pointed to by a full pointer in an
input parameter and have the freeing of the memory reflected on return to the calling application if the
reflect_deletions attribute has been specified as an operation attribute in the interface definition. See
Chapter 11, “Interface Definition Language” on page 221 for instructions on how to declare the
reflect_deletions operation attribute.

Manager code uses the operating system allocation routine to create storage for its internal data. The
server stub does not automatically free memory that operating system allocation routines have allocated.
Instead, manager code must use the operating system free routine to deallocate the memory explicitly
before it exits.

When manager code makes a remote call, the default memory management routines are
rpc_ss_allocate() and rpc_ss_free().

Using rpc_ss_allocate and rpc_ss_free in Client Code: Client code may also want to use
the rpc_ss_allocate() and rpc_ss_free() routines as the stub memory management scheme. However,
before client code can use rpc_ss_allocate() and rpc_ss_free(), it must first call the
rpc_ss_enable_allocate() routine, which enables the use of rpc_ss_allocate(). If client code calls
rpc_ss_enable_allocate(), it must also call the rpc_ss_disable_allocate() routine before it exits its
thread to disable use of rpc_ss_allocate(). This routine releases all of the memory allocated by calls to
rpc_ss_allocate() in that thread since the call to rpc_ss_enable_allocate() was made. As a result, client
code can either free each piece of allocated storage with rpc_ss_free(), or it can have
rpc_ss_disable_allocate() free it all at once when it disables the rpc_ss_allocate/free memory
management scheme.

Before calling rpc_ss_enable_allocate(), client code must ensure that it has not been called by code that
has already set up the rpc_ss_allocate/free memory management scheme. As a result, if the client code
can ensure that it has not been called from a manager routine, and it can ensure that any previous calls to

174 Application Development Guide: Core Components

rpc_ss_enable_allocate() have been paired with calls to rpc_ss_disable_allocate(), it can safely call
rpc_ss_enable_allocate().

If client code cannot ensure that these conditions are true, it should check to make sure the
rpc_ss_allocate/free scheme has not already been set up. For example:

/$ Get RPC memory allocation thread handle $/

 rpc_ss_thread_handle_t thread_handle;
idl_void_p_t ($p_saved_alloc)(unsigned long);

 void ($p_saved_free)(idl_void_p_t);

 TRY
thread_handle = rpc_ss_get_thread_handle();

 CATCH(pthread_badparam_e)
thread_handle = NULL;

 ENDTRY

if (thread_handle == NULL) {

/$ Set up rpc_ss_allocate environment $/

 rpc_ss_enable_allocate();
 }

 rpc_ss_swap_client_alloc_free(
 appl_client_alloc,appl_client_free,
 &p_saved_alloc,&p_saved_free);

After control returns from the client stub, the client code should again check to see whether
rpc_ss_allocate/free has already been enabled before it calls rpc_ss_disable_allocate():

 rpc_ss_set_client_alloc_free(p_saved_alloc,p_saved_free);

/$ If we set up rpc_ss_allocate environment, disable it now $/

if (thread_handle == NULL)
 rpc_ss_disable_allocate();

Using Your Own Allocation and Free Routines

At times it might be necessary for client code to change the routines that the client stubs use to allocate
and free memory. For example, client code that is making an RPC call might want to direct the RPC
client stubs to use special debug versions of malloc() and free() that check for memory leaks. Another
example might be an application that uses DCE RPC but needs to preserve its users' ability to free
memory returned from the application using the platform's memory management scheme (rather than
exposing the user to DCE).

Client code that wants to use its own memory allocation and free routines can use the
rpc_ss_swap_client_alloc_free() routine to exchange the current client allocation and freeing mechanism
for one supplied in the call. The routine returns pointers to the memory allocation and free routines
formerly in use. Before calling rpc_ss_swap_client_alloc_free(), client code must ensure that it has not
been called from a manager routine.

Deallocation of allocated storage returned from the client stubs is not automatic. Therefore, client code
must ensure that it uses the free routine that it specified in the call to to rpc_ss_swap_client_alloc_free()
to deallocate each piece of allocated storage.

 Chapter 10. Topics in RPC Application Development 175

Client code that swaps in memory management routines with rpc_ss_swap_client_alloc_free() should
use the rpc_ss_set_client_alloc_free() routine before it exits to restore the old allocation and free
routines.

Using Thread Handles in Memory Management

There are two situations where control of memory management requires the use of thread handles. The
more common situation is when the manager thread spawns additional threads. The less common
situation is when a program transitions from being a client to being a server, then reverts to being a client.

Spawning Threads: When a remote procedure call invokes the manager code, the manager code
may wish to spawn additional threads to complete the task for which it was called. To spawn additional
threads that are able to perform memory management, the manager code must first call the
rpc_ss_get_thread_handle() routine to get its thread handle and then pass that thread handle to each
spawned thread. Each spawned thread must call the rpc_ss_set_thread_handle() routine with the
handle received from the manager code.

These routine calls allow the manager and its spawned threads to share a common memory management
environment. This common environment enables memory allocated by the spawned threads to be used in
returned parameters and causes all allocations in the common memory management environment to be
released when the manager thread returns to the server stub.

The main manager thread must not return control to the server stub before all the threads it spawned
complete execution; otherwise, unpredictable results may occur.

The listener thread can cancel the main manager thread if the remote procedure call is orphaned or if a
cancelation occurs on the client side of the application. You should code the main manager thread to
terminate any spawned threads before it exits. The code should anticipate exits caused by an unexpected
exception or by being canceled.

Your code can handle all of these cases by including a TRY/FINALLY block to clean up any spawned
threads if a cancelation or other exception occurs. If unexpected exceptions do not concern you, then
your code can perform two steps. They are disabling cancelability before threads are spawned followed
by enabling cancelability after the join operation finishes and after testing for any pending cancel
operations. Following this disable/enable sequence prevents routine pthread_join() from producing a
cancel point in a manager thread that has spawned threads which, in turn, share thread handles with the
manager thread.

Transitioning from Client to Server to Client: Immediately before the program changes from
a client to a server, it must obtain a handle on its environment as a client by calling
rpc_ss_get_thread_handle(). When it reverts from a server to a client, it must reestablish the client
environment by calling the rpc_ss_set_thread_handle() routine, supplying the previously obtained handle
as a parameter.

Guidelines for Error Handling

During a remote procedure call, server and communications errors may occur. You can handle them
using any or all of the following methods:

� Writing exception handler code to recover from the error or to exit the application

� Using the fault_status attribute in the ACF to report an RPC server failure

� Using the comm_status attribute in the ACF to report a communications failure.

176 Application Development Guide: Core Components

Use of exceptions, where the procedure exits the program because of an error, tends to improve code
quality. Exceptions make errors more visible because of the point where the program exits, and reduces
the amount of code needed to detect error conditions and handle them. When you use the fault_status
or comm_status IDL attribute, an exception that occurs on the server is not reported to the client as an
exception. The variable to which the fault_status or comm_status attribute is attached, contains error
codes. These codes report errors that would not have occurred if the application were not distributed over
a communications network. The fault_status and comm_status attributes provide a method of handling
RPC errors without using an exception handler.

 Exceptions

Exceptions report errors, either RPC errors or errors in application code, when comm_status or
fault_status or both are not present in the ACF. If you use exceptions, you:

� Do not have to adjust procedure declarations between local and distributed code.

� Can distribute existing interfaces without changing code.

� Do not have to check for failures. This results in more versatile code because errors are reported
even if they are not checked.

� Write more efficient code than when there is no recovery coded for failures.

� Can use a simpler coding style.

Exceptions work well for coarse-grained exception handling. If your application does not contain any
exception handlers and the application thread gets an error, the application thread is ended and a
system-dependent error message from the threads package is printed.

Note: RPC exceptions are equivalent to RPC status codes. To identify the status code that corresponds
to a given exception, replace the _x_ string of the exception with the string _s_. For example, the
exception rpc_x_comm_failure is equivalent to the status code rpc_s_comm_failure. The RPC
exceptions are defined in the <dce/rpcexc.h> header file.

The RPC status codes are documented in z/OS DCE Messages and Codes. The documentation
for each status code includes the message text, the explanation, and the suggested user action.

The set of exceptions that can always be returned from the server to the client (such as the
rpc_x_invalid_tag exception) are referred to as system exceptions. These exceptions are defined in
dce/rpcexc.h and dce/exc_handling.h.

An interface definition can also specify a set of user-defined exceptions that the interface's operations can
return to the client. You can declare user-defined exceptions in an interface definition by using the
exceptions interface attribute, which is described in Chapter 11, “Interface Definition Language” on
page 221.

If a user-defined exception in the implementation of a server operation occurs during server execution, the
server terminates the operation and propagates the exception to the client in a manner similar to the way
system exceptions are propagated. If a server implementation of an operation raises an exception that is
neither a system exception nor a user-defined exception, the exception returned to the client is
rpc_x_unknown_remote_fault.

By default, the IDL compiler defines and initializes all exceptions under a "once block" in the generated
stubs. If you want to share exception names in multiple interfaces or you desire greater control over how
these exceptions are defined and initialized, you can use the ACF extern_exceptions attribute to disable
the automated mechanism that the IDL compiler uses to define and initialize exceptions. See Chapter 12,
“Attribute Configuration Language” on page 285 for more information on the extern_exceptions attribute.

 Chapter 10. Topics in RPC Application Development 177

Because exceptions are associated with operation implementation, they are not imported into other
interfaces by way of the import declaration. For more information about using exceptions to handle
errors, see Part 3, “Using the DCE Threads APIs” on page 313.

The fault_status Attribute

The fault_status attribute requests that errors occurring on the server due to incorrectly specified
parameter values, resource constraints, or coding errors be reported by an additional status parameter
instead of by an exception. If a user-defined exception is returned from a server to a client that has
specified fault_status on the operation in which the exception occurred, the value given to the
fault_status parameter is rpc_s_fault_user_defined.

The fault_status attribute has the following characteristics:

� Occurs where you do not want transparent local/remote behavior

� Occurs where you expect that you may be passing incorrect data to the server or the server is not
coded robustly, or both

� Works well for fine-grained error handling

� Requires that you adjust procedure declarations between local and distributed code

� Controls the reporting only of errors that come from the server and that are reported via a fault packet

For more information on the fault_status attribute, see Chapter 12, “Attribute Configuration Language” on
page 285.

The comm_status Attribute

The comm_status attribute requests that RPC communications failures be reported through an additional
status parameter instead of by an exception. The comm_status attribute has the following
characteristics:

� Occurs where you expect communications to fail routinely; for instance, no server is available, the
server has no resources, and so on

� Works well for fine-grained error handling; for example, trying a procedure many times until it
succeeds

� Requires that you adjust procedure declarations between local and distributed code to add the new
status parameter

� Controls the reporting of errors only from RPC runtime error status codes

For more information on the comm_status attribute, see Chapter 12, “Attribute Configuration Language”
on page 285.

Determining Which Method to Use for Handling Exceptions

Some conditions are better for using the comm_status or fault_status attribute on an operation, rather
than the default approach of handling exceptions.

The comm_status attribute is useful only if the call to the operation has a specific recovery action to
perform for one or more communications failures; for example, rpc_s_comm_failure or
rpc_s_no_more_bindings. The comm_status attribute is recommended only when the application
knows that it is calling a remote operation. If you expect communications to fail often because the server

178 Application Development Guide: Core Components

does not have enough resources to execute the call, you can use this attribute to allow the call to be
retried several times. If you are using an implicit or explicit binding, you can use the comm_status
attribute if you want to try another server because the operation cannot be performed on the one you are
currently using. You can also use an exception handler for each of the two previous instances. In
general, the advantage of using comm_status is that the recovery is local to the routine and so the
overhead is less. The disadvantage of using comm_status is that it results in two different operation
signatures. Distributed calls contain the comm_status attribute, however; local calls do not. Also, if all of
the recovery cannot be done locally (where the call is made), there must be a way to pass the status to
outer layers of code to process it.

The fault_status attribute is useful only if the call to the operation has a specific recovery action to
perform for one or more server faults; for example, rpc_s_invalid_tag, rpc_s_fault_pipe_comm_error,
rpc_s_fault_int_overflow, or rpc_s_fault_remote_no_memory. Use fault_status only when the
application calls a remote operation and wants different behavior than if it calls the same operation locally.
If you are requesting an operation on a large data set you can use this attribute to trap
rpc_s_fault_remote_no_memory and retry the operation to a different server, or you may break your
data set into two smaller sections. You can also handle the previous case with exception handlers. The
advantage of using fault_status if the recovery is local is that the overhead is less. The disadvantage of
fault_status is that the operation is different between the local and distributed case. Also, if all of the
recovery cannot be done locally, there must be a way to pass the status to outer layers of code to process
it.

Examples of Error Handling

The following sections present two examples of error handling. The first example assumes that the
comm_status attribute is in use in the ACF. The second example assumes that the comm_status
attribute is not in use.

The Matrix Math Server Example: Assume that you have an existing local interface that
provides matrix math operations. Since it is local, errors such as floating-point overflow or divide by zero
are returned to the caller of a matrix operation as exceptions. It is likely that these exceptions are caused
by providing data to the operation in an improper form.

In this case, the exceptions are part of the interface, so fault_status changes the way the application calls
the matrix interface and probably is undesirable. Depending on the environment, finding a server may not
be difficult (if the network is relatively stable and has enough resources), and adding comm_status serves
only to introduce differences between the local and distributed applications.

If a decision as to what action to take is based upon a communications failure, then you may try to add
the conditional code comm_status requires. Otherwise, using auto_handle allows an attempt on each
available server. If no server is available, the application terminates because it cannot proceed. You can
add an exception handler to the main program to report the error in a user-friendly manner.

The Stock Quote Application Example: Assume that you have a Windows application that
reads from stock quote servers and displays graphs of the data. Since you do not expect to get server
failures because it is a commercial-quality server, you are not interested in writing code to handle values
returned from fault_status. If high availability and robustness is important, you may have a list of
recovery plans to make sure a stock analyst can get the necessary information as quickly as possible.
For example:

retry_count = 10;
do
 query_stock_quote(h, ...,&st);

switch (st) /$ st parameter can be used because $/

 Chapter 10. Topics in RPC Application Development 179

{ /$ [comm_status] is in the ACF $/
 case rpc_s_ok:
 break;
 case rpc_s_comm_failure:

retry_count -= 1;
 break;
 case rpc_s_network_unreachable:

h = some_other_handle;
 break;
 case
 .
 .
 .
 default:

retry_count -= 1;
 }
while ((st == rpc_s_ok) || (retry_count <= 0))

If this is not a critical application, you may only report that the server is currently unavailable. Depending
upon the design of the application, there may be several places to put the exception handler to report the
failure but continue processing. For example:

TRY
 update_a_quote(...);
CATCH_ALL

display_message("Stock quote not currently available");
ENDTRY

This example assumes that update_a_quote() eventually calls the remote operation
query_stock_quote() and that this call may raise an exception that is detected and reported here.

The advantage of using exceptions in this case is that all of the work done in update_a_quote() has the
same error recovery and it does not need to be repeated at every call to a remote operation. Another
advantage is that if one of the remote operations does have a recovery for one exception, it can handle
that one exception and allow the rest to propagate to the more general handler in an outer layer of the
code.

 Context Handles

During a series of remote procedure calls, the client may need to refer to a context maintained by a
specific server instance. Server application code can maintain information it needs for a particular client
(such as the state of RPC the client is using) as a context. To provide a client with a means of referring
to its context, the client and server pass back and forth an RPC-specific parameter called a context
handle. A context handle is a reference (a pointer) to the server instance and the context of a particular
client. A context handle ensures that subsequent remote procedure calls from the client can reach the
server instance that is maintaining context for the client.

On completing the first procedure in a series, the server passes a context handle to the client. The
context handle identifies the context that the server uses for subsequent operations. The client is not
supposed to do anything with the context handle; it merely passes it to subsequent calls as needed, and it
is used internally by the remote calls. This allows applications to have such things as remote calls that
handle file operations much as local calls would; that is, a client application can remotely open a file, get
back a handle to it, and then perform various other remote operations on it, passing the context handle as
an argument to the calls. A context handle can be used across interfaces (where a single server offers
the multiple interfaces), but a context handle belongs only to the client who caused it to be activated.

180 Application Development Guide: Core Components

The server maintains the context for a client until the client calls a remote procedure that terminates use of
the context or communications are lost. In the latter case, the server's runtime can invoke a context
rundown procedure. This application-specific routine is called by the server stub automatically to reclaim
(rundown) the pointed-to resource in the event of a communications break between the server and client.
For example, in the case of the remote file pointer just mentioned, the context rundown routine would
simply close the file.

As usual with RPC, you need to apply indirection operators in a variety of ways to maintain the correct [in]
and [out] semantics. Typical declarations for a context handle follow.

In the .idl file, declare a named type such as:

typedef [context_handle] void$ my_handle_t;

A manager routine that returns a context handle as an out parameter declares it as:

 my_handle_t $h;

The routine then sets the value of the handle as follows:

$h = &context_data;

A routine that refers to a context handle as an in parameter declares it as:

 my_handle_t h;

and dereferences the handle as follows:

context_data = (my_handle_t$)h;

For the in,out case, the routine uses the same declaration as in the out case, and dereferences the
handle as follows:

context_data = (my_handle_t$)$h;

The following extensive example shows a simple use of context handles. In the sample code, the client
requests a unit of storage from the server, using the store_open() call, and receives a handle to the
allocated storage. The store_read(), store_write(), and store_set_ptr() routines allow the client to read
from and write to specific locations in the allocated storage. The store_close() routine releases the server
resources.

Context Handles in the Interface

The .idl file declarations for the store interface are as follows:

/$
 $ store.idl
 $ A sample interface that demonstrates server maintained context.
 $ The client requests temporary storage of a specified size,
 $ and the server returns a handle that can be used to read and
 $ write to storage. The interface doesn't care how the
 $ server implements the storage.
 $/
[
uuid(0019b8c5-e8b5-1c84-9a41-0000c0d4de56),
pointer_default(ref),
version(1.0)
]
interface store
{

/$ A context handle used to access remote storage: $/
typedef [context_handle] void$ store_handle_t;

 Chapter 10. Topics in RPC Application Development 181

/$ A storage object name string: $/
/$ typedef [string] char$ store_name_t; $/

/$ A buffer type for data: $/
typedef byte store_buf_t[$];

/$ Note that the context handle is an [out] parameter of the open $/
/$ routine, an [in, out] parameter of the close routine, and an $/
/$ [in] parameter of the other routines. If the context handle $/
/$ were treated as an [in] parameter of the close routine, the $/
/$ stubs would never learn that the context had been set to NULL, $/
/$ and would consider the context to still be live. This would $/
/$ result in the rundown routine's being called when the client $/
/$ terminated, even though there would be no context to run down. $/

 void store_open(
[in] handle_t binding,
[in] unsigned32 store_size,
[out] store_handle_t $store_h,
[out] error_status_t $status

);

 void store_close(
[in,out] store_handle_t $store_h,
[out] error_status_t $status

);

 void store_set_ptr(
[in] store_handle_t store_h,
[in] unsigned32 offset,
[out] error_status_t $status

);

 void store_read(
[in] store_handle_t store_h,
[in] unsigned32 buf_size,
[out, size_is(buf_size), length_is($data_size)] store_buf_t buffer,
[out] unsigned32 $data_size,
[out] error_status_t $status

);

 void store_write(
[in] store_handle_t store_h,
[in] unsigned32 buf_size,
[in, size_is(buf_size)] store_buf_t buffer,
[out] unsigned32 $data_size,
[out] error_status_t $status

);
}

Context Handles in a Server Manager

Server manager code to provide a rudimentary implementation of the store interface is as follows:

/$ context_manager.c -- implementation of "store" interface. $/
/$ $/
/$ $/
/$ The server maintains a certain number of storage areas, only one of $/
/$ which can be (or should be) opened by a single client at a time. $/
/$ More than one client can, however, apparently be invoked (up to the $/
/$ number of separate storelets == store handles available, defined by $/
/$ the value of NUM_STORELETS). Each client keeps track of its store $/
/$ (and likewise enables the server to do the same) by means of the con- $/

182 Application Development Guide: Core Components

/$ text handle it receives when it opens its store. $/
/$ $/
/$ $/
/$ $/
/$ -77 cols- $/
/$$/

#include <ibm/dce>
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <pthread.h>
#include <dce/dce_error.h>
#include <dce/daclif.h>

#include "context.h"

#define NUM_STORELETS 10

/$$/
/$ The actual "storelet" structure... $/

typedef struct store_hdr{
 pthread_mutex_t ref_lock;
 unsigned32 size;
 unsigned32 refcount;
 idl_byte $storage;
} store_hdr_t;

store_hdr_t headers[NUM_STORELETS]; /$ There's an array of these. $/

/$$/
/$ The store specification structure; note that it is equivalent to the $/
/$ handle; the pointer to it is returned as the handle by the store_open() $/
/$ routine below... $/
/$ The assumption is that all access to a given handle is serialized in a $/
/$ single thread, so no locking is needed for these. $/

typedef struct store_spec{
unsigned32 number; /$ The storelet number we've opened. $/
unsigned32 offset; /$ The current read/write position. $/

} store_spec_t; /$ There is only one of these; it's the handle that gives $/
/$ access to one of the NUM_STORELETS set of "storelets". $/

/$ The server entry name: $/
extern unsigned_char_p_t entry;

/$ Initialization control block: $/
pthread_once_t init_once_blk = pthread_once_init;

/$$$$$$
$
$
$ store_mgmt_init -- Zeroes out all the storelet structures; executed only
$ once per server instance, as soon as a client has
$ called the store_open() routine.
$
$
$$$$$$/

 Chapter 10. Topics in RPC Application Development 183

/$$/
void
store_mgmt_init(
)
{
 int i;
 store_hdr_t $hdr;

fprintf(stdout, "Store Manager: Initializing Store\n");
memset(headers, 0, sizeof(store_hdr_t) $ NUM_STORELETS);
for (i = 0; i < NUM_STORELETS; i++)

 {
hdr = headers + i;

 pthread_mutex_init(
 (pthread_mutex_t $)hdr,
 pthread_mutexattr_default);
 }

}

/$$$$$$
$
$
$ store_open -- Opens a store and returns a handle to it. The store consists
$ of one "storelet" selected from the array of NUM_STORELETS.
$
$
$$$$$$/
/$$/
void
store_open(
 handle_t binding,

unsigned32 store_size, /$ Size specified for actual storage. $/
store_handle_t $store_h, /$ To return the store handle in. $/

 error_status_t $status
)
{

int i; /$ Index variable. $/
store_spec_t $spec; /$ Store specification == handle. $/
store_hdr_t $hdr; /$ Storelet structure. $/

/$ Do the store initialization if this is the first open call... $/
/$ Zero out the store headers... $/

 pthread_once(&init_once_blk, store_mgmt_init);

/$ The following loop goes through all the storelets, looking for $/
/$ one whose reference count is zero. As soon as one such is $/
/$ found, a handle is allocated for it, storage is allocated for $/
/$ its store structure, and the loop (and the call) terminates. If $/
/$ no unreferenced storelet is found, a status of -1 is returned $/
/$ and no handle is allocated... $/
for(i = 0; i < NUM_STORELETS; i++)

 {
/$ Go to the next storelet... $/
hdr = headers + i;

/$ Is it unreferenced?... $/
if (hdr->refcount == 0)

 {
/$ If so, lock the header... $/

184 Application Development Guide: Core Components

$status = pthread_mutex_lock((pthread_mutex_t $)hdr);
if ($status != 0)

 {
 return;
 }

/$... and check the reference count again... $/
if (hdr->refcount == 0)

 {
/$ Now we know we "really" have this one. $/
/$ Only one open is allowed, so lock only $/
/$ the reference count... $/

 hdr->refcount++;

/$ Now unlock the header so other threads $/
/$ can continue to check it... $/
$status = pthread_mutex_unlock((pthread_mutex_t $)hdr);
if ($status != 0)

 return;

/$ Now allocate space for the specifica- $/
 /$ tion structure... $/

spec = (store_spec_t $)malloc(sizeof(store_spec_t));
spec->number = i;
spec->offset = 0;
$store_h = spec;

/$ Allocate space for the storage part of $/
 /$ the header... $/

hdr->storage = (idl_byte $)malloc(store_size);
hdr->size = store_size;

/$ Finally, set the return status to OK, $/
 /$ and return... $/

$status = error_status_ok;
 return;
 }

/$ If the reference count turned out to have $/
/$ been accessed between our first check and our $/
/$ locking the mutex, we must now unlock the mutex $/
/$ preparatory to looping around to check the next $/

 /$ storelet... $/
$status = pthread_mutex_unlock((pthread_mutex_t $)hdr);
if ($status != 0)

 {
 return;
 }
 }
 }

/$ The following is reached only if we never found a free $/
 /$ storelet... $/

$store_h = NULL;
$status = -1;

}

/$$$$$$
$
$

 Chapter 10. Topics in RPC Application Development 185

$ store_set_ptr -- Insert a new value into the store buffer pointer.
$
$
$$$$$$$/
/$$/
void store_set_ptr(

store_handle_t store_h, /$ The store handle. $/
unsigned32 offset, /$ Value to insert into store buffer pointer. $/

 error_status_t $status
)
{

store_spec_t $spec; /$ Our pointer to store handle. $/

spec = (store_spec_t $)store_h; /$ Get the store spec. $/
spec->offset = offset; /$ Copy in the new buffer pointer value. $/
$status = error_status_ok;

}

/$$$$$$
$
$
$ store_close -- Close the opened storelet.
$
$
$$$$$$/
/$$/
void
store_close(

store_handle_t $store_h, /$ Store handle. $/
 error_status_t $status
)
{

store_spec_t $spec; /$ Our pointer to store handle. $/
store_hdr_t $hdr; /$ Pointer to a storelet. $/

printf("Store Manager: Closing Store\n");

spec = (store_spec_t $)$store_h; /$ Get the store spec. $/
hdr = headers + spec->number; /$ Point to the correct storelet. $/

/$ If the thing is actually opened, close it... $/
if (hdr->refcount > 0)

 {
/$ Lock the header first... $/
$status = pthread_mutex_lock((pthread_mutex_t $)hdr);
if ($status != 0)

 {
printf("Close: lock failed\n");

 return;
 }

/$ Check the reference count to make sure no one slipped in $/
/$ before we could lock the header, and already closed the $/

 /$ storage... $/
if (hdr->refcount > 0)

 {
/$ The store is open, and it's locked by us, so we $/
/$ can safely close it. So do it. First, decrement $/
/$ the reference count... $/

 hdr->refcount--;

/$ Is it completely closed now? $/

186 Application Development Guide: Core Components

if (hdr->refcount == 0)
 {

/$ If so, get rid of its storage space... $/
hdr->size = 0;

 free(hdr->storage);
 }
 }

/$ If the store turned out to be closed before we could $/
/$ close it, we have nothing to do but release the lock... $/
$status = pthread_mutex_unlock((pthread_mutex_t $)hdr);
if ($status != 0)

 {
printf("Close: unlock failed\n");

 return;
 }
 }

/$ And free our handle space... $/
 free(spec);

/$ Be sure to NULL the context handle. Otherwise, the context $/
/$ will be considered to be live as long as the client is run- $/

 /$ ning... $/
$store_h = NULL;
$status = error_status_ok;

}

/$$$$$$
$
$
$ store_read -- Read a certain number of bytes from the opened store.
$
$
$$$$$$/
/$$/
void
store_read(

store_handle_t store_h, /$ Store handle. $/
unsigned32 buf_size, /$ Number of bytes to read. $/
store_buf_t buffer, /$ Space to return data read in. $/
unsigned32 $data_size, /$ To return number of bytes read in. $/

 error_status_t $status
)
{

store_spec_t $spec; /$ Our handle pointer. $/
store_hdr_t $hdr; /$ Pointer to a storelet. $/

spec = (store_spec_t $)store_h; /$ Get the storelet spec. $/
hdr = headers + spec->number; /$ Point to the correct storelet. $/

/$ If the amount we're to read is less than the amount left to be $/
/$ read, then read it... $/
if (buf_size <= hdr->size)

 {

/$ Copy bytes from the storelet storage, beginning at off- $/
/$ set, into the return buffer, up to the size of the $/

 /$ buffer... $/
memcpy(buffer, hdr->storage + spec->offset, buf_size);

/$ Update the storelet buffer pointer past what we've just $/

 Chapter 10. Topics in RPC Application Development 187

 /$ read... $/
spec->offset += buf_size;

/$ Show return size of data read... $/
$data_size = buf_size;
$status = error_status_ok;

 return;
 }

/$ If there's less data left than has been specified to read, don't $/
 /$ read it... $/

$data_size = 0;
$status = -1;

}

/$$$$$$
$
$
$ store_write -- Write some data into the opened store.
$
$
$$$$$$/

void
store_write(

/$ handle_t IDL_handle,$/ /$ If the server ACF declares $/
 /$ [explicit_handle] $/

store_handle_t store_h, /$ Store handle. $/
unsigned32 buf_size, /$ Number of bytes to write. $/
store_buf_t buffer, /$ Data to be written. $/
unsigned32 $data_size, /$ To return number of bytes written. $/

 error_status_t $status
)
{

store_spec_t $spec; /$ Our pointer to store handle. $/
store_hdr_t $hdr; /$ Pointer to a storelet. $/

/$ If the server ACF declares IDL handle as an explicit_handle, $/
/$ an access check on IDL handle could be done here. See $/
/$ the example under "Binding and Security Information". $/

spec = (store_spec_t $)store_h; /$ Get the storelet spec. $/
hdr = headers + spec->number; /$ Point to the correct storelet. $/

/$ If the amount of unused room left in the storelet is greater $/
/$ than what we're supposed to write in it, write it... $/
if ((hdr->size - spec->offset) > buf_size)

 {

/$ Copy bytes from the buffer into the storelet storage, $/
/$ beginning at the current read/write position... $/
memcpy(hdr->storage + spec->offset, buffer, buf_size);

/$ Update the storelet buffer pointer to point past what $/
/$ we've just written... $/
spec->offset += buf_size;

/$ Add a null in case we want to read the store as a $/
 /$ string... $/

$(hdr->storage + spec->offset) = 0;

/$ Show return size of data written... $/
$data_size = buf_size;

188 Application Development Guide: Core Components

$status = error_status_ok;
 return;
 }

/$ If we don't have room to write the whole buffer, don't write $/
 /$ anything... $/

$data_size = 0;
$status = error_status_ok;

}

/$$$$$$
 $
 $ print_manager_error-- Manager version. Prints text associated with bad status code.
 $
 $
 $
 $$$$$$/
void
print_manager_error(
char $caller, /$ String identifying the routine that received the error. $/
error_status_t status) /$ the status we want to print the message for. $/
{
 dce_error_string_t error_string;
 int print_status;

dce_error_inq_text(status, error_string, &print_status);
fprintf(stderr," Manager: %s: %s\n", caller, error_string);

}

The sample implementation of the store interface is obviously too limited for any practical use, but it does
demonstrate the application of context handles in a straightforward way. A context handle returned by the
store_open() routine is opaque to the client. To the server it is a pointer to the server's representation of
a storage unit. In this case, it points to a structure that keeps track of the client's current location within a
specific piece of server maintained storage.

Aside from deallocating the actual storage, the store_close() routine sets the context handle to NULL.
The NULL value indicates to the server stub that the context is no longer active, and the stub, in turn, tells
the RPC runtime not to maintain the context. For example, after the store_close() routine has been
invoked, the rundown routine will not be invoked if communication ends between client and server. The
context rundown routine takes care of closing the client's storage in case of a communication failure while
the context is still active.

The global array of store_hdr structures that keeps track of allocated storage, obviously serves no
practical purpose in the example. (Presumably the operating system is already doing this!) However, it
does provide a demonstration of the fact that global server manager data is shared data in the implicitly
multithreaded server environment. The routines that manipulate this shared data may be called
simultaneously by multiple server threads (in response to multiple simultaneous client calls); therefore
locking must be provided, in this case on the refcount field. The sample also demonstrates how the
pthread_once() facility can be used to provide one-time initialization of the shared data on the first
store_open() call.

As an exercise, the storage interface can easily be made more interesting by providing multiple clients
simultaneous access to a given storage area. To implement this, the application could add a store_name
parameter to the store_open() routine, and replace the refcount field with counts of readers and writers.
The division of the storage management between the store_hdr and the store_spec data structures is
intended to facilitate this; the store_hdr holds shared state relating to each store, while the store_spec
holds each thread's private state.

 Chapter 10. Topics in RPC Application Development 189

 Context Rundown

Context handles typically point to some state maintained by a server instance for a client over a series of
RPC operations. If the series of operations fails to complete because communication is lost between
client and server, the server will probably have to take some kind of recovery action such as restoring data
to a consistent state and freeing resources.

The stub detects outstanding context when it marshalls context handle parameters. Outstanding context is
considered to exist from the point at which a non-NULL pointer value is returned, until a NULL pointer
value is returned. When outstanding context exists, the server stub code will call a context rundown
routine in response to certain exceptions that indicate a loss of contact with the client. You should note
that the exact timing of the call depends on the transport. In particular, with the connectionless protocol,
servers that maintain context for clients expect clients to indicate periodically that they are still running. If
the server fails to hear from the client during a specified timeout period, the server will assume that the
client has stopped, and will call the context rundown routine. This can mean a substantial delay between
the time the client actually fails and the time at which context maintained for the client is actually cleaned
up. If the context being held represents a scarce resource on the server, one consequence of the delayed
rundown may be that failed calls continue to hold the scarce resource for some time before it is made
available again.

Since a context handle may be freely shared among threads of the calling client context, it is possible for
outstanding context to exist for more than one call simultaneously. Such shared context is considered to
be outstanding as long as it is outstanding for any of the participating threads. Also, any communication
failures are likely to be detected at different times for each such call thread, and the difference in timing
may be especially noticeable in the case of the connectionless protocol. Context rundown occurs only
after all server call threads have been terminated. This means that call operations in progress on the
server need not be concerned that the context they are operating on will be changed unexpectedly.
Imagine a situation in which context handles represent open file descriptors, and the rundown routine
closes the files. A manager thread that shares these descriptors via a context handle is guaranteed that
the files will remain open even if a communications failure is detected in another thread that also is using
the same context handle.

/$$$$$$
$
$
$ store_handle_t_rundown -- Closes the opened storelet.
$
$
$$$$$$/
/$$/
void
store_handle_t_rundown(
 store_handle_t store_h
)
{
 error_status_t st;

printf("Store Manager: Running down context.\n");
 store_close(&store_h, &st);
}

190 Application Development Guide: Core Components

Binding and Security Information

One element that is clearly missing from the context handle sample code is any access checking. To do
this it is necessary to get the client binding, although it may not be immediately obvious how to do this
with a context handle. The answer is actually quite simple, but to understand it, it helps to have a clear
idea of how binding parameters operate in RPC.

Every call requires binding information, whether this is supplied explicitly as a binding parameter or not.
When a call is made with a binding handle, the client uses cached binding information associated with the
binding handle. When no binding handle parameter is passed, the client derives the binding information it
needs by some other means. For example, with a context handle, the client uses cached binding
information associated with the context handle.

Even when an explicit binding handle parameter is present, the handle is not marshalled as call data in
the same way other call parameters are. Similarly, on the server side, when a binding handle parameter
is present in a manager operation, it is unmarshalled simply as a reference to the binding information
cached by the server runtime for the call. It is irrelevant whether the call was made with an explicit
binding handle parameter on the client side. Therefore, it is perfectly possible for a server manager
operation to have a binding handle as a parameter even when the client RPC call is made without an
explicit binding parameter.

The mechanics of this are to use different .acf declarations on the client and server sides. The .idl file
declaration for the operation does not declare an explicit binding handle parameter, but the server .acf file
applies the [explicit_handle] attribute to the operation. This results in a server stub that expects to
unmarshall a binding handle as the first parameter of the operation, while the client stub does not expect
an explicit binding handle parameter for the call.

An example of a server side .acf file for the store interface is as follows:

/$ store.acf - server side
 $ Unmarshal a client binding handle on each call
 $/

interface store
{
 store_open();
 [explicit_handle]store_close();
 [explicit_handle]store_set_ptr();
 [explicit_handle]store_read();
 [explicit_handle]store_write();
}

You could achieve the same effect by using different .idl files for the client and server, but this is not
recommended. The .idl file serves as the canonical representation of an interface and hence should be
the same for all clients and servers.

This technique can be used in a number of ways: for example, to permit the client to use implicit binding
while the server manager operations extract authorization information from a client binding handle. In the
case of a context handle, the principle is the same. You use the server .acf declarations to add a binding
parameter to the call on the server side. The client continues to call using the context handle, while the
server manager receives the client binding as a first extra parameter. In the case of the sample code, the
client calls to the store interface remain the same, but the server manager implementations now contain
an extra parameter. For example:

 void
 store_write(
 handle_t IDL_handle,
 store_handle_t store_h,

 Chapter 10. Topics in RPC Application Development 191

 unsigned32 buf_size,
 store_buf_t buffer,
 unsigned32 $data_size,
 error_status_t $status
)
 {
 store_spec_t $spec;
 store_hdr_t $hdr;

if (check_access(IDL_handle, sec_acl_perm_write) == 0)
 {

$status = str_s_no_perms;
 return;
 }
 .
 .
 .
 }

 Pipes

Pipes are a mechanism for efficiently handling large quantities of data by overlapping the transfer and
processing of data. Input data is transferred in chunks to the server for processing, and output data is
processed by the server in chunks and transferred to the client. A pipe is declared in a type definition of
an interface definition and the data type is used as parameters in the operations of the interface. The
server manager calls stub pipe support routines in a loop, and the client stub calls pipe support routines
that the client application must provide.

One of the pipe support routines that the client must provide is an alloc routine, which allocates a buffer
for each chunk of pipe data. Given that pipes are intended to process data asynchronously, consuming it
as it arrives, the alloc routine should not just blindly allocate a new buffer each time it is called, since the
net effect would be to allocate space for the whole stream. A reasonable approach is either to declare a
buffer statically or allocate it on the first call (per thread), and thereafter simply return the same buffer.
The following code example shows the form an alloc routine takes in client application code.

#define CLIENT_BUFFER_SIZE 2048
 idl_byte client_buffer[CLIENT_BUFFER_SIZE];

void client_alloc (state, bsize, buf, bcount)
 rpc_ss_pipe_state_t state;

unsigned int bsize;
 byte $$buf;

unsigned int $bcount;
 {

$buf = client_buffer;
$bcount = CLIENT_BUFFER_SIZE;

 }

 Input Pipes

In the following example, a client sends the contents of a file to a server as a set of chunks allocated from
the same static buffer. The chunks are processed (in this case, simply printed) as they arrive.

The declaration in the interface definition is as follows:

typedef pipe char test_pipe_t;

 void pipe_test1(
[in] handle_t handle,

192 Application Development Guide: Core Components

[in] test_pipe_t test_pipe,
[out] error_status_t $status

);

Note that the pipe is declared as a typedef, which results in an IDL-generated C typedef for test_pipe_t:
a structure containing pointers to the pipe support routines and a pipe state field. The server manager
and client code then implement the pipe in a complementary fashion.

For an [in] pipe, the server manager code consists of a cycle of calls to the test_pipe.pull routine (a
server stub routine) which terminates when a zero-length chunk is received:

 void
 pipe_test1(
 handle_t binding_h,
 test_pipe_t test_pipe,
 error_status_t $status
)
 {
 char buffer[SBUFFSIZE];
 int count;
 char $cptr;
 do
 {

($(test_pipe.pull))(test_pipe.state, buffer, SBUFFSIZE, &count);
for (cptr = buffer; cptr < buffer + count; cptr++)

 putchar($cptr);
} while (count > 0);

 }

Using the buffer supplied by the manager, the test_pipe.pull routine unmarshalls an amount of data that
is nonzero, but not more than the buffer can hold. There is no guarantee that the buffer will be filled. The
actual amount of data in the buffer is indicated by the count parameter returned in the test_pipe.pull
routine. This count equals the number of test_pipe_t data elements in the buffer.

The test_pipe.pull routine signals the end of data in the pipe by returning a chunk whose count is 0
(zero). Any attempt to pull data from the pipe after the zero-length chunk has been encountered will
cause an exception to be raised. The in pipes must be processed in the order in which they occur in the
operation signature. Attempting to pull data from an in pipe before End-of-Data on any preceding in pipe
has been encountered will result in an exception being raised. If the manager code attempts to write to an
out pipe or return control to the server stub before End-of-Data has been encountered on the last in pipe,
an exception will be raised. (Note that there is no guarantee that chunks seen by the manager will match
the chunks supplied by the client's pull routine.)

The client application code must supply pull and alloc routines and a pipe state. These routines must
work together to produce a sequence of pointers to chunks, of which only the last is empty. In the
following example, the client code provides a test_pipe.pull routine that reads chunks of the input file into
a buffer and returns a count of the chunk size, returning a zero count when the end of the file is reached.
The pipe state block is used here simply as a convenient way to make the file state available to the pull
routine. Applications need not make any use of the pipe state.

/$ Client declares types and routines $/

typedef struct client_pipe_state_t {
 idl_char $filename;
 idl_boolean file_open;
 int file_handle;
 } client_pipe_state_t;

client_pipe_state_t client_in_pipe_state = {false, 0};

 Chapter 10. Topics in RPC Application Development 193

 void client_pull(state,buf,esize,ecount)
client_pipe_state_t $ state;

 byte $buf;
unsigned int esize;
unsigned int $ecount;

 {
if (! state->file_open)

 {
state->file_handle = open(state->filename,O_RDONLY);
if (state->file_handle == -1)

 {
printf("Client couldn't open %s\n", state->filename);

 exit(0);
 }

state->file_open = true;
 }

$ecount = read(state->file_handle, buf, esize);
if ($ecount == 0)

 {
 close(state->file_handle);

state->file_open = false;
 }
 }

Finally, the client must do the following:

1. Allocate the test_pipe_t structure.

2. Initialize the test_pipe_t.pull, test_pipe_t.alloc, and test_pipe_t.state fields.

3. Include code where appropriate for checking the pipe_t.state field.

4. Pass the structure as the pipe parameter. The structure can be passed either by value or by
reference, as indicated by the signature of the operation that contains the pipe parameter.

/$ Client initializes pipe $/
 test_pipe_t test_pipe;

test_pipe.pull = client_pull;
test_pipe.alloc = client_alloc;
test_pipe.state = (rpc_ss_pipe_state_t)&client_in_pipe_state;

/$ Client makes call $/

pipe_test1(binding_h, test_pipe, &status);

To transmit a large amount of data that is already in the proper form in memory (that is, the data is
already an array of test_pipe_t), the client application code can have the alloc routine allocate a buffer
that already has the information in it. In this case, the pull routine becomes a null routine.

 Output Pipes

An [out] pipe is implemented in a similar way to an input pipe, except that the client and server make use
of the push routine instead of the pull routine. The following samples show an [out] pipe used to read the
output from a shell command executed by the server.

The declarations in the interface definition are as follows:

194 Application Development Guide: Core Components

typedef pipe char test_pipe_t;

 void pipe_test2(
[in] handle_t handle,

 [in, string] char cmd[],
[out] test_pipe_t $test_pipe,
[out] error_status_t $status

);

The server manager routines demonstrate a couple of possible implementations. In each case, the
manager makes a cycle of calls to the server stub's push routine, ending by pushing a zero-length chunk:

 #include <dirent.h>
#define SBUFFSIZE 256

 void
 pipe_test2(
 handle_t binding_h,
 idl_char $cmd,
 test_pipe_t $test_pipe,
 error_status_t $status
)
 {

 DIR $dir_ptr;
struct dirent $directory;

 char buffer[SBUFFSIZE];
 FILE $str_ptr;
 int n;

/$ An elementary mechanism to execute a command and get the
$ output back. Note that popen() and fread() are thread-safe,
$ so the whole process won't block while the call thread waits
$ for them to return.

 $
$ This is potentially a dangerous operation!
$ Here we'll only allow a couple of "safe" commands.

 $/

if (!strcmp(cmd, "ps") || !strcmp(cmd, "ls"))
 {

if ((str_ptr = popen(cmd, "r")) == NULL)
 return;

while ((n = fread(buffer, sizeof(char), SBUFFSIZE, str_ptr)) > 0)
 {

($(test_pipe->push))(test_pipe->state, buffer, n);
 }

($(test_pipe->push))(test_pipe->state, buffer, 0);
 fclose(str_ptr);
 }

/$ Here's another method: list an arbitrary directory
$ This time, we buffer the directory names as null-terminated
$ strings of various lengths. The client will need to provide
$ formatting of the output stream, for example, by substituting
$ a CR for each NULL byte.

 $/

 /$
if ((dir_ptr = opendir(cmd)) == NULL)

 {
printf("Can't open directory %s\n", cmd);

 return;

 Chapter 10. Topics in RPC Application Development 195

 }
while ((directory = readdir(dir_ptr)) != NULL)

 {
if (directory->d_ino == 0)

 continue;
 ($(test_pipe->push))(test_pipe->state, directory->d_name,
 strlen(directory->d_name)+1);
 }

($(test_pipe->push))(test_pipe->state, directory->d_name, 0);
 closedir(dir_ptr);

 $/

$status = error_status_ok;
 }

The stub enforces well-behaved pipe filling by the manager by raising exceptions as necessary. After all
in pipes have been drained completely, the out pipes must be completely filled, in order.

The client code uses the same declarations as in the input pipe example, except that instead of using a
client_pull routine it uses a test_push routine that prints out the contents of each received buffer:

 /$
$ Our push routine prints each received buffer-full.

 $/

 void test_push(
 rpc_ss_pipe_state_t $state,
 idl_char $buf,
 unsigned32 count
)
 {
 unsigned_char_t $cptr;

for (cptr = buf; cptr < buf + count; cptr++)
 {

/$ For the second, directory reading example, uncomment the
 following:

if ($cptr == 0)
$cptr = '\n';

 $/
 putchar($cptr);
 }
 }

For an out pipe, the client code must do the following:

1. Allocate the test_pipe_t structure.

2. Initialize the test_pipe.push and test_pipe.state fields.

3. Pass the structure as the pipe parameter, either by value or by reference.

 test_pipe_t test_pipe;

test_pipe.alloc = (void ($)())client_alloc;
test_pipe.push = (void ($)())test_push;
test_pipe.state = (rpc_ss_pipe_state_t)&out_test_pipe_state;

pipe_test2(binding_h, cmd, &test_pipe, &status);

The client stub unmarshalls chunks of the pipe into a buffer and calls back to the application, passing a
reference to the buffer. To allow the application code to manage its memory usage, and possibly avoid

196 Application Development Guide: Core Components

unnecessary copying, the client stub first calls back to the application's test_pipe.alloc routine to get a
buffer. In some cases, this may result in the test_pipe.push routine's not having any work to do.

The client stub may go through more than one (test_pipe.alloc, test_pipe.push) cycle in order to
unmarshall data that the server marshalled as a single chunk. Note that there is no guarantee that chunks
seen by the client stub will match the chunks supplied by the server's push routine.

 Pipe Summary

The pipe examples show how the client and server tasks are complementary. The client implements the
appropriate callback routines (test_pipe.alloc and either test_pipe.push or test_pipe.pull), and the
server manager makes a cycle of calls to either test_pipe.push or test_pipe.pull of the stub. The
application code gives the illusion that the server manager is calling the client-supplied callbacks. In fact,
the manager is actually calling stub-supplied callbacks, and the client callbacks are asynchronous: a
server manager call to one of the callback routines does not necessarily result in a call to the
corresponding client callback.

One result of this is that the client and server should not count on the chunk sizes being the same at each
end. For example, in the last directory reading example, the manager calls the test_pipe.push routine
once with each NULL-terminated file name. However, the client test_push routine does not necessarily
receive the data stream one file name at a time. For example, if the test_push routine attempted to print
the file names using printf("%s\n",buf);, it might fail. An interesting exercise would be to add printf()s
to the client callbacks and the server manager to show when each callback is made.

Note also that the use of the pipe state field by the client is purely local and entirely at the discretion of the
client. The state is not marshalled between client and server, and the server stubs use the local state field
in a private manner. The server manager should not alter the state field.

Pipes may also be [in,out], although the utility of this construct is somewhat limited. Ideally, a client
would like to be able to pass a stream of data to the server and have it processed and returned
asynchronously. In practice, the input and output streams must be processed synchronously: all input
processing must be finished before any output processing can be done. This means that [in, out] pipes,
while they can reduce latency within both the server and the client, cannot reduce latency between server
and client: the client must still wait for all server processing to finish before it can begin to process the
returned data stream.

For an in,out pipe, both the pull routine (for the in direction) and a push routine (for the out direction)
must be initialized, as well as the alloc routine and the state. During the last pull call (when it will return
a zero count to indicate that the pipe is drained), the application's pull routine must reinitialize the pipe
state so that the pipe can be used by the push routine correctly.

Nested Calls and Callbacks

A called remote procedure can call another remote procedure. The call to the second procedure is nested
within the first; that is, the second call is a nested remote procedure call. A nested call involves the
following general phases (as illustrated in Figure 40 on page 198):

�1� A client makes an initial RPC to the first remote procedure.

�2� The first remote procedure makes a nested call to the second remote procedure.

�3� The second remote procedure runs the nested call and returns it to the first remote procedure.

�4� The first remote procedure then resumes running the initial call.

 Chapter 10. Topics in RPC Application Development 197

Calling
code

Call thread

Call thread

RPC thread

Client application thread

Client First server Second server

Second
remote
procedure

remote
procedure

(acting as a client)
3

4

21

Nested RPC thread

Figure 40. Phases of a Nested RPC

A specialized form of a nested RPC shown in Figure 41, involves a called remote procedure that is
making an RPC to the address space of the calling client application thread. Calling the client’s address
space requires that a server application thread be listening in that address space. Also, the second
remote procedure needs a server binding handle for the address space of the calling client.

The remote procedure can convert the client binding handle into a server binding handle by calling the
rpc_binding_server_from_client routine. This routine returns a partially bound binding handle. (The
server binding information lacks an endpoint.) For a nested RPC to find the address space of the calling
client, the server must ensure that the partially bound binding handle is filled in with the endpoint of the
client address space. Information about the rpc_binding_server_from_client routine in the z/OS DCE
Application Development Reference discusses alternatives for ensuring that the endpoint is obtainable for
a nested RPC.

Using the server binding handle, a remote procedure can attempt a nested RPC. The nested call involves
the general phases illustrated in Figure 41.

Calling
code

First
remote
procedure

Remote ServerClient application thread

Second
remote
procedure

Call thread
acting as
a client

Single address space

The server application
thread (listening)

Multithreaded RPC application

Call thread

RPC thread

1

2

3

4

Nested RPC thread

Figure 41. Phases of a Nested RPC to a Client Address Space

The application threads in Figure 41 perform the following activities indicated by the reference keys.

�1� A client application thread from a multithreaded RPC application makes an initial RPC call to the first
remote procedure.

198 Application Development Guide: Core Components

�2� After converting the client binding handle into a server binding handle and obtaining the endpoint for
the address space of the calling client application thread, the first remote procedure makes a nested
call to the second remote procedure at that address space.

�3� The second remote procedure runs the nested call and returns it to the first remote procedure.

�4� The first remote procedure then resumes running the initial call.

Routing Remote Procedure Calls

The following subsections discuss routing incoming RPCs between their arrival at a server’s system and
the server’s start up of the requested remote procedure. The routing steps are:

�1� If a client has a partially bound server binding handle, before sending a call request to a server, the
client runtime must get the endpoint of a compatible server from the endpoint map service of the
server’s system. This endpoint becomes the server address for a call request.

�2� When the request arrives at the endpoint, the server’s system places it in a request buffer belonging
to the corresponding server.

�3� As one of its scheduled tasks, the server gets the incoming calls from the request buffer. The server
either accepts or rejects an incoming call, depending on available resources. If no call thread is
available, an accepted call is queued to wait its turn for an available call thread.

�4� The server then allocates an available call thread to the call.

�5� The server identifies the appropriate manager for the called remote procedure and runs the procedure
in that manager to run the call.

�6� When the call thread finishes running a call, the server returns the call’s output arguments and control
to the client.

Figure 42 on page 200 illustrates these steps.

 Chapter 10. Topics in RPC Application Development 199

DCE Daemon

Endpoint Map

Interface ID Object UUID Prot. seq. Ept.

ncacn_ip_tcp

ncadg_ip_udp 2001 ...

... ...

... ...

...

1

2

4

6

Server process

Call
thread

1025

2001

Endpoint

Endpoint

Request buffer

Request buffer

Returned
call

Incoming
call

3

Call queue

Select
manager
for call

5

Key:
= remote procedure call

1025 ...

Figure 42. Steps in Routing Remote Procedure Calls

The concepts in the following subsections are for the advanced RPC developer. “Obtaining an Endpoint”
discusses how clients obtain endpoints when using partially bound binding handles. “Buffering Call
Requests” on page 205 and “Queuing Incoming Calls” on page 206 discuss how a system buffers call
requests and how a server queues incoming calls; this information is relevant mainly to advanced RPC
developers. “Selecting a Manager” on page 209 discusses how a server selects the manager to run a
call; it is relevant for developing an application that carries out an interface for different types of RPC
objects.

Obtaining an Endpoint

The endpoint mapper service of dced maintains the local endpoint map. The endpoint map is composed
of elements. Each map element contains fully bound server binding information for a potential binding and
an associated interface identifier and object UUID, which may be nil. Optionally, a map element can also
contain an annotation such as the interface name.

Servers use the local endpoint map service to register their binding information. Each interface for which
a server must register binding information requires a separate call to an rpc_ep_register...() routine,
which calls the endpoint map service. The endpoint map service uses a new map element for every
combination of binding information specified by the server. Figure 43 on page 201 shows the
correspondence between server binding information specified by a server and a graphic representation of
the resulting endpoint map elements.

200 Application Development Guide: Core Components

Figure 43. Mapping Information and Corresponding Endpoint Map Elements

An RPC made with server binding information that lacks an endpoint uses an endpoint from the endpoint
map service. This endpoint must come from binding information of a compatible server. The map
element of a compatible server contains the following:

� A compatible interface identifier

The requested interface UUID and compatible version numbers are necessary. For the version to be
compatible, the major version number requested by the client and registered by the server must be
identical, and the requested minor version number must be less than or equal to the registered minor
version number.

� The requested object UUID, if registered for the interface

� A server binding handle that refers to compatible binding information that contains:

 Chapter 10. Topics in RPC Application Development 201

– A protocol sequence from the client’s server binding information

– The same RPC protocol major version number that the client runtime supports

– At least one transfer syntax that matches one used by the client’s system

To identify the endpoint of a compatible server, the endpoint service uses the following rules:

1. If the client requests a non-nil object UUID, the endpoint map service begins by looking for a map
element that contains both the requested interface UUID and object UUID.

a. On finding an element containing both of the UUIDs, the endpoint map service selects the
endpoint from that element for the server binding information used by the client.

b. If no element contains both UUIDs, the endpoint map service discards the object UUID and starts
over (see rule 2).

2. If the client requests the nil object UUID (or if the requested non-nil object UUID is not registered), the
endpoint map service looks for an element containing the requested interface UUID and the nil object
UUID.

a. On finding that element, the endpoint map service selects the endpoint from the element for the
client’s server binding information.

b. If no such element exists, the lookup fails.

The RPC protocol service inserts the endpoint of the compatible server into the client’s server binding
information.

The flow chart in Figure 44 on page 203 illustrates the decisions the endpoint map service makes when
looking up an endpoint for a client.

202 Application Development Guide: Core Components

Call
asking for

Interface
UUID

Other

Parallel
Sysplex

environment with
Coupling
Facility

Endpoint
lookup

Insert endpoint
Use WLM to get
weighted list of

server instances,
then EPM picks
host and server.

No

No

No

No

Yes

Yes

Yes

Yes

Yes

non-nil
Object-UUID

(with nil object
UUID)

mapping
information
compatible

?

?

?

?

registered

Non-nil
Object UUID

and interface UUID
registered
together

?

fails

into
server binding
information.

No

Figure 44. Decisions for Looking Up an Endpoint

You can design a server to allow the coexistence on a host system of multiple interchangeable instances
of a server. Interchangeable server instances are identical, except for their endpoints. That is, they offer
the same RPC interfaces and objects over the same network (host) address and protocol sequence pairs.
For clients, identical server instances are fully interchangeable.

 Chapter 10. Topics in RPC Application Development 203

Having identical server instances is particularly useful in a Parallel Sysplex environment. If you also
have the Coupling Facility (XCF) hardware feature and the Workload Manager (WLM) software, you can
balance workloads among different hosts (or within one host) having identical server instances.

Usually, for each such combination of mapping information (that is, each identical pair of interface and
object), the endpoint map service stores only one endpoint at a time. When a server registers a new
endpoint for mapping information that is already registered, the endpoint map service replaces the old map
element with the new one.

For interchangeable server instances to register their endpoints in the local endpoint map, they must
instruct the endpoint map service not to replace any existing elements for the same interface identifier and
object UUID. Each server instance can create new map elements for itself by calling the
rpc_ep_register_no_replace() routine, or, in a Parallel Sysplex environment with workload balancing, the
rpc_ep_register_no_replace_wlb() routine.

When a client uses a partially bound binding handle, load sharing among interchangeable server instances
depends on the RPC protocol the client is using.

� Connectionless (datagram) protocol

– In most cases:

The map service selects the first map element with compatible server binding information. If
necessary, a client can achieve a random selection among all the map elements with compatible
binding information. However, this requires that before making an RPC, the client needs to
resolve the binding by calling the rpc_ep_resolve_binding() routine.

– In a Parallel Sysplex environment:

For registered endpoints with the activated variable in the true state, the endpoint map service
calls WLM, which returns a list of identical server instances that are weighted according to current
workload. The map service then uses the weights to select a server instance.

 � Connection-oriented protocol

– In most cases:

The client RPC runtime uses the rpc_ep_resolve_binding() routine, and the endpoint map
service selects randomly among all the map elements of compatible servers.

– In a Parallel Sysplex environment:

The client RPC runtime calls the endpoint map service using rpc_ep_resolve_binding(). For
registered endpoints with the activated variable in the true state, the map service calls WLM,
which returns a list of identical server instances that are weighted according to current workload.
The map service then uses the weights to select a server instance.

For an alternative selection criterion, a client can call the rpc_mgmt_ep_elt_inq_{begin,next,done}()
routines and use an application-specific routine to select from among the binding handles returned to the
client.

When a server stops running, its map elements become outdated. Although the endpoint map service
routinely removes any map element containing an outdated endpoint, a lag time exists when stale entries
remain. If a remote procedure call uses an endpoint from an outdated map element, the call fails to find a
server. To avoid clients getting stale data from the endpoint map, before a server stops, it should remove
its own map elements.

A server also has the option of removing any of its own elements from the local endpoint map and
continuing to run. In this case, an unregistered endpoint remains accessible to clients that know it.

204 Application Development Guide: Core Components

Buffering Call Requests

Call requests for RPC servers come into the RPC runtime over the network. For each endpoint that a
server registers (for a given protocol sequence), the runtime sets up a separate request buffer. A request
buffer is a first-in, first-out queue where an RPC system temporarily stores call requests that arrive at an
endpoint of an RPC server. The request buffers allow the runtime to continue to accept requests during
heavy activity. However, a request buffer may fill up temporarily, causing the system to reject incoming
requests until the server fetches the next request from the buffer. In this case, the calling client can try
again, with the same server or a different server. The client does not know why the call is rejected, nor
does the client know when a server is available again.

Each server process regularly dequeues requests, one by one, from all of its request buffers. At this
point, the server process recognizes them as incoming calls. The interval for removing requests from the
buffers depends on the activities of the system and of the server process.

How the runtime handles a given request depends partly on the communications protocol over which it
arrives:

� A call over a connectionless transport is routed by the server’s system to the call request buffer for the
endpoint specified in the call.

� A call over a connection-oriented transport may be routed by the server’s system to a request buffer,
or the call may go directly to the server process.

Whether an RPC goes to the request buffer depends on whether the client sends the call over an
established connection. If a client makes an RPC without an established connection, the server’s
system treats the call request as a connection request and places it into a request buffer. If an
established connection is available, the client uses it for the RPC. The system handles the call as an
incoming call and sends it directly to the server process that owns the connection.

Whether a server gets an incoming call from a request buffer or over an existing connection, the server
process manages the call identically. A server process applies a clear set of call-routing criteria to decide
whether to send a call immediately, queue it, or reject it (if the server is extremely busy). These
call-routing criteria are discussed in “Queuing Incoming Calls” on page 206.

When telling the RPC runtime to use a protocol sequence, a server specifies the number of calls it can
buffer for the specified communications protocol (at a given endpoint). Usually, it is best for a server to
specify a default buffer size, represented by a literal whose underlying value depends on the
communications protocol. The default equals the capacity of a single socket used for the protocol by the
server’s system.

The default usually is adequate to allow the RPC runtime to accept all the incoming call requests. For a
well-known endpoint, the size of a request buffer cannot exceed the capacity of a single socket descriptor
(the default size); specifying a higher number causes a runtime error. For well-known endpoints, specify
the default for the maximum number of call requests.

For example, consider the request buffer at full capacity as represented in Figure 45 on page 206. This
buffer has the capacity to store five requests. In this example, the buffer is full, and the runtime rejects
incoming requests, as is happening to the sixth request.

 Chapter 10. Topics in RPC Application Development 205

System

Request buffer --
call request maximum = 5

123456

Rejected
request

(connection
refused;

datagram
timed out)

Figure 45. A Request Buffer at Full Capacity

Queuing Incoming Calls

Each server process uses a first-in, first-out call queue. When the server is already running its maximum
number of concurrent calls, it uses the queue to hold incoming calls. The capacity of queues for incoming
calls is implementation dependent; most implementations offer a small queue capacity, which may be a
multiple of the maximum number of concurrently running calls.

A call is rejected if the call queue is full. The appearance of the rejected call depends on the RPC
protocol the call is using, as follows:

� Connectionless (datagram) protocol

The server does not notify the client about this failure. The call fails as if the server does not exist,
returning an rpc_s_comm_failure communications status code (rpc_x_comm_failure exception).

206 Application Development Guide: Core Components

 � Connection-oriented protocol

The server rejects the call with an rpc_s_server_too_busy communications status code
(rpc_x_server_too_busy exception).

The server process routes each incoming call as it arrives. Call routing is illustrated by the server in
Figure 46. This server has the capacity to run only one call concurrently. Its call queue has a capacity of
eight calls. This figure consists of four stages (A through D) of call routing by a server process. On
receiving any incoming call, the server begins by looking at the call queue.

.
Server process Server process

Server process

Server process

Call thread Call thread --
concurrent calls
maximum = 1

Call thread --
concurrent calls
maximum = 1 Call thread

Available
call thread

1

5

12

11

10

5

5 6

6

8

8

7

9

9

2

2

3

3

4

4

4

1

1 1

Incoming
call

Incoming
call

Incoming
call

Incoming
call

Call
queue

Call
queue

Call queue --
capacity = 8

Call
queue

queue
empty

queue
NOT full

queue
NOT full

available
call thread

available
call thread

Available
call thread

No

No
2

Returned
call

queue
full

(Server too busy)Rejected
call

A. B.

C.

D.

Figure 46. Stages of Call Routing by a Server Process

1. In stage A, call (1) arrives at a server that lacks any other calls. When the call arrives, the queue is
empty and a call thread is available. The server accepts the call and immediately passes it to a call
thread. The requested remote procedure runs the call in that thread, which becomes temporarily
unavailable.

 Chapter 10. Topics in RPC Application Development 207

2. In stage B, call (5) arrives. The call queue is partially full, and the server accepts the call and adds it
to the end of the queue.

3. In stage C, call (11) arrives. The queue is full, so the server rejects this call, as it rejected the
previous call, (10). (The caller can try again with the same or a different server.)

4. In stage D, the called procedure has completed the call (1), making the call thread available. The
server has removed call (2) from the queue and is passing it to the call thread to be run. Thus, the
queue is partially empty as call (12) arrives, so the server accepts the call and adds it to the queue.

Dynamic Executor Threads

To improve scalability and increase the performance of the RPC runtime, z/OS DCE dynamically allocates
and deallocates system resources such as the number of executor threads required by the server
application. A static allocation of executor threads can cause the following problems:

1. Long server start up time resulting from the number of machine instructions required to run the
pthread_create() API.

2. Waste of critical system resources if a long running server is not busy.

3. The number of servers supported may be limited if all servers specify a large number of executor
threads.

In addition, a large number of executor threads can affect overall system performance. Note that all
executor threads are heavy-weight threads. When you call rpc_mgmt_stop_server_listening() to stop
your server, the Task Control Block for this thread is detached.

Initializing Executor Threads: This section describes how the number of initial executor threads
are created, before the RPC runtime begins to listen for a call.

The number of initial executor threads is calculated based on the number of maximum concurrent calls
you specify in the rpc_server_listen() API. If you specify rpc_c_listen_max_calls_default in the
rpc_server_listen() call, z/OS DCE sets the maximum number of concurrent calls at 50 % of the process
thread limit for the process. You can change the process thread limit by setting both the MAXTHREADS
and MAXTHREADTASKS parameters in the BPXPRMxx parmlib member of the SYS1.PARMLIB data set
to the required value. A value of 500 or greater is recommended for DCE applications. The parameters
contained in BPXPRMxx control the UNIX System Services environment, the hierarchical file system, and
the sockets file systems. The system uses these parameter values to initialize the UNIX System Services
kernel. For more information on the above, refer to z/OS C/C++ Run-Time Library Reference, SA22-7821.

To calculate the number of initial executor threads, use the following formulas:

Number of Concurrent Calls (x) Number of Initial Threads (y)

x ≤ 10 y = x

10 < x ≤ 50 y = ((x - 10) × 0.25) + 10

x > 50 y = ((x - 50) × 0.20) + 10

208 Application Development Guide: Core Components

Increasing Executor Threads: The z/OS DCE product increases the executor thread pool under
the following conditions:

� The response to the current RPC has been sent, and the current number of idling executor threads is
less than the minimum threshold value which is set to the initial value.

� An RPC has arrived, but no idle executor thread is available, and the total number of executor threads
created is less than the number of concurrent calls specified in the rpc_server_listen() API.

In the first case, after an incoming call is processed, the RPC runtime checks the current number of idle
executor threads and decides whether to create, destroy, or reuse the executor thread. If the number is
less than the minimum threshold, the RPC runtime increases the number of idle executor threads. The
number of newly created executor threads depends on the difference between the current number of idle
executor threads and the minimum threshold value. The DCE RPC runtime increases the number of
executor threads by twenty percent of this difference. This percentage dampens the number of executor
threads created to avoid creating too many executor threads. For example, if the minimum threshold
value is 20 and the current number of idle threads is 15, only one executor thread is created. If the
number of idle threads is greater than or equal to the maximum threshold, the executor thread may be
destroyed as described in “Decreasing Executor Threads.”

In the second case, the RPC runtime creates a new executor thread, unless the maximum number of
executor threads that have been created reaches the maximum allowed.

More information on the creation of executor threads can be found in z/OS DCE Application Development
Reference in the description of the rpc_server_listen() API.

Decreasing Executor Threads: After an incoming call is processed, the RPC runtime checks the
current number of idle executor threads. If it is greater than or equal to the maximum threshold value, the
RPC runtime destroys the current executor thread.

Disabling Dynamic Executor Threads: To improve performance and scalability of RPC, the
z/OS DCE default setting for the executor thread pool is to enable dynamic executor threads. If you want
to disable the dynamic executor threads and have the RPC runtime use static executor threads, set the
environment variable _EUV_RPC_DYNAMIC_POOL to 0. If this environment variable is not defined, the
default is to use the dynamic threads.

Selecting a Manager

Unless an RPC interface is used for more than one specific type of object, selecting a manager for an
incoming call is a simple process. When registering an interface with a single manager, the server
specifies the nil type UUID for the manager type.2 In the absence of any other manager, all calls,
regardless of whether they request an object, go to the nil type manager.

The situation is more complex when a server registers multiple managers for an interface. The server
runtime must select from among the managers for each incoming call to the interface. DCE RPC requires
a server to set a non-nil type UUID for a set of objects, and for any interface that will access the objects,
to register a manager with the same type UUID.

To send an incoming call to a manager, a server does the following:

1. If the call contains the nil object UUID, the server looks for a manager registered with the nil type
UUID (the nil type manager).

2 The API uses NULL to specify a synonym to the address of the nil UUID, which contains only zeros.

 Chapter 10. Topics in RPC Application Development 209

� If the nil type manager exists for the requested interface, the server sends the call to that
manager.

� Otherwise, the server rejects the call.

2. If the call contains a non-nil object UUID, the server looks to see whether it has set a type for the
object (by assigning a non-nil type UUID).

If the object lacks a type, the server looks for the nil type manager.

� If the nil type manager exists for the requested interface, the server sends the call to that
manager.

� Otherwise, the server rejects the call.

3. If the object has a type, the call requires a remote procedure of a manager whose type matches the
object’s type. In its absence, the RPC runtime rejects the call.

The flow chart in Figure 47 on page 211 illustrates the decisions a server makes to select a manager to
which to send an incoming call.

210 Application Development Guide: Core Components

Call
asking for

Manager
registered for

Manager
registered with

Dispatch call

Dispatch call

non-nil

No

No

No

No

Yes

Yes

Yes

Yes

non-nil
Object-UUID

nil
type UUID

same non-nil
type UUID

?

?

?

Non-nil
type UUID

set for
object

?

nil

to appropriate

manager

to

manager

Reject call

= The default decision path

Key:

Figure 47. Decisions for Selecting a Manager

Creating Portable Data Using the IDL Encoding Services

The IDL encoding services provide client and server RPC applications with a method for encoding data
types in input parameters into byte stream format and decoding data types in output parameters from a
byte stream without invoking the RPC runtime. Encoding and decoding functions are analogous to
marshalling and unmarshalling, except that the data is stored locally, and is not transmitted over the
network; the IDL encoding services separate the data marshalling and unmarshalling functions from
interaction with the RPC runtime.

Client and server applications can use the IDL encoding services to "flatten" (or "serialize") a data
structure, even binary data, and then store it, for example, by writing it to a file on disk. An RPC

 Chapter 10. Topics in RPC Application Development 211

application on any DCE machine, regardless of its data type size and byte endianness, is then able to use
the IDL encoding services to decode previously encoded data. Without the IDL encoding services, you
cannot create a file of data on one machine and then successfully read that data on another machine that
has different size data types and byte endianness.

The IDL encoding services can generate code that takes the input parameters to a procedure and places
them in a standard form in one or more buffers that are delivered to user code. This process is called
encoding. Encoded data can be written to a file. The IDL encoding services can also generate code that
delivers, as the output parameters of a procedure, data that has been converted into the standard form by
encoding. Delivery of data in this way is called decoding. Data to be decoded can be read from a file.

Applications use the ACF attributes encode and decode as operation attributes or as interface attributes
to direct the IDL compiler to generate IDL encoding services stubs for operations rather than generating
RPC stubs. See Chapter 12, “Attribute Configuration Language” on page 285 for usage information on
encode and decode.

Memory Management for IDL Encoding Services

IDL encoding services stubs handle memory management in the same way as RPC client stubs. When
you call an operation to which the encode or decode or both attributes have been applied, the encoding
services stub uses whatever client stub memory management scheme is currently in effect. “Memory
Management” on page 173 gives further details on client stub memory management defaults and setting
up memory management schemes.

You can control which memory management scheme the stubs will use by calling the
rpc_ss_swap_client_alloc_free() and rpc_ss_set_client_alloc_free() routines. The first routine sets the
memory management routines used by both the encoding and decoding stubs, and the second routine
restores the previous memory management scheme after encoding and decoding are complete.

Note that the memory management scheme established, whether explicitly or by default, is on a
per-thread basis.

 Buffering Styles

There are a number of different ways in which buffers containing encoded data can be passed between
the application code and the IDL encoding services. These are referred to as different "buffering styles".
The different buffering styles are:

Incremental encoding The incremental encoding style requires that you provide an allocate routine
which creates an empty buffer into which IDL Encoding Services can place
encoded data and a write routine which IDL encoding services will call
when the buffer is full or all the parameters of the operation have been
encoded. The IDL encoding services call the allocate and write routines
repeatedly until the encoding of all of the parameters has been delivered to
the user code. See the z/OS DCE Application Development Reference for
a description of the required parameters for the allocate and write routines.

Fixed buffer encoding The fixed buffer encoding style requires that the application supply a single
buffer into which all the encoded data is to be placed. The buffer must
have an address that is 8-byte aligned and must be a multiple of 8 bytes in
size. It must also be large enough to hold an encoding of all the data,
together with an encoding header for each operation whose parameters are
being encoded; 56 bytes should be allowed for each encoding header.

212 Application Development Guide: Core Components

Dynamic buffer encoding With the dynamic buffer encoding style, the IDL encoding services build a
single buffer containing all the encoded data and deliver the buffer to
application code. The buffer is allocated by whatever client memory
management mechanism has been put in place by the application code.
The default for this is malloc(). When the application code no longer needs
the buffer, it should release the memory resource.

The dynamic buffer encoding style has performance implications. The IDL
encoding services will usually allocate a number of intermediate buffers,
then allocate the buffer to be delivered to the application code, copy data
into it from the intermediate buffers, and release the intermediate buffers.

Incremental decoding The incremental decoding buffering style requires that you provide a read
routine which, when called, delivers to the IDL encoding services a buffer
that contains the next part of the data to be decoded. The IDL encoding
services will call the read routine repeatedly until all of the required data
has been decoded. See the z/OS DCE Application Development Reference
for a description of the required parameters for the read routine.

Buffer decoding The buffer decoding style requires that you supply a single buffer containing
all the encoded data. Where application performance is important, note
that if the supplied buffer is not 8-byte aligned, the IDL encoding services
allocate a temporary aligned buffer of comparable size and copy data from
the user-supplied buffer into it before performing the requested decoding.

IDL Encoding Services Handles

When an application's encoding or decoding operation is invoked, the handle passed to it must be an IDL
encoding services handle (the idl_es_handle_t type). The IDL encoding services handle indicates
whether encoding or decoding is required, and what style of buffering is to be used. The IDL encoding
services provides a set of routines to enable the application code to obtain encoding and decoding
handles to the IDL encoding services. The IDL encoding services handle-returning routine you call
depends on the buffering style you have chosen:

� If you have selected the incremental encoding style, you call the idl_es_encode_incremental()
routine, which returns an incremental encoding handle.

� If you have selected the fixed buffer encoding style, you call the idl_es_encode_fixed_buffer()
routine, which returns a fixed buffer encoding handle.

� If you have selected dynamic buffer encoding, you call the idl_es_encode_dyn_buffer() routine,
which returns a dynamic buffer encoding handle.

� If you have selected incremental decoding as your buffering style, you call the
idl_es_decode_incremental() routine, which returns an incremental decoding handle.

� If you have selected the buffer decoding style, you call the idl_es_decode_buffer() routine, which
returns a buffer decoding handle.

When the encoding or decoding for which an IDL encoding services handle was required is completed, the
application code should release the handle resources by calling the idl_es_handle_free() routine. See
the z/OS DCE Application Development Reference for a complete description of the IDL encoding service
routines.

It is an error to call an operation for which encode or decode has been specified using an RPC binding
handle, and it is an error to call an RPC operation using an IDL encoding services handle.

The following restrictions apply to the use of IDL encoding services handles:

 Chapter 10. Topics in RPC Application Development 213

� An operation can be called with an encoding handle only if the operation has been given the encode
ACF attribute

� An operation can be called with a decoding handle only if the operation has been given the decode
ACF attribute

� The auto_handle ACF attribute cannot be used with the IDL encoding services

� The implicit_handle ACF attribute cannot be used with the IDL encoding services

� Customized handles cannot be used with the IDL encoding services

� An in context handle does not contain the handle information needed by the IDL encoding services

 Programming Example

The following example uses the IDL encoding service features described in the preceding sections. The
example verifies that the results of a number of decoding operations are the same as the parameters used
to create the corresponding encodings.

The interface definition for this example is as follows:

[uuid(20aac780-5398-11c9-b996-08002b13d56d), version(0)]
interface es_array
{

const long N = 5000;

 typedef struct
 {
 byte b;
 long l;
 } s_t;

 typedef struct
 {
 byte b;
 long a[7];
 } t_t;

void in_array_op1([in] handle_t h, [in] long arr[N]);
void out_array_op1([in] handle_t h, [out] long arr[N]);

void array_op2([in] handle_t h, [in,out] s_t big[N]);

void array_op3([in] handle_t h, [in,out] t_t big[N]);
}

The attribute configuration file for the example is as follows:

interface es_array
{
 [encode] in_array_op1();
 [decode] out_array_op1();

[encode, decode] array_op2();
[encode, decode] array_op3();

}

The test code for the example is as follows:

#include <dce/pthread_exc.h>
#include "rpcexc.h"
#include <stdio.h>
#include <stdlib.h>
#include <file.h>

214 Application Development Guide: Core Components

#else
#include <sys/file.h>
#endif
#include "es_array.h"

/$
 $ User state for incremental encode/decode
 $/
typedef struct es_state_t {
 idl_byte $malloced_addr;
 int file_handle;
} es_state_t;

static es_state_t es_state;

#define OUT_BUFF_SIZE 2048
static idl_byte out_buff[OUT_BUFF_SIZE];
static idl_byte $out_data_addr;
static idl_ulong_int out_data_size;

/$
 $ User allocate routine for incremental encode
 $/
void es_allocate(state, buf, size)
idl_void_p_t state;
idl_byte $$buf;
idl_ulong_int $size;
{
 idl_byte $malloced_addr;

es_state_t $p_es_state = (es_state_t $)state;

malloced_addr = (idl_byte $)malloc($size);
p_es_state->malloced_addr = malloced_addr;
$buf = (idl_byte $)(((malloced_addr - (idl_byte $)0) + 7) & (˜7));
$size = ($size - ($buf - malloced_addr)) & (˜7);

}

/$
 $ User write routine for incremental encode
 $/
void es_write(state, buf, size)
idl_void_p_t state;
idl_byte $buf;
idl_ulong_int size;
{

es_state_t $p_es_state = (es_state_t $)state;

write(p_es_state->file_handle, buf, size);
 free(p_es_state->malloced_addr);
}

/$
 $ User read routine for incremental decode
 $/
void es_read(state, buf, size)
idl_void_p_t state;
idl_byte $$buf;
idl_ulong_int $size;
{

es_state_t $p_es_state = (es_state_t $)state;

read(p_es_state->file_handle, out_data_addr, out_data_size);
$buf = out_data_addr;

 Chapter 10. Topics in RPC Application Development 215

$size = out_data_size;
}

static ndr_long_int arr[N];
static ndr_long_int out_arr[N];
static s_t sarr[N];
static s_t ref_sarr[N];
static s_t out_sarr[N];
static t_t tarr[N];
static t_t ref_tarr[N];
static t_t out_tarr[N];
static ndr_long_int ($oarr)[M];

#define FIXED_BUFF_STORE (8$N+64)
static idl_byte fixed_buff_area[FIXED_BUFF_STORE];

/$
 $ Test Program
 $/
main()
{
 idl_es_handle_t es_h;
 idl_byte $fixed_buff_start;

idl_ulong_int fixed_buff_size, encoding_size;
 idl_byte $dyn_buff_start;
 error_status_t status;
 int i,j;

for (i = 0; i < N; i++)
 {

arr[i] = random()%10000;
sarr[i].b = i & 0x7f;
sarr[i].l = random()%10000;
ref_sarr[i] = sarr[i];
tarr[i].b = i & 0x7f;
for (j = 0; j < 7; j++) tarr[i].a[j] = random()%10000;
ref_tarr[i] = tarr[i];

 }

 /$
 $Incremental encode/decode
 $/

/$ Encode data using one operation $/
es_state.file_handle = open("es_array_1.dat", O_CREAT|O_TRUNC|O_WRONLY, 0777);
if (es_state.file_handle < 0)

 {
printf("Can't open es_array_1.dat\n");

 exit(0);
 }

idl_es_encode_incremental((idl_void_p_t)&es_state, es_allocate, es_write,
 &es_h, &status);

if (status != error_status_ok)
 {

printf("Error %08x from idl_es_encode_incremental\n", status);
 exit(0);
 }
 in_array_op1(es_h, arr);
 close(es_state.file_handle);
 idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)
 {

printf("Error %08x from idl_es_handle_free\n", status);
 exit(0);

216 Application Development Guide: Core Components

 }

/$ Decode the data using another operation with the same signature $/
out_data_addr = (idl_byte $)(((out_buff - (idl_byte $)0) + 7) & (˜7));
out_data_size = (OUT_BUFF_SIZE - (out_data_addr - out_buff)) & (˜7);
es_state.file_handle = open("es_array_1.dat", O_RDONLY, 0);
if (es_state.file_handle < 0)

 {
printf("Can't open es_array_1.dat for reading\n");

 exit(0);
 }
 idl_es_decode_incremental((idl_void_p_t)&es_state, es_read,
 &es_h, &status);

if (status != error_status_ok)
 {

printf("Error %08x from idl_es_decode_incremental\n", status);
 exit(0);
 }
 out_array_op1(es_h, out_arr);
 close(es_state.file_handle);
 idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)
 {

printf("Error %08x from idl_es_handle_free\n", status);
 exit(0);
 }

/$ Check the input and output are the same $/
for (i = 0; i < N; i++)

 {
if (out_arr[i] != arr[i])

 {
printf("out_arr[%d] - found %d - expecting %d\n",

i, out_arr[i], arr[i]);
 }
 }

 /$
$ Fixed buffer encode/decode

 $/
fixed_buff_start = (idl_byte $)(((fixed_buff_area - (idl_byte $)0) + 7)

 & (˜7));
fixed_buff_size = (FIXED_BUFF_STORE - (fixed_buff_start - fixed_buff_area))

 & (˜7);
 idl_es_encode_fixed_buffer(fixed_buff_start, fixed_buff_size,

&encoding_size, &es_h, &status);
if (status != error_status_ok)

 {
printf("Error %08x from idl_es_encode_fixed_buffer\n", status);

 exit(0);
 }
 array_op2(es_h, sarr);
 idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)
 {

printf("Error %08x from idl_es_handle_free\n", status);
 exit(0);
 }

idl_es_decode_buffer(fixed_buff_start, encoding_size, &es_h, &status);
if (status != error_status_ok)

 {
printf("Error %08x from idl_es_decode_buffer\n", status);

 exit(0);
 }

 Chapter 10. Topics in RPC Application Development 217

 array_op2(es_h, out_sarr);
 idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)
 {

printf("Error %08x from idl_es_handle_free\n", status);
 exit(0);
 }

for (i = 0; i < N; i++)
 {

if (out_sarr[i].b != ref_sarr[i].b)
 {

printf("array_op2 - out_sarr[%d].b = %c\n", i, out_sarr[i].b);
 }

if (out_sarr[i].l != ref_sarr[i].l)
 {

printf("array_op2 - out_sarr[%d].l = %d\n", i, out_sarr[i].l);
 }
 }

 /$
$ Dynamic buffer encode - fixed buffer decode

 $/
idl_es_encode_dyn_buffer(&dyn_buff_start, &encoding_size, &es_h, &status);
if (status != error_status_ok)

 {
printf("Error %08x from idl_es_encode_dyn_buffer\n", status);

 exit(0);
 }
 array_op3(es_h, tarr);
 idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)
 {

printf("Error %08x from idl_es_handle_free\n", status);
 exit(0);
 }

idl_es_decode_buffer(dyn_buff_start, encoding_size, &es_h, &status);
if (status != error_status_ok)

 {
printf("Error %08x from idl_es_decode_buffer\n", status);

 exit(0);
 }
 array_op3(es_h, out_tarr);
 rpc_ss_free (dyn_buff_start);
 idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)
 {

printf("Error %08x from idl_es_handle_free\n", status);
 exit(0);
 }

for (i = 0; i < N; i++)
 {

if (out_tarr[i].b != ref_tarr[i].b)
 {

printf("array_op3 - out_tarr[%d].b = %c\n", i, out_tarr[i].b);
 }

for (j=0; j<7; j++)
 {

if (out_tarr[i].a[j] != ref_tarr[i].a[j])
 {

printf("array_op3 - out_tarr[%d].a[%d] = %d\n",
i, j, out_tarr[i].a[j]);

 }
 }
 }

218 Application Development Guide: Core Components

 printf("Test Complete\n");
}

Performing Multiple Operations on a Single Handle

Multiple operations can be performed using one encoding handle before the handle is released. In this
case, all the encoded data is part of the same buffer system.

A single decoding handle is used to obtain the contents of the encoded data. Decoding operations must
be called in the same order the encoding operations were called to create the encoded data.

The definition of the user client memory management functions, and any memory allocated by IDL
encoding services using the client memory allocator, must not be modified between operations for which
the same encoding handle is used.

Determining the Identity of an Encoding
Applications can use the idl_es_inq_encoding_id() routine to determine the identity of an encoding
operation, for example, before calling their decoding operations.

 Chapter 10. Topics in RPC Application Development 219

220 Application Development Guide: Core Components

Chapter 11. Interface Definition Language

This chapter describes how to construct an Interface Definition Language (IDL) file. First, it describes the
IDL syntax notation conventions and lexical elements. It then describes the interface definition structure
and the individual language elements supported by the IDL compiler.

Note: In z/OS DCE, IDL provides services to facilitate the operations of applications using RPC. The
following examples, which relate to topics discussed in this chapter, can be found in the
/usr/lpp/dce/examples/idl directory:

 � es_array
 � n_e_union
 � pipes
 � refdels
 � strint
 � ue1
 � unique1

The Interface Definition Language File

The Interface Definition Language (IDL) file defines all aspects of an interface that affect data passed over
the network between a caller (client) and a callee (server). The interface definition file usually has a file
extension of ‘IDL’, or a qualifier ‘IDL’ if it is a data set. For a caller and callee to interoperate, they both
need to incorporate the same interface definition.

IDL files used with z/OS DCE must be coded in code page IBM-1047. The output files from the z/OS
DCE IDL compiler (header files, client and server stub files) will also be in code page IBM-1047.

Syntax Notation Conventions

In addition to the documentation conventions described in the Preface of this book, the IDL syntax uses
the special notation described in the following subsections.

 Typography

IDL documentation uses the following type style:

bold Bold type style indicates a literal item. Keywords and literal punctuation are represented in
bold type style. Identifiers used in a particular example are represented in bold type style
when mentioned in the text.

italic Italic type style indicates a symbolic item for which you need to substitute a particular value.
In IDL syntax descriptions, all identifiers that are not keywords are represented in italic type
style.

monospace A monospace type style is used for source code examples (in IDL or in C) that are
displayed separately from regular text.

 Copyright IBM Corp. 1994, 2001 221

 Special Symbols

IDL documentation uses the following symbolic notations:

[item] Italic brackets surrounding an item indicate that the item is optional.

[item] Brackets shown in regular type style are a required part of the syntax.

item . . . Ellipsis dots following an item indicate that the item may occur one or more times.

item , ... If an item is followed by a literal punctuation character and then by ellipsis points, the item
may occur either once without the punctuation character, or more than once, with the
punctuation character separating each instance.

 . . . If ellipsis points are shown on a line by themselves, the item or set of items in the preceding
line may occur any number of additional times.

item | item If several items are shown separated by vertical bars, exactly one of those items must occur.

IDL Lexical Elements

The following subsections describe these IDL lexical elements:

 � Identifiers
 � Keywords
 � Punctuation characters
 � White space
 � Case sensitivity

 Identifiers

The character set for IDL identifiers comprises the alphabetic characters A to Z and a to z, the digits 0 to
9, and the _ (underscore) character. An identifier must start with an alphabetic character.

No IDL identifier can exceed 31 characters. In some cases, an identifier has a shorter maximum length
because the IDL compiler uses the identifier as a base from which to construct other identifiers; each case
is identified as it occurs.

 Keywords

IDL reserves some identifiers as keywords. In the text of this chapter, keywords are represented in bold
type style, and identifiers that you choose are represented in italic type style.

 Punctuation Characters

IDL uses the following graphic characters:

" ' () $, . / : ; | = [\] { } ^ ˜

In addition, the following trigraphs are supported by z/OS DCE as an alternative to entering special
characters:

Trigraph Special character

??(Left square bracket ([)

??) Right square bracket (])

222 Application Development Guide: Core Components

??' Caret (^)

??! Vertical bar (|)

??- Tilde (˜)

??< maybe be substituted for a left brace if the { (left brace) national replacement set character is not
available on the keyboard.

??> maybe be substituted for a right brace if the { (right brace) national replacement set character is not
available on the keyboard.

Use of these trigraph sequences adds the following punctuation characters to the set in the preceding list:

< > ? ! -

 White Space

White space is used to delimit other constructs. IDL defines the following white space constructs:

 � A space
� A carriage return
� A horizontal tab
� A form feed at the beginning of a line

 � A comment
� A sequence of one or more of the preceding white space constructs

A keyword, identifier, or number not preceded by a punctuation character must be preceded by white
space. A keyword, identifier, or number not followed by a punctuation character must be followed by white
space. Unless noted otherwise, any punctuation character may be preceded and possibly followed by
white space.

When enclosed in " " (double quotation marks) or ' ' (single quotation marks), white space constructs are
treated literally. Otherwise, they serve only to separate other lexical elements and are ignored.

The character sequence /* (slash and asterisk) begins a comment, and the character sequence */ (asterisk
and slash) ends a comment. For example:

/$ all natural $/
import "potato.idl"; /$ no preservatives $/

Comments cannot be nested.

 Case Sensitivity

The IDL language is case sensitive. The IDL compiler does not force the case of identifiers in the
generated code. You only have to be aware of the implications involved in calling generated stubs from
languages other than C. File names are not case sensitive.

IDL versus C

IDL resembles a subset of ANSI C. The major difference between IDL and C language is that there are
no executable statements in IDL.

 Chapter 11. Interface Definition Language 223

 Declarations

An interface definition specifies how operations are called, not how they are carried out. IDL is therefore a
purely declarative language.

 Data Types

To support applications written in languages other than C, IDL defines some data types that do not exist in
C and extends some data types that do exist in C. For example, IDL defines a Boolean data type.

Some C data types are supported by IDL only with modifications or restrictions. For example, unions must
be discriminated, and all arrays must be accompanied by bounds information.

 Attributes

The stub modules that are generated from an interface definition require more information about the
interface than can be expressed in C. For example, stubs must know whether an operation parameter is
an input or an output.

The additional information required to define a network interface is specified using IDL attributes. IDL
attributes can apply to types, to structure members, to operations, to operation parameters, or to the
interface as a whole. Some attributes are allowed in only one of the preceding contexts; others are
allowed in more than one context. An attribute is always represented in [] (brackets) before the item to
which it applies. For example, in an operation declaration, inputs of the operation are preceded by the in
attribute and outputs are preceded by the out attribute:

void arith_add (
[in] long a,
[in] long b,
[out] long $c,

);

Interface Definition Structure

An interface definition has the following structure:

[interface_attribute, ...] interface interface_name
 {
 declarations
 }

The portion of an interface definition that precedes the { (left brace) is the interface header. The
remainder of the definition is the interface body. Interface header syntax and interface body syntax are
described separately in the following two subsections.

Interface Definition Header

The interface header comprises a list of interface attributes enclosed in [] (brackets), the keyword
interface, and the interface name:

[interface_attribute, ...] interface interface_name

Interface names, together with major and minor version numbers, are used by the IDL compiler to
construct identifiers for interface specifiers, entry point vectors, and entry point vector types. If the major
and minor version numbers are single digits, the interface name can be up to 17 characters long.

224 Application Development Guide: Core Components

Interface Definition Body

The declarations in an interface definition body are one or more of the following:

 import_declaration
 constant_declaration
 type_declaration
 operation_declaration

A ; (semicolon) ends each declaration, and { } (braces) enclose the entire body.

Import declarations must precede other declarations in the interface body. Import declarations specify the
names of other IDL interfaces that define types and constants used by the importing interface.

Constant, type, and operation declarations specify the constants, types, and operations that the interface
exports. These declarations can be coded in any order, provided any constant or type is defined before it
is used.

Overview of IDL Attributes

Table 9 lists the attributes allowed in interface definition files and specifies the declarations in which they
can occur.

Table 9. IDL Attributes

Attribute Where Used

 uuid
 version
 endpoint
 exceptions
 pointer_default
 local

 Interface definition
headers

 broadcast
 maybe
 idempotent
 reflect_deletions

 Operations

 in
 out

 Parameters

 ignore Structures

 max_is
 min_is
 size_is
 first_is
 last_is
 length_is

 Arrays

 string Arrays

 ptr
 ref

 Pointers

 handle Customized handles

 context_handle Context handles

 transmit_as Type declarations

 Chapter 11. Interface Definition Language 225

Interface Definition Header Attributes

This following subsections describe in detail the usage and semantics of the IDL attributes that can be
used in interface definition headers. The attributes provided for interface definition headers are as follows:

 � uuid

 � version

 � endpoint

 � exceptions

 � pointer_default

 � local

The uuid Attribute

The uuid attribute specifies the Universal Unique Identifier (UUID) that is assigned to an interface. The
uuid attribute takes the form:

 uuid (uuid_string)

A uuid_string is the string representation of a UUID. This string is typically generated as part of a skeletal
interface definition by the utility uuidgen. A uuid_string contains one group of 8 hexadecimal digits, three
groups of 4 hexadecimal digits, and one group of 12 hexadecimal digits, with hyphens separating the
groups, as in the following example:

01234567-89ab-cdef-0123-456789abcdef

A new UUID should be generated for any new interface. If several versions of one interface exist, all
versions should have the same interface UUID but different version numbers. A client and a server
cannot communicate unless the interface imported by the client and the interface exported by the server
have the same UUID. The client and server stubs in an application must be generated from the same
interface definition or from interface definitions with identical uuid attributes.

Any remote interface must have the uuid attribute. An interface containing operation definitions must
have either the uuid attribute or the local attribute, but cannot have both.

The uuid attribute can appear at most once in an interface.

The following example illustrates use of the uuid attribute:

uuid(4ca7b4dc-d000-0d00-0218-cb0123ed9876)

The version Attribute

The version attribute specifies a particular version of a remote interface. The version attribute takes the
form:

version (major [.minor])

A version number can be either a pair of integers (the major and minor version numbers) or a single
integer (the major version number). If both major and minor version numbers are supplied, the integers
should be separated by a period without white space. If no minor version number is supplied, 0 (zero) is
assumed.

The following examples illustrate use of the version attribute:

226 Application Development Guide: Core Components

version (1.1) /$ major and minor version numbers $/

version (3) /$ major version number only $/

The version attribute can be omitted altogether, in which case the interface is assigned 0.0 as the default
version number.

A client and a server can communicate only if the following requirements are met:

� The interface imported by the client and the interface exported by the server have the same major
version number.

� The interface imported by the client has a minor version number less than or equal to that of the
interface exported by the server.

You must increase the major version number when you make any incompatible change to an interface
definition. (See the definition of compatible changes that follows.) You cannot decrease the major
version number.

The following are considered compatible changes to an interface definition:

� Adding operations to the interface, if and only if the new operations are declared after all existing
operation declarations in the interface definition.

� Adding type and constant declarations, if the new types and constants are used only by operations
added at the same time or later. Existing operation declarations cannot have their signatures
changed.

You should increase the minor version number only when you make a compatible change to an interface
definition. You must not decrease the minor version number unless you simultaneously increase the
major version number.

The major and minor integers in the version attribute can range from 0 to 65,535 inclusive. However,
these typically are small integers and are increased in increments of one.

The following are considered incompatible changes to an interface definition:

� Changing the signature of an existing operation

� Changing the order of existing operations

� Adding a new operation other than at the end.

The version attribute can appear at most once in an interface.

The endpoint Attribute

The endpoint attribute specifies the well-known endpoint or endpoints on which servers that export the
interface will listen. The endpoint attribute takes the form:

endpoint (endpoint_spec, ...)

Each endpoint_spec is a string in the following form:

" family : [endpoint] "

The family identifies a protocol family. The following are example values for family:

ncacn_ip_tcp NCA Connection over Internet Protocol: Transmission Control Protocol (TCP/IP)

ncadg_ip_udp NCA Datagram over Internet Protocol: User Datagram Protocol (UDP/IP)

 Chapter 11. Interface Definition Language 227

The endpoint identifies a well-known endpoint for the specified family. The values accepted for endpoint
depend on the family but typically are integers within a limited range. IDL does not define valid endpoint
values.

Well-known endpoint values are typically assigned by the central authority that owns a protocol. For
example, the Internet Assigned Numbers Authority assigns well-known endpoint values for the IP protocol
family.

At compile time, the IDL compiler checks each endpoint_spec only for gross syntax. At run time, stubs
pass the family and endpoint strings to the RPC runtime, which validates and interprets them.

Most applications should not use well-known endpoints and should instead use dynamically assigned
opaque endpoints. Most interfaces designed for use by applications should therefore not have the
endpoint attribute.

The endpoint attribute can appear at most once in an interface. The same family cannot be used more
than once within the endpoint attribute.

The following example illustrates use of the endpoint attribute:

endpoint ("ncadg_ip_udp:[6677]","ncacn_ip_tcp:[6677]")

The exceptions Attribute

The exceptions attribute specifies a set of user-defined exceptions that can be generated by the server
implementation of the interface. The exceptions attribute takes the form:

exceptions (exception_name [,exception_name] ...)

The following is a sample declaration of an exceptions attribute:

[uuid(06255501-08af-11cb-8c4f-08002b13d56d),
version (1.1),
 exceptions (
 exc_e_exquota,
 binop_e_aborted,
 binop_e_too_busy,
 binop_e_shutdown)
] interface binop
 {
 long binop_add(

[in] long a,
[in] long b

);
 }

See Chapter 10, “Topics in RPC Application Development” on page 173 for more information on using
exceptions.

The exceptions attribute can appear at most once in an interface.

228 Application Development Guide: Core Components

The pointer_default Attribute

IDL supports two kinds of pointer semantics. The pointer_default attribute specifies the default semantics
for pointers that are declared in the interface definition. The pointer_default attribute takes the form:

 pointer_default (pointer_attribute)

Possible values for pointer_attribute are ref, ptr and unique.

The default semantics established by the pointer_default attribute apply to the following usages of
pointers:

� A pointer that occurs in the declaration of a member of a structure or a union.

� A pointer that does not occur at the top level of an operation parameter declared with more than one
pointer operator. A top-level pointer is one that is not the target of another pointer, and is not a field
of a data structure, which is the target of a pointer. See “Pointer Attributes in Parameters” on
page 257 for more information on top-level pointers.

Note: The pointer_default attribute does not apply to a pointer that is the return value of an operation,
because this is always a full pointer.

The default semantics can be overridden by pointer attributes in the declaration of a particular pointer. If
an interface definition does not specify pointer_default and contains a declaration that requires default
pointer semantics, the IDL compiler will issue an error.

The pointer_default attribute can appear at most once in an interface.

For additional information on pointer semantics, refer to “Pointer Attributes” on page 254.

The local Attribute

The local attribute indicates that an interface definition does not declare any remote operations and that
the IDL compiler should therefore generate only header files, not stub files. The local attribute takes the
form:

 local

An interface containing operation definitions must have either the local attribute or the uuid attribute. No
interface can have both.

If the local attribute is coded more than once in an interface, the IDL compiler issues a warning.

Rules for Using Interface Definition Header Attributes

An interface cannot have both the local attribute and the uuid attribute. In an interface definition that
contains any operation declarations, either local or uuid must be specified. In an interface definition that
contains no operation declarations, both local and uuid can be omitted.

The endpoint, pointer_default, exceptions, uuid, and version attributes cannot be coded more than
once. If the local attribute is coded more than once, the IDL compiler issues a warning.

 Chapter 11. Interface Definition Language 229

Examples of Interface Definition Header Attributes

The following example uses the uuid and version attributes:

[uuid(df961f80-2d24-11c9-be74-08002b0ecef1), version(1.1)]
interface my_interface_name

The following example uses the uuid, endpoint, and version attributes:

[uuid(0bb1a080-2d25-11c9-8d6e-08002b0ecef1),
endpoint("ncadg_ip_udp[6677]", "ncacn_ip_tcp:[6677]"),
version(3.2)]
interface my_interface_name

 Import Declarations

The IDL import_declaration specifies interface definition files that declare types and constants used by the
importing interface. It takes the following form:

import file,... ;

The file is either an HFS file name or PDS member name of the interface definition you are importing,
enclosed in " " (double quotation marks). For HFS files, file can include a path name. This path name
can be relative; the -I option of the IDL compiler allows you to specify a parent directory from which to
resolve import path names. For PDS members, the -I option of the IDL compiler allows you to specify a
DDname from which to resolve import files.

The effect of an import declaration is as if all constant, type, and import declarations from the imported file
occurred in the importing file at the point where the import declaration occurs. Operation declarations are
not imported.

For example, suppose that the interface definition aioli.idl contains a declaration to import the definitions
for the garlic and oil interfaces:

import "garlic.idl", "oil.idl";

The IDL compiler will generate a C header file named aioli.h that contains the following #include
directives:

#include "garlic.h"
#include "oil.h"

The stub files that the compiler generates will not contain code for any garlic and oil operations.

Importing an interface many times has the same effect as importing it once.

 Constant Declarations

The IDL constant_declaration can take the following forms:

const integer_type_spec identifier = integer | value | integer_const_expression;
const boolean identifier = TRUE | FALSE | value;
const char identifier = character | value;
const char* identifier = string | value;
const void* identifier = NULL | value;

230 Application Development Guide: Core Components

The integer_type_spec is the data type of the integer constant you are declaring. The identifier is the
name of the constant. The integer, integer_const_expression, character, string, or value specifies the
value to be assigned to the constant. A value can be any previously defined constant.

IDL provides only integer, Boolean, character, string, and null pointer constants.

Following are examples of constant declarations:

const short TEN = 10;
const boolean FAUX = FALSE;
const char$ DSCH = "Dmitri Shostakovich";

 Integer Constants

An integer_type_spec is a type_specifier for an integer, except that the int_size for an integer constant
cannot be hyper.

An integer is the decimal representation of an integer. IDL also supports the C notation for hexadecimal,
octal, and long integer constants.

You can specify any previously defined integer constant as the value of an integer constant.

You can specify any arithmetic expression as the integer_const_expression that evaluates to an integer
constant.

 Boolean Constants

A Boolean constant can take one of two values: TRUE or FALSE.

You can specify any previously defined Boolean constant as the value of a Boolean constant.

 Character Constants

A character is a character enclosed in ' ' (single quotation marks). White space characters are
interpreted literally. The backslash character ‘\’ introduces an escape sequence, as defined in the ANSI C
standard. The single quotation mark character ‘'’ can be coded as the character only if it is escaped by a
backslash.

You can specify any previously defined character constant as the value of a character constant.

 String Constants

A string is a sequence of characters enclosed in " " (double quotation marks). White space characters
are interpreted literally. The \ (backslash) character introduces an escape sequence, as defined in the
ANSI C standard. The " (double quotation mark) character can be coded in a string only if it is escaped
by a backslash.

You can specify any previously defined string constant as the value of a string constant.

 Chapter 11. Interface Definition Language 231

 NULL Constants

A void* constant can take only one literal value: NULL.

You can specify any previously defined void* constant as the value of a void* constant.

 Type Declarations

The IDL type_declaration enables you to associate a name with a data type and to specify attributes of the
data type. It takes the following form:

typedef [[type_attribute, ...]] type_specifier type_declarator, ...;

A type_attribute specifies characteristics of the type being declared.

The type_specifier can specify a base type, a constructed type, a predefined type, or a named type.

A function pointer can be specified if the local attribute has been specified.

Each type_declarator is a name for the type being defined. Note, though, that a type_declarator can also
be preceded by an * (asterisk), followed by [] (brackets), and can include () (parentheses) to indicate the
precedence of its components.

 Type Attributes

A type_attribute can be any of the following:

handle The type being declared is a user-defined, customized-handle type.

context_handle The type being declared is a context-handle type.

transmit_as The type being declared is a presented type. When it is passed in RPCs, it is
converted to a specified transmitted type.

ref The type being declared is a reference pointer.

ptr The type being declared is a full pointer.

unique The type being declared is a unique pointer.

string The array type being declared is a string type.

Base Type Specifiers

IDL base types include integers, floating-point numbers, characters, a boolean type, a byte type, a void
type, and a primitive handle type.

The IDL base data type specifiers are listed in Table 10. Where applicable, the table shows the size of
the corresponding transmittable type and the type macro emitted by the IDL compiler for resulting
declarations.

Table 10 (Page 1 of 2). Base Data Type Specifiers

(sign)

Specifier
(size)

(type)

Size Type Macro
Emitted by idl

 small int 8 bits idl_small_int

 short int 16 bits idl_short_int

232 Application Development Guide: Core Components

The base types are described individually later in this chapter.

Note that you can use the idl_ macros in the code you write for an application to ensure that your type
declarations are consistent with those in the stubs, even when the application is transferred to another
platform. The idl_ macros are especially useful when passing constant values to RPC calls. For
maximum portability, all constants passed to RPC calls declared in your network interfaces should be cast
to the appropriate type, because the size of integer constants (like the size of the int data type) is
ambiguous in the C language.

The idl_ macros are defined in <dce/idlbase.h>, which is included by the header file that the IDL compiler
generates.

Note: To conform to the type checking of the C/C++ compilers, a type macro idl_norm_char defines the
char type declaration. The idl_char type macro defines only the unsigned char type declaration. All
existing applications that used idl_char to define an input or output variable within the server or client
application and used char to define the same variable in the IDL file may experience C compiler errors.
Choose one of the following options to resolve these errors:

� Change idl_char to idl_norm_char within the server or client application.

� Change char to unsigned char within the IDL file and recompile the IDL file.

� Recompile the IDL file using the new char_is_unsigned_char IDL compiler option. This causes both
char and unsigned char to be defined as idl_char. Refer to the idl command section of the z/OS
DCE Command Reference for further explanation.

For all new applications, ensure that character variable types are consistent between the application and
the IDL file.

Table 10 (Page 2 of 2). Base Data Type Specifiers

(sign)

Specifier
(size)

(type)

Size Type Macro
Emitted by idl

 long int 32 bits idl_long_int

 hyper int 64 bits idl_hyper_int

unsigned small int 8 bits idl_usmall_int

unsigned short int 16 bits idl_ushort_int

unsigned long int 32 bits idl_ulong_int

unsigned hyper int 64 bits idl_uhyper_int

 float 32 bits idl_short_float

 double 64 bits idl_long_float

unsigned char 8 bits idl_char

 char 8 bits idl_norm_char

 boolean 8 bits idl_boolean

 byte 8 bits idl_byte

 void* - idl_void_p_t

 handle_t - -

IDL Application

char char or idl_norm_char
unsigned char unsigned char or idl_char

 Chapter 11. Interface Definition Language 233

Constructed Type Specifiers

IDL constructed types include structures, unions, enumerations, pipes, arrays, and pointers. (In IDL, as in
C, arrays and pointers are specified using declarator constructs rather than type specifiers.) Following are
the keywords used to declare constructed type specifiers:

 struct
 union
 enum
 pipe

Constructed types are described in detail later in this chapter.

Predefined Type Specifiers

While IDL does not have any predefined types, the DCE RPC IDL implicitly imports nbase.idl, which does
predefine some types. Specifically, nbase.idl predefines an error status type, several international
character data types, and many other types. The keywords used to declare these predefined type
specifiers are:

 error_status_t
 ISO_LATIN_1
 ISO_MULTI_LINGUAL
 ISO_UCS

The error status type and international characters are described in detail later in this chapter.

 Type Declarator

An IDL type_declarator can be either a simple declarator or a complex declarator. A simple declarator is
just an identifier. A complex declarator is an identifier that specifies an array, a function pointer, or a
pointer.

 Operation Declarations

The IDL operation_declaration can take the following forms:

[[operation_attribute, ...]] type_specifier operation_identifier
 (parameter_declaration, ...);

[[operation_attribute, ...]] type_specifier operation_identifier
 ([void]);

Use the first form for an operation that has one or more parameters; use the second form for an operation
that has no parameters.

An operation_attribute can take the following forms:

idempotent The operation is idempotent.

broadcast The operation is always to be broadcast.

maybe The caller of the operation does not require and will not receive any response.

234 Application Development Guide: Core Components

reflect_deletions If rpc_ss_free() is applied by application code on the server side to memory used for
the referent of a full pointer that is part of an [in] parameter, the storage occupied by
that referent on the client side is released.

ptr The operation returns a full pointer. This attribute must be supplied if the operation
returns a pointer result and reference pointers or unique pointers are the default for
the interface.

context_handle The operation returns a context handle.

string The operation returns a string.

Note: If any of the above operation attributes is coded more than once, the IDL compiler issues a
warning.

The type_specifier in an operation declaration specifies the data type that the operation returns, if any.
This type must be either a scalar type or a previously defined type. If the operation does not return a
result, its type_specifier must be void.

For information on the semantics of pointers as operation return values, refer to “Pointers” on page 254.

The operation_identifier in an operation declaration is an identifier that names the operation.

Each parameter_declaration in an operation declaration declares a parameter of the operation. A
parameter_declaration takes the following form:

[parameter_attribute , . . .] type_specifier parameter_declarator

Parameter declarations and the parameter attributes are described separately in the following sections.

 Operation Attributes

Operation attributes determine the semantics to be applied by the RPC client and server protocol when an
operation is called.

Operation Attributes: idempotent, broadcast, and maybe

The idempotent attribute specifies that an operation is idempotent; that is, it can be run safely more than
once.

The broadcast attribute specifies that an operation is to be broadcast to all hosts on the local network
each time the operation is called. The client receives output arguments from the first reply to return
successfully, and all subsequent replies are discarded.

An operation with the broadcast attribute is implicitly idempotent. Note that the broadcast capabilities of
RPC runtime have a number of distinct limitations:

� Not all systems and networks support broadcasting. In particular, broadcasting is not supported by the
RPC connection-oriented protocol.

� Broadcasts are limited to hosts on the local network.

� Broadcasts make inefficient use of network bandwidth and processor cycles.

� The RPC runtime library does not support at-most-once semantics for broadcast operations; it applies
idempotent semantics to all such operations.

� The input arguments for broadcast calls are limited to 944 bytes.

 Chapter 11. Interface Definition Language 235

The maybe attribute specifies that the caller of an operation does not expect any response. An operation
with the maybe attribute cannot have any output parameters and cannot return anything. Delivery of the
call is not ensured.

An operation with the maybe attribute is implicitly idempotent.

Note: Authenticated RPC for maybe calls is not supported on z/OS DCE.

Note that if you do not use any of the above operation attributes, the default is at-most-once semantics.

Operation Attributes: Memory Management

Use the reflect_deletions attribute to mirror the release of memory from server pointer targets to client
pointer targets. When you use the reflect_deletions attribute, memory occupied by pointer targets on the
client will be released when the corresponding pointer targets on the server are released. This is only true
for pointer targets that are components of [in] parameters of the operation. By default, the mechanism
used by RPC to release the pointer targets is the C language free() function unless the client code is
executing as part of RPC server application code, in which case the rpc_ss_free() function is used. You
can override the default by calling rpc_ss_set_client_alloc_free() or rpc_ss_swap_client_alloc_free()
before the call to the remote operation.

 Parameter Declarations

A parameter_declaration is used in an operation declaration to declare a parameter of the operation. A
parameter_declaration takes the form:

[parameter_attribute, ...] type_specifier parameter_declarator

If an interface neither uses implicit handles nor an interface-based binding, the first parameter must be an
explicit handle that gives the object UUID and location. The handle parameter can be of a primitive
handle type, handle_t, or a nonprimitive user-defined handle type.

A parameter_attribute can be any of the following:

array_attribute One of several attributes that specifies the characteristics of arrays.

in The parameter is an input attribute.

out The parameter is an output attribute.

ref The parameter is a reference pointer; it cannot be NULL and cannot be an alias.

unique The parameter is a unique pointer; it can be NULL but cannot be an alias.

ptr The parameter is a full pointer; it can be NULL and can be an alias.

string The parameter is a string.

context_handle The parameter is a context handle.

The directional attributes in and out specify the directions in which a parameter is to be passed. The in
attribute specifies that the parameter is passed from the caller to the callee. The out attribute specifies
that the parameter is passed from the callee to the caller.

An output parameter must be passed by reference and therefore must be declared with an explicit *.
(Note that an array is implicitly passed by reference and so an output array does not require an explicit *.)
At least one directional attribute must be specified for each parameter of an operation.

An explicit handle parameter must have at least the in attribute.

236 Application Development Guide: Core Components

The ref, ptr and unique attributes are described in “Pointers” on page 254. The string attribute is
described in “Arrays” on page 247 and “Strings” on page 253. The context_handle attribute is described
in “Context Handles” on page 268.

The type_specifier in a parameter declaration specifies the data type of the parameter.

The declarator in a parameter declaration can be any simple or complex declarator.

A parameter with the out attribute must be either an array or an explicitly declared pointer. An explicitly
declared pointer is declared by a pointer_declarator, rather than by a simple_declarator with a named
pointer type as its type_specifier.

For information on the semantics of pointers as operation parameters, refer to “Pointers” on page 254.

Basic Data Types

This section describes the basic data types provided by IDL and the treatment of international characters
within IDL. The basic data types are as follows:

 � Integer types
 � Floating-point types
� The char type
� The boolean type
� The byte type
� The void type
� The handle_t type
� The error_status_t type.

The following subsections describe the constructed data types that are built on the basic data types.

 Integer Types

IDL provides four sizes of signed and unsigned integer data types, specified as follows:

 int_size [int]
unsigned int_size [int]
int_size unsigned [int]

The int_size can take the following values:

 hyper
 long
 short
 small

The hyper types are represented in 64 bits. A long is 32 bits. A short is 16 bits. A small is 8 bits.

The keyword int is optional and has no effect. The keyword unsigned denotes an unsigned integer type;
it can occur either before or after the size keyword.

The hyper data type is a structure defined by DCE. It consists of 2 fields, a low field that represents the
lower 32 bits and a high field that represents the higher 32 bits of a 64 bit hyper data type.

You can refer to hyper data as follows:

 Chapter 11. Interface Definition Language 237

hyper h_var;

 h_var.low
 h_var.high

For a pointer, you can refer to it as:

hyper $ h_var;

 h_var->low
 h_var->high

Consider a very large decimal number, 592,705,486,847. In hexadecimal representation, this number is
X'00000089FFFFFFFF'. You can initialize and assign the hyper variable h_var to this number as
follows:

hyper h_var;

 h_var.low = 0xFFFFFFFF;
h_var.high = 0x00000089;

When you manipulate data declared as hyper (for example, to add or multiply hyper data) you need to
handle the overflow of the low field into the high field in your operation.

 Floating-Point Types

IDL provides two sizes of floating-point data types, specified as follows:

 float
 double

A float is represented in 32 bits. A double is represented in 64 bits.

The char Type

The IDL character type is specified as follows:

 [unsigned] char

A char is unsigned and is represented in 8 bits.

The keyword unsigned is optional.

Important Note: If unsigned char is used within an IDL definition, it must also be used within the client,
server and manager code.

The boolean Type

The IDL boolean type is specified as follows:

 boolean

A boolean is represented in 8 bits. A boolean is a logical quantity that assumes one of two values:
TRUE or FALSE. Zero is FALSE, and any nonzero value is TRUE.

238 Application Development Guide: Core Components

The byte Type

The IDL byte type is specified as follows:

 byte

A byte is represented in 8 bits. The data representation format of byte data is guaranteed not to change
when the data is transmitted by the RPC mechanism.

The IDL integer, character, and floating-point types (and hence any types constructed from these) are all
subject to format conversion when they are transmitted between hosts that use different data
representation formats. You can protect data of any type from format conversion by transmitting that type
as an array of byte.

The void Type

The IDL void type is specified as follows:

 void

The void type may be used to do the following:

� Specify the type of an operation that does not return a value
� Specify the type of a context handle parameter, which must be void*
� Specify the type of a NULL pointer constant, which must be void*

The handle_t Type

The IDL primitive handle type is specified as follows:

 handle_t

A handle_t is a primitive handle type opaque to application programs but meaningful to the RPC runtime
library. “Customized Handles” on page 267 discusses primitive and nonprimitive handle types.

The error_status_t Type

IDL provides the following predefined data type to hold RPC communications status information:

 error_status_t

The values that can be contained in the error_status_t data type are compatible with the unsigned long
and unsigned32 IDL data types. These data types are used for status values in DCE. The
error_status_t data type contains an additional semantic to indicate that this particular unsigned long
contains a DCE format error status value. This additional semantic enables the IDL compiler to perform
any necessary translation when moving the status value between systems with differing hardware
architectures and software operating systems. If you are using status codes that are not in the DCE error
status format, or if you do not require such conversion, use an unsigned long instead of error_status_t.

 Chapter 11. Interface Definition Language 239

 International Characters

The implicitly imported file nbase.idl provides predefined data types to support present and emerging
international standards for the representation of characters and strings:

 ISO_LATIN_1
 ISO_MULTI_LINGUAL
 ISO_UCS

Data of type char is subject to ASCII-EBCDIC conversion when transmitted by the RPC mechanism. The
predefined international character types are constructed from the base type byte and are thereby
protected from data representation format conversion.

The ISO_LATIN_1 type is represented in 8 bits and is predefined as follows:

typedef byte ISO_LATIN_1;

The ISO_MULTI_LINGUAL type is represented in 16 bits and is predefined as follows:

typedef struct {
byte row, column;

 } ISO_MULTI_LINGUAL;

The ISO_UCS type is represented in 32 bits and is predefined as follows:

typedef struct {
byte group, plane, row, column;

 } ISO_UCS;

Constructed Data Types

The following subsections describe the constructed data types that are provided by IDL. The constructed
types are built on the basic data types, which are described in “Basic Data Types” on page 237. The
constructed data types are:

 � Structures
 � Unions
 � Enumerations
 � Pipes
 � Arrays
 � Strings

In IDL, as in C, arrays and pointers are specified using declarator constructs. The other constructed types
are specified using type specifiers.

 Structures

The type_specifier for a structure type can take the following forms:

 struct [tag]
 {
 struct_member;
 ...
 }

 struct tag

240 Application Development Guide: Core Components

A tag, if supplied in a specifier of the first form, becomes a shorthand form for the set of member
declarations that follows it. Such a tag can subsequently be used in a specifier of the second form.

Note that if the structure data type includes nested structures, each structure must be identified with a
unique tag, as follows:.

 struct tag1
 {
 struct_member1;
 ...
 struct tag2
 {
 struct_member2;
 ...
 }
 }

A struct_member takes the following form:

[[struct_member_attribute, ...]] type_specifier declarator, ...;

A struct_member_attribute can be any of the following:

array_attribute One of several attributes that specify characteristics of arrays.

ignore An attribute indicating that the pointer member being declared is not to be transmitted in
RPCs.

ref An attribute indicating that the pointer member being declared is a reference pointer: it
cannot be NULL and cannot be an alias.

ptr An attribute indicating that the pointer member being declared is a full pointer: it can be
NULL and can be an alias.

unique An attribute indicating that the pointer member being declared is a unique pointer; it can
be NULL but cannot be an alias.

string An attribute indicating that the array member being declared is a string.

A structure can contain a conformant array only as its last member. Such a structure can be contained by
another structure only as its last member. This requirement iterates through any other embedding
structures. A structure that contains a conformant array (a conformant structure) cannot be returned by
an operation as its value and cannot be simply an out parameter.

A structure cannot contain a pipe or context handle.

The ignore attribute specifies that the pointer is not to be transmitted in RPCs. The ignore attribute can
be applied only to a pointer that is a member of a structure. The ignore attribute is not allowed in a type
declaration that defines a pointer type.

 Unions

IDL provides two types of unions: encapsulated and nonencapsulated. An IDL union must be
discriminated. In an encapsulated union, the discriminator is part of the union. In a nonencapsulated
union, the discriminator is not part of the union.

The following type_specifier can be used to indicate either kind of union.

union [tag]

 Chapter 11. Interface Definition Language 241

A definition of the union identified by tag must appear elsewhere in the interface definition.

Encapsulated Unions: To define an encapsulated union, use the following syntax:

union [tag] switch (disc_type_spec discriminator)[union_name]
{
 case
 ...
 [default_case]
 }

If a tag is supplied, it can be used in a type_specifier of the form shown in the preceding section
describing unions.

The disc_type_spec indicates the type of the discriminator, which can be an integer, a character, a
boolean, or an enumeration.

The union_name specifies a name to be used in C code generated by the IDL compiler. When the IDL
compiler generates C code to represent an IDL union, it embeds the union and its discriminator in a C
structure. The name of the IDL union becomes the name of the C structure. If you supply a union_name
in your type declaration, the compiler assigns this name to the embedded C union; otherwise, the compiler
assigns the generic name tagged_union.

A case contains one or more labels and may contain a member declaration:

case constant:
...
[union_member];

Each label in a case specifies a constant. The constant can take any of the forms accepted in an integer,
character, or Boolean constant declaration, each of which is described earlier in this chapter.

A default_case can be coded anywhere in the list of cases:

default:
[union_member];

A union_member takes the following form:

[[union_member_attribute, ...]] type_specifier declarator;

A union_member_attribute can be any of the following:

ptr An attribute indicating that the pointer member being declared is a full pointer: it can be NULL
and can be an alias.

string An attribute indicating that the character array member being declared is a string.

In any union, the type of the discriminator and the type of all constants in all case labels must resolve to
the same type. At the time the union is used, the value of the discriminator selects a member, as follows:

� If the value of the discriminator matches the constant in any label, the member associated with the
label is selected.

� If there is no label whose constant matches the value of the discriminator and there is a default case,
the default member is selected.

242 Application Development Guide: Core Components

� If there is no label whose constant matches the value of the discriminator and there is no default case,
no member is selected and the exception rpc_x_invalid_tag is raised.

Note that IDL prohibits duplicate constant label values.

A union_member can contain only one declarator. If no union_member is supplied, the member is NULL;
if that member is selected when the union is used, no data is passed. Note, however, that the tag is
always passed.

A union cannot contain a pipe, a conformant array, a varying array, or any structure that contains a
conformant or varying array. A union also cannot contain a ref or unique pointer or any structure that
contains a ref or unique pointer.

The following is an example of an encapsulated union.

/$ IDL construct /$

 typedef
union fred switch (long a) ralph {

case 1: float b;
case 2: long c;

 } bill;

/$ becomes in the generated header file /$

 typedef
struct fred {

 long a;
 union {
 float b;
 long c;
 } ralph;
 } bill;

Nonencapsulated Unions: To define a nonencapsulated union, use the following syntax:

[switch_type(datatype)] union [tag]
{
 case
 ...
 [default_case]
 }

If a tag is supplied, it can be used in a type_specifier of the form shown in the section describing unions.
The rules for case and default_case are the same as those for encapsulated unions.

A parameter or a structure field that is a nonencapsulated union must have an attribute attached to it.
This attribute has the form:

switch_is(attr_var)

The attr_var is the name of the parameter or structure field that is the discriminator for the union.

If a nonencapsulated union is used as a structure field, the discriminator of the union must be a field of the
same structure. If a nonencapsulated union is used as a parameter of an operation, the discriminator
must be another parameter of the same operation.

The following example shows uses of a nonencapsulated union.

 Chapter 11. Interface Definition Language 243

 typedef
[switch_type(long)] union {
[case (1,3)] float a_float;
[case (2)] short b_short;
[default] ; /$ An empty arm. Nothing is shipped. $/

 } n_e_union_t;

 typedef
 struct {

long a; /$ The discriminant for the union later in this struct. $/
[switch_is (a)] n_e_union_t b;

 } a_struct;

/$ Note switch can follow union in operation $/
void op1 (

[in] handle_t h,
[in,switch_is (s)] n_e_union_t u,
[in] long s);

 Enumerations

An IDL enumeration provides names for integers. It is specified as follows:

enum {identifier, ...}

Each identifier in an enumeration is assigned an integer value. The first identifier is assigned 0 (zero),
the second is assigned 1, and so on.

An enumeration can have up to 32,767 identifiers.

 Pipes

IDL supports pipes as a mechanism for transferring large quantities of typed data. An IDL pipe is an
open-ended sequence of elements of one type. A pipe permits application-level optimization of bulk data
transfer by allowing the overlap of communication and processing. Applications that process a stream of
data as it arrives rather than storing the data in memory can make efficient use of the pipe mechanism.

A pipe is specified as follows:

 pipe type_specifier

The type_specifier specifies the type for the elements of the pipe. This type cannot be a pointer type, a
type that contains a pointer, a conformant type, a context handle, a handle_t element type, or a data type
that is declared as transmit_as.

A pipe type can be used to declare only the type of an operation parameter. IDL recognizes three kinds
of pipes, based on the three operation parameters:

� An in pipe is used for transferring data from a client to a server. It allows the callee (server) to pull an
open-ended stream of typed data from the caller (client).

� An out pipe is used for transferring data from a server to a client. It allows the callee (server) to push
the stream of data to the caller (client).

� An in,out pipe provides for two-way data transfer between a client and server by combining the
behavior of in and out pipes.

A pipe can be defined only through a typedef declaration. Anonymous pipe types are not supported.

244 Application Development Guide: Core Components

At the interface between the stub and the application-specific code (for both the client and server), a pipe
appears as a simple callback mechanism. To the user code, the processing of a pipe parameter appears
to be synchronous. The IDL implementation of pipes in the RPC stub and runtime allows the apparent
callbacks to occur without requiring actual remote callbacks. As a result, pipes provide an efficient
transfer mechanism for large amounts of data.

Note that pipe data communications occur at the same speed as arrays. Pipes can improve latency and
minimize memory utilization, but not throughput. Pipes are intended for use where the receiver can
process the data in some way as it arrives, for example, by writing it to a file or passing it to a consumer
thread. If the intent is to store the data in memory for later processing, pipes offer no advantage over
arrays.

Note: Control characters on different platforms may be interpreted differently by their editors. When
using pipes to transfer data or files, consider the potential affect on the data.

IDL Pipes Example: To illustrate the IDL implementation of pipes, consider the following IDL
fragment:

typedef
pipe element_t pipe_t;

When the code containing this fragment is compiled, the IDL compiler will generate the following
declarations in the derived header file:

typedef struct pipe_t {
void ($ pull)(
#ifdef IDL_PROTOTYPES
rpc_ss_pipe_state_t state,
element_t $buf,
idl_ulong_int esize,
idl_ulong_int $ecount
#endif
);
void ($ push)(
#ifdef IDL_PROTOTYPES
rpc_ss_pipe_state_t state,
element_t $buf,
idl_ulong_int ecount
#endif
);
void ($ alloc)(
#ifdef IDL_PROTOTYPES
rpc_ss_pipe_state_t state,
idl_ulong_int bsize,
element_t $$buf,
idl_ulong_int $bcount
#endif
);
rpc_ss_pipe_state_t state;
} pipe_t;

The pipe data structure specifies pointers to three separate routines and a pipe state. The client
application has to implement these routines for the client stub to call, and the server manager must call
the associated routines generated in the server stub.

The pull routine is used for an input pipe. It pulls the next chunk of data from the client application into
the pipe. The input parameters include the pipe state, the buffer (*buf) containing a chunk of data, and
the size of the buffer (esize) in terms of the number of pipe data elements. The output parameter is the
actual count (*ecount) of the number of pipe data elements in the buffer.

 Chapter 11. Interface Definition Language 245

The push routine is used for an output pipe. It pushes the next chunk of data from the pipe to the client
application. The input parameters include the pipe state, the buffer (*buf) containing a chunk of data, and
a count (ecount) of the number of pipe data elements in the buffer.

The alloc routine allocates a buffer for the pipe data. The input parameters include the pipe state and the
requested size of the buffer (bsize) in bytes. The output parameters include a pointer to the allocated
buffer (**buf), and the actual count (bcount) of the number of bytes in the buffer. The routine allocates
memory from which pipe data can be marshalled or into which pipe data can be marshalled. If less
memory is allocated than requested, the RPC runtime uses the smaller memory and makes more
callbacks to the user. If the routine allocates more memory than requested, the excess memory is not
used.

Finally, the state is used to coordinate between the above routines.

For more on how to write the code for the client and server manager, see “Pipes” on page 192.

Rules for Using Pipes: Observe the following rules when defining pipes in IDL:

� Pipe types must only be parameters. In other words, pipes of pipes, arrays of pipes, and structures or
unions containing pipes as members are not permitted.

� A pipe cannot be a function result.

� The element type of a pipe cannot be a pointer or contain a pointer.

� The element type of a pipe cannot be a context_handle or handle_t type.

� A pipe type cannot be used in the definition of another type. For example, the following code
fragment is not permitted:

typedef
pipe char pipe_t;

typedef
pipe_t $ pipe_p_t;

� A pipe type cannot have the transmit_as attribute.

� The element type of a pipe cannot have the transmit_as attribute.

� A pipe parameter can be passed by value or by reference. A pipe that is passed by reference (that is,
has an * (asterisk)) cannot have the ptr or unique parameter attributes.

� Pipes that pass data from the client to the server must be processed in the order in which they occur
in an operation’s signature. All such pipes must be processed before data is sent from the server to
the client.

� Pipes that pass data from the server to the client must be processed in the order in which they occur
in an operation’s signature. No such pipes must be processed until all data has been sent from the
client to the server.

� Manager routines must reraise RPC pipe and communication exceptions so that client stub code and
server stub code continue to run properly.

For example, consider an interface that has an out pipe along with other out parameters. Suppose
that the following sequence of events occurs:

– The manager routine closes the pipe by writing an empty chunk whose length is 0 (zero).
– The manager routine attempts to write another chunk of data to the pipe.
– The generated push routine raises the exception rpc_x_fault_pipe_closed.
– The manager routine catches the exception and does not reraise it.
– The manager routine exits normally.

246 Application Development Guide: Core Components

– The server stub attempts to marshall the out parameters.

After this sequence, neither the server stub nor the client stub can continue to run properly. To avoid
this situation, you must reraise the exception.

� A pipe cannot be used in an operation that has the broadcast or idempotent attribute.

� The element type of a pipe cannot be a conformant structure.

� The maximum length of pipe type IDs is 29 characters.

 Arrays

IDL supports the following types of arrays:

� Fixed: The size of the array is defined in the IDL and all of the data in the array is transferred during
the call.

� Conformant: The size of the array is determined at run time by the value of the field or parameter
referred by a min_is or max_is or size_is attribute. All of the data in the array is transferred during
the call.

Note: For [in, out] conformant character arrays, if the min_is or max_is or size_is attribute is not
specified, the array size is implicitly known by the client runtime. A change to a larger array
size by the server side of the RPC call could result in client failure, because of a memory
violation. To avoid this possibility, you should use the min_is or max_is or size_is attribute
when specifying conformant arrays.

� Varying: The size of the array is defined in the IDL, but the part of its contents transferred during the
call is determined by the values of fields or parameters named in one or more data limit attributes.
The data limit attributes are first_is, length_is, and last_is.

An array can also be both conformant and varying (or, as it is sometimes termed, open). In this case, the
size of the array is determined at run time, by the value of the field or parameter referred by the min_is or
max_is or size_is attribute. The part of its contents transferred during the call is determined by the
values of fields or parameters named in one or more of the data limit attributes.

An IDL array is declared using an array_declarator construct whose syntax is as follows:

array_identifier array_bounds_declarator ...

An array_bounds_declarator must be specified for each dimension of an array.

Array Bounds: The array_bounds_declarator for the first dimension of an array can take any of the
following forms:

[lower .. upper] The lower bound is lower. The upper bound is upper.

[size] The lower bound is 0 (zero). The upper bound is size - 1.

[*] The lower bound is 0 (zero). The upper bound is determined by a max_is or size_is
attribute.

[] Same as the preceding explanation.

[lower .. *] The lower bound is lower. The upper bound is determined by a max_is or size_is
attribute.

[* .. upper] The lower bound is determined by a min_is attribute. The upper bound is upper.

[* .. *] The lower bound is determined by a min_is attribute. The upper bound is determined
by a size_is or max_is attribute.

 Chapter 11. Interface Definition Language 247

Conformance in Dimensions Other Than the First: If a multidimensional array is
conformant in a dimension other than the first, the C description for this array, which is located in the
header file generated by the IDL compiler, will be a one-dimensional conformant array of the appropriate
element type. This occurs because there is no natural C binding for conformance in dimensions other
than the first.

The following examples show how IDL type definitions and parameter declarations that contain bounds in
dimensions other than the first are translated into their C equivalents at run time.

IDL Type Definition:

typedef struct {
 long a;
 long e;

[max_is(,,e),min_is(a)] long g7[a..1][2..9][3..e];
 } t3;

C Translation:

 typedef struct {
 idl_long_int a;
 idl_long_int e;
 idl_long_int g7[1];
 } t3;

IDL Parameter Declaration:

[in,out,max_is(,,e),min_is(a)] long g7[$..1][2..9][3..$];

C Translation:

/$ [in, out] $/ idl_long_int g7[];

Arrays that have a nonzero first lower bound and a first upper bound that is determined at run time are
translated into the equivalent C representation of a conformant array, as shown in the following IDL type
definition and parameter declaration examples:

IDL Type Definition:

 typedef struct {
 long s;

[size_is(s)] long fa3[3..$][-4..1][-1..2];
 } t1;

C Translation:

 typedef struct {
 idl_long_int s;
 idl_long_int fa3[1][6][4];
 } t1;

IDL Parameter Declaration:

[in,out,size_is(s)] long fa3[3..$][-4..1][-1..2];

C Translation:

/$ [in, out] $/ idl_long_int fa3[][6][4];

248 Application Development Guide: Core Components

Array Attributes: Array attributes specify the size of an array or the part of an array that is to be
transferred during a call. An array attribute specifies a variable that is either a field in the same structure
as the array or a parameter in the same operation as the array.

An array_attribute can take the following forms:

min_is ([*] variable)
max_is ([*] variable)
size_is ([*] variable)
last_is ([*] variable)
first_is ([*] variable)
length_is ([*] variable)

A variable specifies a variable whose value at run time will determine the bound or element count for the
associated dimension. A pointer variable is indicated by preceding the variable name with an * (asterisk).

If the array is a member of a structure, any referred variables must be members of the same structure. If
the array is a parameter of an operation, any referred variables must be parameters of the same
operation.

Only the ..._is(variable) form is allowed when the array is a field of a structure. In this case, the
..._is(*variable) form is not allowed. An array with an array attribute (that is, a conformant or varying
array) cannot have the transmit_as attribute.

The min_is Attribute

The min_is attribute is used to specify the variable(s) from which the values of one or more lower bounds
of the array will be obtained at run time. If any dimension of an array has an unspecified lower bound, the
array must have a min_is attribute. A variable must be identified for each such dimension. The following
examples show the syntax of the min_is attribute:

/$ Assume values of variables are as follows
long a = -10;
long b = -20;
long c = -30;

$/

long [min_is(a)] g1[$..10]; /$ g1[-10..10] $/
long [min_is(a)] g2[$..10][4]; /$ g2[-10..10[0..3] $/
long [min_is(a,b)] g3[$..10][$..20]; /$ g3[-10..10][-20..20] $/
long [min_is(,b)] g4[2][$..20]; /$ g4[0..1][-20..20] $/
long [min_is(a,,c)] g5[$..7][2..9][$..8]; /$ g5[-10..7][2..9][-30..8] $/
long [min_is(a,b,)] g6[$..10][$..20][3..8]; /$ g6[-10..10][-20..20][3..8] $/

The following examples show the min_is attribute being applied to the first dimension of an array in an
IDL type definition and parameter declaration, and how the definition or parameter is translated into its C
equivalent:

IDL Type Definition:

typedef struct {
 long n;
 [min_is(n)] long fa3[$..10][-4..1][-1..2]
 } t2;

C Translation:

 typedef struct {
 idl_long_int n;
 idl_long_int fa3[1][6][4];

 Chapter 11. Interface Definition Language 249

 } t2;

IDL Parameter Declaration:

[in,out,min_is(n)] long fa3[$..10][-4..1][-1..2];

C Translation:

/$ [in, out] $/ idl_long_int fa3[][6][4];

The max_is Attribute

The max_is attribute is used to specify the variables from which the values of one or more upper bounds
of the array are obtained at run time. If any dimension of an array has an unspecified upper bound, the
array must have a max_is or size_is attribute. A variable must be identified for each dimension in which
the upper bound is unspecified. In a max_is attribute, the value in the identified variable specifies the
maximum array index in that dimension. An array with one or more unspecified upper bounds may have a
max_is attribute or a size_is attribute, but not both.

The max_is attribute is for use with conformant arrays. Following are some examples of the max_is
attribute:

/$ Assume values of variables are as follows:
long a = 10;
long b = 20;
long c = 30;

$/

long [max_is(a)] f1[]; /$ f1[0..10] /$
long [max_is(a)] f2[][4]; /$ f2[0..10][0..3] $/
long [max_is(a,b)] f3[][]; /$ f3[0..10][0..20] $/
long [max_is(,b)] f4[2][]; /$ f4[0..1][0..20] $/
long [max_is(a,,c)] f5[1..$][2..9][3..$]; /$ f5[1..10][2..9][3..30] $/
long [max_is(a,b,)] f6[1..$][2..$][3..8]; /$ f6[1..10][2..20][3..8] $/

The size_is Attribute

The size_is attribute is used to specify the variables from which the values of the element counts for one
or more dimensions of the array are obtained at run time. If any dimension of an array has an unspecified
upper bound, the array must have a max_is or size_is attribute. A variable must be identified for each
dimension in which the upper bound is unspecified. In a size_is attribute, the value in the identified
variable specifies the number of elements in that dimension. An array with one or more unspecified upper
bounds may have a max_is attribute or a size_is attribute, but not both.

The size of a dimension is defined as the upper bound, minus the lower bound, plus one.

The size_is attribute is for use with conformant arrays. Following is an example of the size_is attribute:

/$ Assume the following values for the referenced variables:
n3 = 5;
x2 = 12;
x3 = 14;
z2 = 9;
z3 = 10;

$/

/$ The following declaration $/

int [min_is(,,n3),max_is(,x2,x3)] hh[3..13,4..$,$..$];

/$ specifies the same data to be transmitted as the declaration $/

int [min_is(,,n3),size_is(,z2,z3)] hh[3..13,4..$,$..$];

250 Application Development Guide: Core Components

The last_is Attribute

The last_is attribute is one of the attributes that can be used to allow the amount of data in an array that
will be transmitted to be determined at run time. Each last_is attribute specifies an upper data limit, which
is the highest index value in that dimension for the array elements to be transmitted. If the entry in a
last_is attribute for a dimension is empty, the effect is as if the upper bound in that dimension had been
specified.

An array can have either the last_is attribute or the length_is attribute, but not both.

When an array with the last_is attribute is used in a remote procedure call, the elements actually passed
in the call can be a subset of the maximum possible.

The last_is attribute is for use with varying arrays. Following is an example of the last_is attribute:

/$ Assume the following values for the referenced variables:
long a = 1;
long b = 2;
long c = 3;
long e = 25;
long f = 35;

$/

long [last_is(a,b)] bb1[10][20]; /$ transmit bb1[0..1][0..2] $/
long [last_is(a,b)] bb2[-1..10][-2..20][-3..30];

/$ transmit bb2[-1..1][-2..2][-3..30] $/
long [last_is(a,,c)] bb3[-1..10][-2..20][-3..30];

/$ transmit bb3[-1..1][-2..20][-3..3] $/
long [last_is(,b,c),max_is(,e)] cc1[10][][30];

/$ transmit cc1[0..9][0..2][0..3] $/
long [last_is(a,b),max_is(,e,f)] cc2[-4..4][][];

/$ transmit cc2[-4..1][0..2][0..35] $/

The first_is Attribute

The first_is attribute is one of the attributes that can be used to allow the amount of data in an array that
will be transmitted to be determined at run time. Each first_is attribute specifies a lower data limit, which
is the lowest index value in that dimension for the array elements to be transmitted. If the entry in a
first_is attribute for a dimension is empty, the effect is as if the lower bound in that dimension had been
specified.

When an array with the first_is attribute is used in a remote procedure call, the elements actually passed
in the call can be a subset of the maximum possible.

The first_is attribute is for use with varying arrays. Following is an example of the first_is attribute:

/$ Assume the following values for the referenced variables:
long p = -1;
long q = -2;
long r = -3;
long t = -25;
long u = -35;
long x = 1;
long y = 2;
long z = 3;

$/

long [first_is(p)] dd1[-10..10]; /$ transmit dd1[-1..10] $/
long [first_is(p),last_is(x)] dd2[-10..10]; /$ transmit dd2[-1..1] $/
long [first_is(p,q)] ee1[-10..10][-20..20]; /$ transmit ee1[-1..10][-2..20] $/
long [first_is(p,q)] ee2[-10..10][-20..20][-30..30];

 Chapter 11. Interface Definition Language 251

/$ transmit ee2[-1..10][-2..20][-30..30] $/
long [first_is(p,q,r),last_is(,,z)] ee3[-10..10][-20..20][-30..30];

/$ transmit ee3[-10..10][-20..20][-30..30] $/
double [first_is(,q,r),min_is(,t)] ff1[10][$..2][-30..30];

/$ transmit ff1[0..9][-2..2][-3..30] $/
double [first_is(p,q),min_is(,t,u)] ff2[-4..4][$..2][$..35];

/$ transmit ff2[-1..4][-2..2][-35..35] $/
double [max_is(x,,z),min_is(,t,u),first_is(p,,r)] ff3[-20..$][$..30][$..$]

/$ transmit ff3[-1..1][-25..30][-3..3] $/

The length_is Attribute

The length_is attribute is one of the attributes that can be used to allow the amount of data in an array
that will be transmitted to be determined at run time. Each length_is attribute specifies the number of
elements in that dimension to be transmitted. If the entry in a length_is attribute for a dimension is
empty, the effect is for the highest index value in that dimension for the elements to be transmitted to be
determined from the upper bound in that dimension.

An array can have either the last_is attribute or the length_is attribute, but not both.

When an array with the length_is attribute is used in an RPC, the elements actually passed in the call
can be a subset of the maximum possible.

The length_is attribute is for use with varying arrays. Following is an example of the length_is attribute:

/$ Assume the following values for the referenced variables:
n3 = 5;
f2 = 10;
a1 = 11;
a2 = 12;
a3 = 14;
e1 = 9;
e2 = 3;
e3 = 10;

$/

/$ The following declaration: $/

int [min_is(,,n3),first_is(,f2,),last_is(a1,a2,a3)] gg[3..13,4..14,$..15];

/$ specifies the same data to be transmitted as the declaration: $/

int [min_is(,,n3),first_is(,f2,),length_is(e1,e2,e3)] gg[3..13,4..14,$..15];

Rules for Using Arrays: Observe the following rules when defining arrays in IDL:

� A structure can contain only one conformant array, which must be the last member in the structure.

� Conformant arrays are not valid in unions.

� A structure containing a conformant array can be passed only by reference.

� Arrays that have the transmit_as attribute cannot be conformant or varying arrays.

� The structure member or parameter referred in an array attribute cannot be defined to have either the
represent_as or transmit_as attribute.

� Array bounds must be integers. Array attributes can only refer to structure members or parameters of
integer type.

� A parameter that is referred by an array attribute on a conformant array must have the in attribute.

� Array elements cannot be context handles or pipes, or conformant arrays or conformant structures.

252 Application Development Guide: Core Components

 Strings

IDL uses strings as one-dimensional arrays to which the string attribute is assigned. The element type of
the array must resolve to one of the following:

 � Type char
 � Type byte
� A structure all of whose members are of type byte or of a named type that resolves to byte
� A named type that resolves to one of the three previous types
� Type unsigned short
� Type unsigned long
� A named type that resolves to unsigned short or unsigned long

Strings built from byte or char data types are referred to as byte-string types while strings built from
unsigned short or unsigned long types are called integer-string types. Integer-string types allow for
multi-octet character sets whose characters are represented by 16-bit or 32-bit quantities, rather than
as groups of bytes, for example:

/$ A structure that contains a fixed string $/
/$ and a conformant string $/
typedef unsigned long PRIVATE_CHAR_32;
typedef struct {

[string] PRIVATE_CHAR_32 fixed[27];
[string] PRIVATE_CHAR_32 conf[];

} two_strings;

/$ A structure that contains pointers to two strings $/
typedef unsigned short PRIVATE_CHAR_16;
typedef struct {

[string] PRIVATE_CHAR_16 $astring;
[string] PRIVATE_CHAR_16 $bstring;

} stringptrs;

Integer-string types use the array element zero (0) to specify the string terminator, while byte-string
types use the NULL character. Both byte-type and integer-type strings conform to the same usage
rules (described below).

An array with the string attribute represents a string of characters. The string attribute does not specify
the format of the string or the mechanism for determining its length. Implementations of IDL provide string
formats and mechanisms for determining string lengths that are compatible with the programming
languages in which applications are written. For DCE RPC IDL, the number of characters in a string
array includes the NULL terminator (for byte-string types) or the zero (0) terminator (for integer-string
types), and the entire string is passed between stubs.

The array_bounds_declarator for a string array determines the maximum number of characters in the
array. When you declare a string, you must allocate space for one more than the maximum number of
characters the string is to hold. For instance, if a string is to store 80 characters, the string must be
declared with a size of 81:

/$ A string type that holds 80 characters $/
typedef

[string] char string_t [81];

If an array has the string attribute or if the type of an array has the string attribute, the array cannot have
the first_is, the last_is, or the length_is attribute.

 Chapter 11. Interface Definition Language 253

 Pointers

Use the following syntax to declare an IDL pointer:

 []...pointer_identifier

The * (asterisk) is the pointer operator, and multiple asterisks indicate multiple levels of indirection.

Pointer Attributes: Pointers are used for several purposes. This includes carrying out a parameter
passing mechanism that allows a data value to be returned and building complex data structures. IDL
offers three classes of pointers: reference pointers, full pointers, and unique pointers. The attributes that
indicate these pointers are:

� ref: Indicates reference pointers. This is the default for top-level pointers used in parameters.

� ptr: Indicates full pointers.

� unique: Indicates unique pointers.

Pointer attributes are used in parameters, structure and union members, and in type definitions. In some
instances, IDL infers the applicable pointer class from its usage. However, most pointer declarations
require that you specify a pointer class by using one of the following methods:

� Use the ref, ptr, or unique attribute in the pointer declaration.

� Use the pointer_default attribute in the IDL interface heading. The default pointer class is determined
by the pointer_default attribute.

Pointer attributes are applied only to the top-level pointer within the declaration. If multiple pointers are
declared in a single declaration, the pointer_default established applies to all but the top-level pointer.
(See “Pointer Attributes in Parameters” on page 257.)

Examples of pointers are shown later in this section.

Reference Pointers

A reference pointer is the less complex form of pointer. The most common use for this class of pointer is
as a passing mechanism, for example, passing an integer by reference. Reference pointers have
significantly better performance than full pointers, but are restrictive. You cannot create a linked list using
a reference pointer because a reference pointer cannot have a NULL value, and the list cannot be ended.

A reference pointer has the following characteristics:

� It always points to valid storage; it can never have a NULL value.

� Its value does not change during a call; it always points to the same storage on return from the call as
it did when the call was made.

� It does not support aliasing; it cannot point to a storage area that is pointed to by any other pointer
used in a parameter of the same operation.

When a manager routine is entered, all the reference pointers in its parameters will point to valid storage,
except those reference pointers that point neither to targets whose size can be determined at compile time
nor to values that have been received from the client.

In the following example, the size of the targets of the reference pointers can be calculated at compilation
time:

254 Application Development Guide: Core Components

typedef [ref] long $rpl;

void op1([in] long f,
[in] long 1,
[in,first_is(f),last_is(1)] rpl rpla[10]);

For this example, when the manager is entered, all the pointers in rpla will point to usable storage,
although only $rpla[f] through $rpla[1] will be the values received from the client.

Conversely, the size of the targets of the reference pointers cannot be calculated at compile time in the
following example:

typedef [ref,string] char $rps;

void op1([in] long f,
[in] long 1,
[in,first_is(f),last_is(1)] rps rpsa[10]);

In this case, only rpsa[f] through rpsa[1], which point to values received from the client, will point to
usable storage.

Full Pointers

A full pointer is the more complex form of pointer. It supports all capabilities associated with pointers.
For example, by using a full pointer, you can build complex data structures such as linked lists, trees,
queues, or arbitrary graphs.

A full pointer has the following characteristics:

� Its value can change during a call; it can change from a NULL to non-NULL value, non-NULL to
NULL, or from one non-NULL value to another non-NULL value.

� It supports aliasing; it can point to a storage area that is also pointed to by any other full pointer used
in a parameter of the same operation. However, all such pointers must point to the beginning of the
structure. There is no support for pointers to substructures or to overlapping storage areas. For
example, if the interface definition code contains the following:

[uuid(0e256080-587c-11ca-878c-08002b111685), version(1.0)]
interface overlap
{
typedef struct {

 long bill;
 long charlie;
 } foo;
typedef struct {

 long fred;
 foo ken;
 } bar;

void op ([in] foo $f, [in] bar $b);
}

The client application code includes:

bar bb;
 .
 .
op (&bb.ken, &bb);

The server stub treats these two separate parameters as distinct, and the manager application code
does not see them as overlapping storage.

� It allows dynamically allocated data to be returned from a call.

 Chapter 11. Interface Definition Language 255

Unique Pointers

A unique pointer is more flexible than a reference pointer. However, both types of pointers share several
important characteristics.

A unique pointer has the following characteristics:

� It can have a NULL value.

� It can change from NULL to non-NULL during a call. This change results in memory being allocated
on return from the call, whereby the result is stored in the allocated memory.

� It can change from non-NULL to NULL during a call. This change can result in the orphaning of the
memory pointed to on return from the call. Note that if a unique pointer changes from one non-NULL
value to another non-NULL value, the change is ignored.

� It does not identify particular extents of memory, but only extents of memory that are suitable for
storing the data. If it is important to know that the data is being stored in a specific memory location,
then you should use a full pointer.

� If it has a value other than NULL, output data is placed in existing storage.

Unique pointers are similar to reference pointers in the following ways:

� No storage pointed to by a unique pointer can be reached from any other name in the operation. That
is, a unique pointer does not allow aliasing of data within the operation.

� Data returned from the called subroutine is written into the existing storage specified by the unique
pointer, if the pointer did not have the value NULL.

With regard to performance, unique pointers have an advantage over full pointers because unique pointers
do not support the referencing of common data by more than one pointer (aliasing), and they are
significantly more flexible than reference pointers because they can have a value of NULL.

Unique pointers are particularly suitable for creating optional parameters (because you can specify them
as NULL) and for simple tree or singly linked-list data structures. You specify the three different levels of
pointers by attributes, as follows:

[ref] Reference pointers

[unique] Unique pointers

[ptr] Full pointers

The following example shows how a unique pointer can be used:

 [
 uuid(d37a0e80-5d23-11c9-b199-08002b13d56d)

] interface Unique_ptrs
 {
 typedef [ref] long $r_ptr;

typedef [unique] long $u_ptr;
 typedef [ptr] long $f_ptr;

void op1 (
 [ref,in,out,string] char $my_rname,
 [unique,in,out,string] char $my_uname,
 [ptr,in,out,string] char $my_pname
);
 }

256 Application Development Guide: Core Components

Pointer Attributes in Parameters: A pointer attribute can be applied to a parameter only if the
parameter contains an explicit pointer declaration (*).

By default, a single pointer (*) operator in a parameter list of an operation declaration is treated as a
reference pointer. To override this, specify a pointer attribute for the parameter.

When there is more than one pointer operator, or multiple levels of indirection in the parameter list, the
rightmost pointer is the top-level pointer; all pointers to the left of the rightmost pointer are of a lower level.
The top-level pointer is treated as a reference pointer by default; the lower level pointers have the
semantics specified by the pointer_default attribute in the interface.

The following example illustrates the use of top- and lower-level pointers:

void op1 ([in] long $$p_p_1);

In this example, p_p_1 is a pointer to a pointer to a long integer. The first or leftmost pointer (*) signifies
that the pointer to the long is a lower-level pointer, and the second or rightmost pointer (*) signifies that
the pointer to the pointer is a top-level pointer.

Any pointer attribute you specify for the parameter applies to the top-level pointer only. Note that unless
you specify a pointer attribute, the top-level explicit pointer declaration in a parameter defaults to a
reference pointer even if the pointer_default(ptr) interface attribute is specified.

Using a reference pointer improves performance but is more restrictive. For example, the pointer
declared in the following operation, for the parameter int_value, is a reference pointer. An application
call to this operation can never specify NULL as the value of int_value.

void op ([in] long $int_value);

To pass a NULL value, use a full pointer. The following two methods make int_value into a full pointer:

� Applying the ptr attribute to the declaration of the parameter, int_value

void op ([in, ptr] long $int_value);

� Using the pointer_default (ptr) attribute in an interface header

[uuid(135e7f00-1682-11ca-bf61-08002b111685,
 pointer_default(ptr),
 version(1.0)] interface full_pointer
{
typedef long $long_ptr;
void op ([in] long_ptr int_value);
}

Array Attributes on Pointers: To apply array attributes to pointers, use the [max_is] or [size_is]
attributes. When applied to a pointer, the [max_is] and [size_is] attributes convert the pointer from a
single element of a certain type to a pointer to an array of elements of that type. The number of
elements in the array is determined by the variable in the [max_is] and [size_is] attributes.

Pointer Attributes in Function Results: Function results that are pointers are always treated
as full pointers. The ptr attribute is allowed on function results but it is not mandatory. The ref pointer
attribute is never allowed on function results.

A function result that is a pointer always indicates new storage. A pointer parameter can refer to storage
that was allocated before the function was called, but a function result cannot.

 Chapter 11. Interface Definition Language 257

Pointers in Structure Fields and Union Case: If a pointer is declared in a member of a
structure or union, its default is determined by the pointer_default attribute you specify for the interface.
To override this, specify a pointer attribute for the member.

Resolving a Possible Pointer Ambiguity: A declaration of the following form raises a possible
ambiguity about the type of myarray:

void op([in, out] long x, [in, out, size_is(x)] long $$myarray);

IDL defines myarray in this case to be an array of pointers to longs, not a pointer to an array of longs.
The max_is and size_is attributes always apply to the top-level, or rightmost, * (asterisk) in the IDL
signature of a parameter.

Rules for Using Pointers: Use the following rules when developing code in IDL:

� Do not use the full pointer attribute on the following:

– The parameter in the first parameter position, when that parameter is of type handle_t or is of a
type with the handle attribute.

– Context handle parameters.

– A parameter that has the output attribute (out) only.

� The element type of a pipe must not be a pointer or a structure containing a pointer.

� A member of a union or a structure contained in a union cannot contain a reference pointer.

� A reference pointer must point to valid storage at the time the call is made.

� A parameter containing a varying array of reference pointers must have all array elements initialized to
point to valid storage even if only a portion of the array is supplied, because the manager code (the
application code supporting an interface on a server) may use the remaining array elements. (Recall
that a varying array is one to which any of the array attributes first_is, last_is, length_is is applied.)

� The type name in a declaration that defines a pointer type must have no more than 28 characters.

Memory Management for Pointed-to Nodes: A full pointer can change its value across a call.
Therefore, stubs must be able to manage memory for the pointed-to nodes. Managing memory involves
allocating and freeing memory for user data structures.

Allocating and Freeing Memory

Manager code within RPC servers usually uses the rpc_ss_allocate() routine to allocate storage. Storage
that is allocated by rpc_ss_allocate() is released by the server stub after any output parameters have
been marshalled by the stubs. Storage allocated by other allocators is not released automatically but
must be freed by the manager code. When the manager code makes a remote call, the default memory
management routines are rpc_ss_allocate() and rpc_ss_free().

The syntax of the rpc_ss_allocate() routine is as follows:

idl_void_p_t rpc_ss_allocate (idl_size_t size);

The size parameter specifies the size of the memory allocated. Note: In ANSI standard C environments,
idl_void_p_t is defined as void *, and in other environments is defined as char *. Use rpc_ss_free() to
release storage allocated by rpc_ss_allocate(). You can also use the rpc_ss_free() routine to release
storage pointed to by a full pointer in an input parameter and have the free of the memory reflected on
return to the calling application by specifying the reflect_deletions attribute as an operation attribute. See
“Parameter Declarations” on page 236 for more information about declaring IDL operations.

258 Application Development Guide: Core Components

The syntax of the routine is as follows:

void rpc_ss_free (idl_void_p_t node_to_free);

The node_to_free parameter specifies the location of the memory to be freed.

Enabling and Disabling Memory Allocation

It may be necessary to call manager routines from different environments; for example, when the
application is both a client and a server of the same interface. In this case, the same routine may be
called both from server manager code and from client code. The rpc_ss_allocate() routine, when used
by the manager code to allocate memory, must be initialized before its first use. The stub performs the
initialization automatically. Code, other than stub code, that calls a routine, which in turn calls
rpc_ss_allocate(), first calls the rpc_ss_enable_allocate() routine.

The syntax of the routine is as follows:

void rpc_ss_enable_allocate (void);

The environment set up by the rpc_ss_enable_allocate() routine is released by calling the
rpc_ss_disable_allocate() routine. This routine releases all memory allocated by calls to
rpc_ss_allocate() because the call to rpc_ss_enable_allocate() was made. It also releases memory
that was used by the memory management mechanism for internal bookkeeping.

The syntax of the routine is as follows:

void rpc_ss_disable_allocate (void);

Advanced Memory Management Support: Memory management may also involve setting and
exchanging the mechanisms used for allocating and freeing memory. The default memory management
routines within the manager code are rpc_ss_allocate() and rpc_ss_free().

Setting the Client Memory Mechanism

Use the rpc_ss_set_client_alloc_free() routine to establish the routines used in allocating and freeing
memory.

The syntax of the routine is as follows:

void rpc_ss_set_client_alloc_free (
idl_void_p_t (*p_allocate) (

 idl_size_t size),
void (*p_free) (

 idl_void_p_t ptr)
);

The p_allocate parameter points to a routine that has the same procedure declaration as the malloc
routine, used by the client stub when performing memory allocation. The p_free parameter points to a
routine that has the same procedure declaration as the free routine, used by the client stub to free
memory.

Exchanging Client Memory Mechanisms

This routine exchanges the current client allocation and freeing mechanism for one supplied in the call.
The primary purpose of this routine is to simplify the writing of modular routine libraries in which RPCs are
made. To preserve modularity, any dynamically allocated memory returned by a modular routine library
must be allocated with a specific memory allocator. When dynamically allocated memory is returned by

 Chapter 11. Interface Definition Language 259

an RPC that is then returned to the user of the routine library, use rpc_ss_swap_client_alloc_free() to
make sure the desired memory allocator is used. Prior to returning, the modular routine library calls
rpc_ss_set_client_alloc_free() to restore the previous memory management mechanism.

The syntax of the routine is as follows:

void rpc_ss_swap_client_alloc_free (
idl_void_p_t (*p_allocate) (

 idl_size_t size),
void (*p_free) (

 idl_void_p_t ptr),
idl_void_p_t (**p_p_old_allocate) (

unsigned long size),
void (**p_p_old_free) (

 idl_void_p_t ptr)
);

The p_allocate parameter points to a routine that has the same procedure declaration as the malloc
routine, and was used by the client stub when performing memory allocation. The p_free parameter
points to a routine that has the same procedure declaration as the free routine, and was used by the client
stub to free memory. The p_p_old_allocate parameter points to a pointer to a routine that has the same
procedure declaration as the malloc routine, and was used for memory allocation in the client stub. The
p_p_old_free parameter points to a pointer to a routine that has the same procedure declaration as the
free routine, and was used for memory release in the client.

Use of Thread Handles in Memory Management: There are two situations where control of
memory management requires the use of thread handles. The more common occurs when the manager
thread spawns additional threads. The less common occurs when a program changes from being a client
to being a server, and then changes back to a client.

Spawning Threads

When an RPC runs the manager code, the manager code may want to spawn additional threads to
complete the task for which it was called. To spawn additional threads that can perform memory
management, the manager code must first call the rpc_ss_get_thread_handle() routine to get its thread
handle and then pass that thread handle to each spawned thread. Each spawned thread that uses the
rpc_ss_allocate() and rpc_ss_free() routines for memory management first calls the
rpc_ss_set_thread_handle() routine by using the handle obtained by the original manager thread.

These routine calls allow the manager and its spawned threads to share a common memory management
environment. This common environment enables memory allocated by the spawned threads to be used
in returned parameters, and causes all allocations in the common memory management environment to be
released when the manager thread returns to the server stub.

The main manager thread must not return control to the server stub before all the threads it spawned are
finished running; otherwise, unpredictable results may occur.

The listener thread can cancel the main manager thread if the RPC is orphaned or if a cancelation occurs
on the client side of the application. You should code the main manager thread to end any spawned
threads before it exits. The code should anticipate exits caused by an unexpected exception or by being
canceled.

Your code can handle all of these cases by including a TRY/FINALLY block to clean up any spawned
threads if a cancelation or other exception occurs. If unexpected exceptions do not concern you, then
your code can perform two steps. They are disabling cancelability before threads are spawned, followed

260 Application Development Guide: Core Components

by enabling cancelability after the join operation finishes and after testing for any pending cancel
operations. Following this disable and enable sequence prevents routine pthread_join() from producing
a cancel point in a manager thread that has spawned threads that, in turn, share thread handles with the
manager thread.

Transitioning from Client to Server to Client

Immediately before the program changes from a client to a server, it must obtain a handle on its
environment as a client by calling rpc_ss_get_thread_handle(). When it reverts from a server to a
client, it must reestablish the client environment by calling the rpc_ss_set_thread_handle() routine,
supplying the previously obtained handle as a parameter.

Syntax for Thread Routines

The syntax for the rpc_ss_get_thread_handle() routine is:

 rpc_ss_thread_handle_t rpc_ss_get_thread_handle(void);

The syntax for the rpc_ss_set_thread_handle() routine is:

void rpc_ss_set_thread_handle (
 rpc_ss_thread_handle_t id
);

The rpc_ss_thread_handle_t value identifies the thread to the RPC stub support library. The id
parameter indicates the thread handle passed to the spawned thread by its creator, or the thread handle
returned by the previous call to rpc_ss_get_thread_handle().

Rules for Using the Memory Management Routines: You can use the rpc_ss_allocate()
routine in the following:

� The manager code for an operation that has a full pointer in its argument list.

� The manager code for an operation to which the enable_allocate ACF attribute is applied.

� Code that is not called from a server stub but that has called the rpc_ss_enable_allocate() routine.

� A thread, spawned by code of any of the previous three types, that has made a call to the
rpc_ss_set_thread_handle() routine using a thread handle obtained by this code.

Examples Using Pointers: The example application in this subsection contains the following files,
listed here with the function of each file:

Example Function

string_tree.idl Defines data types and interfaces (Figure 48 on page 262).

string_tree_client.c The user of the interface (Figure 49 on page 263).

string_tree_manager.c The server code that contains the procedure (Figure 50 on page 265).

string_tree_server.c Declares the server; enables the client code to find the interface it needs
(Figure 51 on page 266).

string_tree output Shows the output (Figure 52 on page 267).

Note: Source code for these examples can be found in the /usr/lpp/dce/examples directory.

 Chapter 11. Interface Definition Language 261

[uuid(0144d600-2d28-11c9-a812-08002b0ecef1), version(0)]
interface string_tree
{
 /$

$ Maximum length of a string in the tree
 $/
const long int st_c_name_len = 32;

 /$
$ Definition of a node in the tree.

 $/
typedef struct node

 {
[string] char name[0..st_c_name_len];
[ptr] struct node $left;
[ptr] struct node $right;

 } st_node_t;

 /$
$ Operation that prunes the left subtree of the specified
$ tree and returns it as the value.

 $/
st_node_t $st_prune_left (

[in, out] st_node_t $tree /$ root of tree by ref $/
);
}

Figure 48. string_tree.idl Source

262 Application Development Guide: Core Components

#include <stdio.h>
#include <locale.h>
#include "sttree.h"

#include <stdlib.h>

/$
$$ Routine to print a depiction of the tree
$/
void st_print_tree (tree, indent)
 st_node_t $tree;
 int indent;
{
 int i;
if (tree == NULL) return;
for (i = 0; i < indent; i++) printf(" ");

 printf("%s\n",tree->name);
st_print_tree(tree->left, indent + 1);
st_print_tree(tree->right, indent + 1);

}

/$
$$ Create a tree with a few nodes
$/
st_node_t $st_make_tree()
{
st_node_t $root = (st_node_t $)malloc(sizeof(st_node_t));

 strcpy(root->name,"Root Node");

/$ left subtree node $/
 root->left = (st_node_t $)malloc(sizeof(st_node_t));
 strcpy(root->left->name,"Left subtree");

/$ left subtree children $/
root->left->right = NULL;
root->left->left = (st_node_t $)malloc(sizeof(st_node_t));
strcpy(root->left->left->name,"Child of left subtree");
root->left->left->left = NULL;
root->left->left->right = NULL;

/$ right subtree node $/
 root->right = (st_node_t $)malloc(sizeof(st_node_t));
 strcpy(root->right->name,"Right subtree");
root->right->left = NULL;
root->right->right = NULL;

 return root;
}

Figure 49 (Part 1 of 2). string_tree_client.c Source

 Chapter 11. Interface Definition Language 263

int main(int argc, char $argv[])
{
 st_node_t $tree;
 st_node_t $subtree;

 setlocale(LC_ALL, "");

/$ setup and print original tree $/
tree = st_make_tree();

 printf("Original Tree:\n");
 st_print_tree(tree, 1);

/$ call the prune routine $/
subtree = st_prune_left (tree);

/$ print the resulting trees $/
 printf("Pruned Tree:\n");
 st_print_tree(tree, 1);

 printf("Pruned subtree:\n");
 st_print_tree(subtree, 1);

 return(0);
 }

Figure 49 (Part 2 of 2). string_tree_client.c Source

264 Application Development Guide: Core Components

#include <stdio.h>
#include "sttree.h"

/$
$$ Prune the left subtree of the specified tree and return
$$ it as the function value.
$/
st_node_t $st_prune_left (tree)
 st_node_t $tree;
{
st_node_t $left_sub_tree = tree->left;
tree->left = (st_node_t $)NULL;

 return left_sub_tree;
}

Figure 50. string_tree_manager.c Source

 Chapter 11. Interface Definition Language 265

 #include <stdio.h>
 #include <locale.h>
 #include "sttree.h" /$ header created by idl compiler $/
 #define check_error(s, msg) if(s != rpc_s_ok) \

{fprintf(stderr, "%s\n", msg); fflush(stderr); exit(1);}

 int main(int argc, char $$argv)
 {

unsigned32 status; /$ error status (nbase.h) $/
rpc_binding_vector_p_t binding_vector; /$ set of binding handles (rpc.h) $/

 setlocale(LC_ALL, "");

/$ register interface with RPC runtime $/
rpc_server_register_if(string_tree_v0_0_s_ifspec, NULL, NULL, &status);
check_error(status, "Can't register interface\n");

/$ establish protocol sequences $/
 rpc_server_use_all_protseqs(rpc_c_protseq_max_calls_default,&status);

check_error(status, "Can't establish protocol sequences\n");

/$ get set of this server’s binding handles $/
 rpc_server_inq_bindings(&binding_vector,&status);

check_error(status, "Can't get binding handles\n");

/$ register addresses in endpoint map database $/
 rpc_ep_register(string_tree_v0_0_s_ifspec,binding_vector,NULL,

"string tree example",&status);
check_error(status, "Can't add address to the endpoint database\n");

/$ establish namespace entry $/
 rpc_ns_binding_export(rpc_c_ns_syntax_dce,"/.:/string_tree",
 string_tree_v0_0_s_ifspec,binding_vector,NULL,
 &status);

check_error(status, "Can't export to directory service\n");

/$ free set of binding handles $/
 rpc_binding_vector_free(&binding_vector,&status);

check_error(status, "Can't free binding handles and vector\n");

/$ listen for remote calls $/
 rpc_server_listen(rpc_c_listen_max_calls_default,&status);

check_error(status, "rpc listen failed\n");

 return(0);
 }

Figure 51. string_tree_server.c Source

266 Application Development Guide: Core Components

Original Tree:
 Root Node
 Left subtree

Child of left subtree
 Right subtree
Pruned Tree:
 Root Node
 Right subtree
Pruned subtree:
 Left subtree

Child of left subtree

Figure 52. string_tree output

 Customized Handles

The handle attribute specifies that the type being declared is a user-defined, nonprimitive handle type,
and is to be used in place of the predefined primitive handle type handle_t. The term customized handle
denotes a nonprimitive handle.

The following example declares a customized handle type filehandle_t, a structure containing the textual
representations of a host and a path name:

typedef [handle] struct {
 char host[256];
 char path[1024];
 } filehandle_t;

If the handle parameter is the first parameter in the list, then it is a customized handle that is used to
determine the binding for the call. It must have the in attribute or the in,out attributes. A handle
parameter that is not the first parameter in the parameter list need not have the in or in,out attributes.

Note that a handle_t parameter that is the first parameter in the list must not have the transmit_as
attribute.

To build an application that uses customized handles, write custom binding and unbinding routines, and
them with your application client code. At run time, each time the client calls an operation that uses a
customized handle, the client stub calls the custom binding routine before it sends the RPC request. The
client stub calls the custom unbinding routine after it receives a response.

The following paragraphs specify C prototypes for customized binding and unbinding routines; in these
prototypes, CUSTOM is the name of the customized handle type.

The custom binding routine CUSTOM_bind generates a primitive binding handle from a customized
handle and returns the primitive binding handle:

handle_t CUSTOM_bind (CUSTOM c-handle)

The custom unbinding routine CUSTOM_unbind takes two inputs, a customized handle and the primitive
binding handle that was generated from it, and has no outputs:

void CUSTOM_unbind (
CUSTOM c-handle ,

 handle_t rpc-handle)

 Chapter 11. Interface Definition Language 267

A custom unbinding routine typically frees the primitive binding handle and any unneeded resources
associated with the customized handle, but it is not required to do anything.

Because the handle attribute can occur only in a type declaration, a customized handle must have a
named type. Because customized handle type names are used to construct custom binding and
unbinding routine names, they cannot exceed 24 characters.

A customized handle can be coded either in a parameter list as an explicit handle or in an interface
header as an implicit handle.

 Context Handles

Manager code often maintains state information for a client. A handle to this state information is passed
to the client in an output parameter or as an operation result. The client passes the unchanged
handle-to-the-state information as an input or input/output parameter of a subsequent manager operation
that the client calls to manipulate that data structure. This handle-to-the-state information is called a
context handle. A context handle is an untyped pointer or a pointer to a structure by tag name.

The manager causes the untyped pointer to point to the state information it will need the next time the
client asks the manager to manipulate the context. For the client, the context handle is an opaque
pointer (idl_void_p_t or an opaque structure tag). The client receives or supplies the context handle by
means of the parameter list, but does not perform any transformations on it.

The RPC runtime maintains the context handle, providing an association between the client and the
address space running the manager and the state information within that address space.

If a manager supports multiple interfaces, and a client obtains a context handle by performing an operation
from one of these interfaces, the client can then supply the context handle to an operation from another of
these interfaces.

A context handle can only be exchanged between the server process that created it and the client process
for whom it was created. No other client except the one that obtained the context handle can use it
without causing an application error.

The context_handle Attribute: Specify a context handle by either of the following methods:

� Use the context_handle attribute on a type that is defined as void *.

� Use the context_handle attribute on a parameter of type void *.

� Use the context_handle attribute on a type that is defined as a pointer to a structure by tag name.

For example, in the IDL file, you can define a context handle as follows:

� Within a type declaration:

typedef [context_handle] void $ my_context;

� Within a parameter declaration:

[in, context_handle] void $ my_context;

You can also define a context handle within a type declaration as a forward reference to a structure type
by tag, as follows:

typedef [context_handle] struct opaque_struct $ opaque_ch_t;

Note that you do not need to define the structure type in the IDL file; it is a forward reference to a
structure whose definition can be included into the server code, either from a private .h file or from a

268 Application Development Guide: Core Components

server IDL file. As a result, the structure type is opaque to the client. This method of defining a context
handle provides type checking and permits the server code to avoid extensive casting when manipulating
the context handle.

A structure type in a context handle type definition must be referenced by tag name and not by type
name. So, for example, the first of the following declarations is valid, while the second is not:

typedef [context_handle] struct struct_tag $ valid_ch_t; / $valid $/

typedef [context_handle] struct_type $ invalid_ch_t; /$ error $/

The following example illustrates context handles defined as untyped pointers and as pointers to structures
by tag name.

/$ A context handle implemented as untyped pointer $/
typedef [context_handle] void $ void_ch_t;

/$ A context handle implemented as a pointer to a structure by tag name $/
typedef [context_handle] struct opaque_struct $ opaque_ch_t;

/$ Operations using both types of context handles $/
void ch_oper(

[in] void_ch_t v1,
[in,out] void_ch_t $v2,
[out] void_ch_t $v3,
[in] opaque_ch_t $o2,
[out] opaque_ch_t $o3

);

void_ch_t void_ch_oper ([in] handle_t h);

opaque_ch_t opaque_ch_oper([in] handle_t h);

It is possible to define a structure type in a context handle in the IDL file; for example, the following
structure definition

typedef struct struct_tag {long l;} struct_type;

can either precede or follow the definition of valid_ch_t in the example previously shown. However, this
practice is not recommended, since it violates the opaqueness of the context handle type.

The type name in a context handle declaration must be no longer than 23 characters.

The first operation on a context creates a context handle that the server procedure passes to the client.
The client then passes the unmodified handle back to the server in a subsequent remote call. The called
procedure interprets the context handle. For example, to specify a procedure that a client can use to
obtain a context handle, you can define the following:

typedef [context_handle] void $ my_context;
void op1(
 [in]handle_t h,

[out] my_context $ this_object);

To specify a procedure that a client can call to make use of a previously obtained context handle, you can
define the following:

� Within a type declaration:

void op2([in] my_context this_object);

� Within a parameter declaration:

void op2([in, context_handle] void * this_object);

 Chapter 11. Interface Definition Language 269

To close a context, and to clean the context on the client side, you can define the following:

� Within a type declaration:

[in, out, my_context * this_object;

� Within a parameter declaration:

void op3([in, out, context_handle] void $$ this_object);

The resources associated with a context handle are reclaimed when, and only when, the manager
changes the value of the in,out context handle parameter from non-NULL to NULL.

The Context Rundown Procedure: Some uses of context handles may require you to write a
context rundown procedure in the application code for the server. If communications between the client
and server are broken while the server is maintaining context for the client, RPC runs the context rundown
procedure on the server to recover the resources represented by the context handle. If you declare a
context handle as a named type, you must supply a rundown procedure for that type.

When a context requires a context rundown procedure, you must define a named type that has the
context_handle attribute. For each different context handle type, you must provide a context rundown
procedure as part of the manager code.

The format for the rundown procedure name is as follows:

 context_type_name_rundown

A rundown procedure takes one parameter, the handle of the context to be run down, and delivers no
result. For example, if you declare the following:

typedef [context_handle] void $ my_context;

the rundown procedure is as follows:

void my_context_rundown (my_context this_object);

Server application code that uses a certain context handle may be running in one or more server threads
at the time that RPC detects that communications between the server and the client that is using that
context have broken. The context rundown routine will not be invoked until a return of control to the
server stub has happened in each of the threads that were using the context handle.

If application code in any of these threads destroys the context before returning control to the server stub
from which it was called, your context rundown procedure will not be processed.

Creating New Context: When a client makes its first request to the manager to manipulate context,
the manager creates context information and returns this information to the client through a parameter of
the type context_handle. This parameter must be an output parameter or an input/output parameter
whose value is NULL when the call is made. A context handle can also be a function result.

Reclaiming Client Memory Resources for the Context Handle: If a communications error
causes the context handle to be unusable, the resources that maintain the context handle must be
reclaimed. Use the rpc_ss_destroy_client_context() routine in the client application to reclaim the client
side resources and to set the context handle value to NULL.

The syntax of the routine is as follows:

 void rpc_ss_destroy_client_context(
 void *p_unusable_context_handle);

270 Application Development Guide: Core Components

Relationship of Context Handles and Binding: For the client, the context handle specifies
the state within a server, and also contains binding information. If an operation has an input context
handle or input/output context handle that is not NULL, no other binding information is required. A context
handle that has only the in attribute cannot be NULL. If an operation has in,out context handle
parameters but no in context handle parameters, at least one of the in,out context handle parameters
cannot be NULL. However, if the only context handle parameters in an operation are written out, they
carry no binding information. In this case, you must use another method to bind the client to a server.

If you specify multiple context handles in an operation, all active context handles must map to the same
remote address space on the same server or the call fails. (A context handle is active while it represents
context information that the server maintains for the client. It is inactive if no context has yet been
created, or if the context is no longer in use.)

Rules for Using Context Handles: The following rules apply to using context handles:

� A context handle can be a parameter or a function result. You cannot use a context handle as an
array element, as a structure or union member, or as the element type of a pipe.

� A context handle cannot have the transmit_as or ptr attributes.
� An input-only context handle cannot be NULL.
� A context handle cannot be pointed to, except by a top-level reference pointer.

Examples Using Context Handles: Figure 53 on page 272 shows a sample IDL file that uses
context handles. Figure 54 on page 273 shows a sample context rundown procedure file.

 Chapter 11. Interface Definition Language 271

/$
 $ Filename: context_handle.idl
 $/
[uuid(f38f5080-2d27-11c9-a96d-08002b0ecef1),
 pointer_default(ref), version (1.0)]
interface files
{
/$ File context handle type $/
typedef [context_handle] void $ file_handle_t;
/$ File specification type $/
typedef [string] char $ filespec_t;
/$ File read buffer type $/
typedef [string] char buf_t[$];

 /$
$ The file_open call requires that the client has located a
$ file server interface files and that an RPC handle that is
$ bound to that server be passed as the binding parameter h.

 $
$ Operation to OPEN a file; returns context handle for that file.

 $/
file_handle_t file_open
(
 /$ RPC handle bound to file server $/

[in] handle_t h,
 /$ File specification of file to open $/

[in] filespec_t fs
);

 /$
$ The file_read call is able to use the context handle obtained
$ from the file_open as the binding parameter, thus an RPC
$ handle is not necessary.

 $
$ Operation to read from an opened file; returns true if not

 $ end-of-file
 $/
boolean file_read
(
 /$ Context handle of opened file $/

[in] file_handle_t fh,
 /$ Maximum number of characters to read $/

[in] long buf_size,
 /$ Actual number of characters of data read $/

[out] long $data_size,
 /$ Buffer for characters read $/

[out, size_is(buf_size), length_is($data_size)] buf_t buffer
);
 /$ Operation to close an opened file $/
void file_close
(
 /$ Valid file context handle goes [in]. On successful close,
$ null is returned.

 $/
[in,out] file_handle_t $fh

);
}

Figure 53. Example of an IDL File That Uses a Context Handle

272 Application Development Guide: Core Components

/$
 $ fh_rundown.c: A context rundown procedure.
 $/

#include <stdio.h>
#include "context_handle.h" /$ IDL-generated header file $/

void file_handle_t_rundown
(

file_handle_t file_handle /$ Active context handle
$ (open file handle) $/

)

{
 /$

$ This procedure is called by the RPC runtime on the SERVER
$ side when communication is broken between the client and
$ server. This gives the server the opportunity to reclaim
$ resources identified by the passed context handle. In
$ this case, the passed context handle identifies a file,
$ and simply closing the file cleans up the state maintained
$ by the context handle, that is "runs down" the context handle.
$ Note that the file_close manager operation is not used here;
$ perhaps it could be, but it is more efficient to use the
$ underlying file system call to do the close.

 $
$ File handle is void$, it must be cast to FILE$

 $/
 fclose((FILE $)file_handle);
}

Figure 54. Example of a Context Rundown Procedure

Associating a Data Type with a Transmitted Type

The transmit_as attribute associates a transmitted type that stubs pass over the network with a presented
type that clients and servers manipulate. The specified transmitted type must be a named type defined
previously in another type declaration.

There are two primary uses for this attribute:

� To pass complex data types for which the IDL compiler cannot generate marshalling and
unmarshalling code.

� To pass data more efficiently. An application can provide routines to convert a data type between a
sparse representation (presented to the client and server programs) and a compact one (transmitted
over the network).

To build an application that uses presented and transmitted types, you must write routines to perform
conversions between the types and to manage storage for the types, and you must link those routines with
your application code. At run time, the client and server stubs call these routines before sending and
after receiving data of these types.

The following paragraphs specify C prototypes for generic binding and unbinding routines. In these
prototypes, PRES is the name of the presented type, and TRANS is the name of the transmitted type.

 Chapter 11. Interface Definition Language 273

The PRES_to_xmit routine allocates storage for the transmitted type and converts from the presented
type to the transmitted type:

void PRES_to_xmit (PRES *presented, TRANS **transmitted)

The PRES_from_xmit routine converts from the transmitted type to the presented type and allocates any
storage referred by pointers in the presented type:

void PRES_from_xmit (TRANS *transmitted, PRES *presented)

The PRES_free_inst routine frees any storage referred by pointers in the presented type by
PRES_from_xmit:

void PRES_free_inst (PRES *presented)

Suppose that the transmit_as attribute appears either on the type of a parameter, or on a component of a
parameter, and that the parameter has the out or in,out attribute. Then the PRES_free_inst routine will
be called automatically for the data item that has the transmit_as attribute.

Suppose the transmit_as attribute appears on the type of a parameter, and that the parameter has only
the in attribute. Then the PRES_free_inst routine will be called automatically.

Finally, suppose that the transmit_as attribute appears on a component of a parameter, and that the
parameter only has the in attribute. Then the PRES_free_inst routine will not be called automatically for
the component. The manager application code must release any resources that the component uses,
possibly by explicitly calling the PRES_free_inst routine.

The PRES_free_xmit routine frees any storage that has been allocated for the transmitted type by
PRES_to_xmit:

void PRES_free_xmit (TRANS *transmitted)

A type with the transmit_as attribute cannot have other type attributes, specifically:

� A pipe type.

� A pipe element type.

� A type with the context_handle attribute.

� A type of which any instance has the context_handle attribute.

� A type that includes the [handle] attribute in its definition cannot be used, directly or indirectly, in the
definition of a type with the [transmit_as] attribute. Nor can a type that includes the [transmit_as]
attribute in its definition be used, directly or indirectly, in the definition of a type with the [handle]
attribute.

� A conformant array type.

� A varying array type.

� A structure type containing a conformant array.

� An array type of which any instance is varying.

� A type with the represent_as attribute.

The type name in a declaration for a transmit_as attribute cannot exceed 21 characters.

A transmitted type specified by the transmit_as attribute must be either a base type, a predefined type, or
a named type defined using typedef. A transmitted type cannot be a conformant array type or a
conformant structure type if any instance of that type is an in parameter or an in, out parameter.

274 Application Development Guide: Core Components

The following is an example of transmit_as.

Assuming the following declarations:

typedef
struct tree_node_t {

 data_t data;
struct tree_node_t $ left;
struct tree_node_t $ right;

 } tree_node_t;

typedef
[transmit_as(tree_xmit_t)] tree_node_t $tree_t;

The application code must include routines that match the prototypes:

void tree_t_to_xmit (tree_t $, (tree_xmit_t $$));
void tree_t_from_xmit ((tree_xmit_t $), (tree_t $));
void tree_t_free_inst (tree_t $);
void tree_t_free_xmit ((tree_xmit_t $));

IDL Grammar Synopsis

This section summarizes the IDL syntax in extended Backus-Naur Format (BNF) notation.

Table 11 (Page 1 of 8). Backus-Naur Format for the Interface Definition Language

Number Production Rule

 1 <interface> ::= <interface_init> <interface_start> <interface_tail>

 2 <interface_start> ::= <interface_attributes> interface IDENTIFIER

 3 <interface_init> ::= φ

 4 <interface_tail> ::= { <interface_body> }
| error
| error }

 5 <interface_body> ::= <optional_imports> <exports> <extraneous_semi>

 6 <optional_imports> ::= <imports>
| φ

 7 <imports> ::= <import>
| <imports> <import>

 8 <import> ::= import error
| import error ;
| import <import_files> ;

 9 <import_files> ::= <import_file>
| <import_files> , <import_file>

 10 <import_file> ::= STRING

 11 <exports> ::= <export>
| <exports> <extraneous_semi> <export>

 Chapter 11. Interface Definition Language 275

Table 11 (Page 2 of 8). Backus-Naur Format for the Interface Definition Language

Number Production Rule

 12 <export> ::= <type_dcl> ;
| <const_dcl> ;
| <operation_dcl> ;
| error ;

 13 <const_dcl> ::= const <type_spec> <declarator> = <const_exp>

 14 <const_exp> ::= <expression>

 15 <type_dcl> ::= typedef <type_declarator>

 16 <type_declarator> ::= <attributes> <type_spec> <declarators>

 17 <type_spec> ::= <simple_type_spec>
| <constructed_type_spec>

 18 <simple_type_spec> ::= <floating_point_type_spec>
| <integer_type_spec>
| <char_type_spec>
| <boolean_type_spec>
| <byte_type_spec>
| <void_typ/_spec>
| <named_type_spec>
| <handle_type_spec>

 19 <constructed_type_spec> ::= <struct_type_spec>
| <union_type_spec>
| <enum_type_spec>
| <pipe_type_spec>

 20 <named_type_spec> ::= IDENTIFIER

 21 <floating_point_type_spec> ::= float
| double

 22 <extraneous_comma> ::= φ
| ,

 23 <extraneous_semi> ::= φ
| ;

 24 <optional_unsigned_kw> ::= unsigned
| φ

 25 <integer_size_spec> ::= small
| short
| long
| hyper

 26 <integer_modifiers> ::= <integer_size_spec>
| unsigned <integer_size_spec>
| <integer_size_spec> unsigned

 27 <integer_type_spec> ::= <integer_modifiers>
| <integer_modifiers> int
| <optional_unsigned_kw> int

276 Application Development Guide: Core Components

Table 11 (Page 3 of 8). Backus-Naur Format for the Interface Definition Language

Number Production Rule

 28 <char_type_spec> ::= <optional_unsigned_kw> char

 29 <boolean_type_spec> ::= boolean

 30 <byte_type_spec> ::= byte

 31 <void_type_spec> ::= void

 32 <handle_type_spec> ::= handle_t

 33 <push_name_space> ::= {

 34 <pop_name_space> ::= }

 35 <union_type_spec> ::= union <ne_union_body>
| union switch (<disc_type_spec> IDENTIFIER) <union_body>
| union IDENTIFIER <ne_union_body>
| union switch (<disc_type_spec>
| union IDENTIFIER switch (<disc_type_spec> IDENTIFIER)
<union_body>
 union IDENTIFIER

36 <disc_type_spec> ::= <simple_type_spec>

37 <ne_union_body> ::= <push_name_space> <ne_union_cases> <pop_name_space>

 38 <union_body> ::= <push_name_space> <union_cases> <pop_name_space>

39 <ne_union_cases> ::= <ne_union_case>
 | ne_union_cases extraneous_semi ne_union case

 40 <union_cases> ::= <union_case>
| <union_cases> <extraneous_semi> <union_case>

41 <ne_union_case> ::= <ne_union_member>

 42 <union_case> ::= <union_case_list> <union_member>

 43 <ne_union_case_list> ::= <ne_union_case_label>
| <ne_union_case_list> , ne_union_case_label

 44 <union_case_list> ::= <union_case_label>
| <union_case_list> <union_case_label>

45 <ne_union_case_label> ::= <const_exp>

 46 <union_case_label> ::= case <const_exp> :
| default :

47 <ne_union_member> ::= <attribute_opener> <rest_of_attribute_list>
::= <attribute_opener> <rest_of_attribute_list> <type_spec>

<declarator> ;

 48 <union_member> ::= ;
| <attributes> <type_spec> <declarator> ;

 Chapter 11. Interface Definition Language 277

Table 11 (Page 4 of 8). Backus-Naur Format for the Interface Definition Language

Number Production Rule

 49 <struct_type_spec> ::= struct <push_name_space> <member_list> <pop_name_space>
| struct IDENTIFIER <push_name_space> <member_list>
<pop_name_space>
| struct IDENTIFIER

 50 <member_list> ::= <member>
| <member_list> <extraneous_semi> <member>

 51 <member> ::= <attributes> <type_spec> <old_attribute_syntax> <declarators> ;

 52 <enum_type_spec> ::= enum <enum_body>

 53 <enum_body> ::= { <enum_ids> }

 54 <enum_ids> ::= φ
| <enum_id>
| <enum_ids> , <extraneous_comma> <enum_id>

 55 <enum_id> ::= IDENTIFIER

 56 <pipe_type_spec> ::= pipe <type_spec>

 57 <declarators> ::= <declarator>
| <declarators> , <extraneous_comma> <declarator>

 58 <declarator> ::= <direct_declarator>
| <pointer> <direct_declarator>

 59 <pointer> ::= *
| * <pointer>

 60 <direct_declarator> ::= IDENTIFIER
| <direct_declarator> <array_bounds>
| (<declarator>)
| <direct_declarator> <parameter_dcls>

 61 <array_bounds> ::= []
| [*]
| [<const_exp>]
| [* .. *]
| [* .. <const_exp>]
| [<const_exp> .. *]
| [<const_exp> .. <const_exp>]

 62 <operation_dcl> ::= <attributes> <type_spec> <declarators>
| error <declarators>

 63 <parameter_dcls> ::= <param_names> <param_list> <end_param_names>

 64 <param_names> ::= (

 65 <end_param_names> ::= <extraneous_comma>)

 66 <param_list> ::= <param_dcl>
| <param_list> , <extraneous_comma> <param_dcl>

278 Application Development Guide: Core Components

Table 11 (Page 5 of 8). Backus-Naur Format for the Interface Definition Language

Number Production Rule

| φ

 67 <param_dcl> ::= <attributes> <type_spec> <old_attribute_syntax>
<declarator_or_null>
| error <old_attribute_syntax> <declarator_or_null>

 68 <declarator_or_null> ::= <declarator>
| φ

 69 <attribute_opener> ::= [

 70 <attribute_closer> ::=]

 71 <bounds_opener> ::= (

 72 <bounds_closer> ::=)

 73 <old_attribute_syntax> ::= <attributes>

 74 <interface_attributes> ::= <attribute_opener> <interface_attr_list> <attribute_closer>
| <attribute_opener> error <attribute_closer>
| φ

 75 <interface_attr_list> ::= <interface_attr>
| <interface_attr_list> , <extraneous_comma> <interface_attr>
| φ

 76 <interface_attr> ::= uuid error
| uuid UUID_REP
| endpoint (<port_list>)
| exceptions (<excep_list>)
| version (<version_number>)
| local
| pointer_default (<pointer_class>)

 77 <pointer_class> ::= ref
| ptr
| unique

 78 <version_number> ::= INTEGER
| FLOAT

 79 <port_list> ::= <port_spec>
| <port_list> , <extraneous_comma> <port_spec>

 80 <excep_list> ::= <excep_spec>
| <excep_list> , <extraneous_comma> <excep_spec>

 81 <port_spec> ::= STRING

82 <excep_spec> ::= IDENTIFIER

 83 <fp_attribute> ::= <array_bound_type> <bounds_opener> <array_bound_id_list>
<bounds_closer>

 84 <array_bound_type> ::= first_is

 Chapter 11. Interface Definition Language 279

Table 11 (Page 6 of 8). Backus-Naur Format for the Interface Definition Language

Number Production Rule

| last_is
| length_is
| max_is
| min_is
| size_is

 85 <array_bound_id_list> ::= <array_bound_id>
| <array_bound_id_list> , <array_bound_id>

 86 <array_bound_id> ::= IDENTIFIER
| * IDENTIFIER
| φ

87 <neu_switch_type> ::= switch_is

88 <neu_switch_id> ::= IDENTIFIER
: | *IDENTIFIER

 89 <attributes> ::= <attribute_opener> <rest_of_attribute_list>
| φ

 90 <rest_of_attribute_list> ::= <attribute_list> <attribute_closer>
| error <attribute_closer>
| error ;

 91 <attribute_list> ::= <attribute>
| <attribute_list> , <extraneous_comma> <attribute>

 92 <attribute> ::= <fp_attribute>
| broadcast
| maybe
| idempotent
| reflect_deletions
| ptr
| in
| in (shape)
| out
| out (shape)
| v1_array
| string
| v1_string
| unique
| ref
| ignore
| context_handle
| v1_struct
| v1_enum
| align (small)
| align (short)
| align (long)
| align (hyper)
| handle
| transmit_as (<simple_type_spec>)
| switch_type (<simple_type_spec>)
| case (<ne_union_case_list>)
| default

280 Application Development Guide: Core Components

Table 11 (Page 7 of 8). Backus-Naur Format for the Interface Definition Language

Number Production Rule

| IDENTIFIER

 93 <expression> ::= <conditional_expression>

 94 <conditional_expression> ::= <logical_OR_expression>
| <logical_OR_expression> ? <expression> :
<conditional_expression>

 95 <logical_OR_expression> ::= <logical_AND_expression>
| <logical_OR_expression> || <logical_AND_expression>

 96 <logical_AND_expression> ::= <inclusive_OR_expression>
| <logical_AND_expression> && <inclusive_OR_expression>

 97 <inclusive_OR_expression> ::= <exclusive_OR_expression>
| <inclusive_OR_expression> | <exclusive_OR_expression>

 98 <exclusive_OR_expression> ::= <AND_expression>
| <exclusive_OR_expression> ^ <AND_expression>

 99 <AND_expression> ::= <equality_expression>
| <AND_expression> & <equality_expression>

 100 <equality_expression> ::= <relational_expression>
| <equality_expression> == <relational_expression>
| <equality_expression> != <relational_expression>

 101 <relational_expression> ::= <shift_expression>
| <relational_expression> < <shift_expression>
| <relational_expression> > <shift_expression>
| <relational_expression> <= <shift_expression>
| <relational_expression> >= <shift_expression>

 102 <shift_expression> ::= <additive_expression>
| <shift_expression> << <additive_expression>
| <shift_expression> >> <additive_expression>

 103 <additive_expression> ::= <multiplicative_expression>
| <additive_expression> + <multiplicative_expression>
| <additive_expression> - <multiplicative_expression>

 104 <multiplicative_expression> ::= <cast_expression>
| <multiplicative_expression> * <cast_expression>
| <multiplicative_expression> / <cast_expression>
| <multiplicative_expression> % <cast_expression>

 105 <cast_expression> ::= <unary_expression>

 106 <unary_expression> ::= <primary_expression>
| + <primary_expression>
| - <primary_expression>
| ˜ <primary_expression>
| ! <primary_expression>

 107 <primary_expression> ::= (<expression>)
| INTEGER

 Chapter 11. Interface Definition Language 281

Table 11 (Page 8 of 8). Backus-Naur Format for the Interface Definition Language

Number Production Rule

| CHAR
| IDENTIFIER
| STRING
| NULL
| TRUE
| FALSE
| FLOAT

Table 12 is an index of the BNF production rules used in Table 11 on page 275. Use Table 12 as an
index to find where a production rule is defined and used in Table 11 on page 275.

Table 12 (Page 1 of 3). Cross Reference of the Backus-Naur Format for the Interface Definition Language

Production Rule Defined Used

<additive_expression> 103 102, 103

<AND_expression> 99 98, 99

<array_bound_id> 86 85

<array_bound_id_list> 85 83, 85

<array_bound_type> 84 83

<array_bounds> 61 60

<attribute> 92 91

<attribute_closer> 70 74, 90

<attribute_list> 91 90, 91

<attribute_opener> 69 74, 89

<attributes> 89 16, 48, 51, 62, 67, 73

<boolean_type_spec> 29 18

<bounds_closer> 72 83

<bounds_opener> 71 83

<byte_type_spec> 30 18

<cast_expression> 105 104

<char_type_spec> 28 18

<conditional_expression> 94 93, 94

<const_dcl> 13 12

<const_exp> 14 13, 46, 61

<constructed_type_spec> 19 17

<declarator> 58 13, 48, 57, 60, 68

<declarator_or_null> 68 67

<declarators> 57 16, 51, 57, 62

<direct_declarator> 60 58, 60

<disc_type_spec> 36 35

<end_param_names> 65 63

<enum_body> 53 52

<enum_id> 55 54

<enum_ids> 54 53, 54

<enum_type_spec> 52 19

<equality_expression> 100 99, 100

282 Application Development Guide: Core Components

Table 12 (Page 2 of 3). Cross Reference of the Backus-Naur Format for the Interface Definition Language

Production Rule Defined Used

<excep_list> 80 76

<excep_spec> 82 80

<exclusive_OR_expression> 98 97, 98

<export> 12 11

<exports> 11 5, 11

<expression> 93 14, 94, 107

<extraneous_comma> 22 54, 57, 65, 66, 75, 79, 91

<extraneous_semi> 23 5, 11, 40, 50

<floating_point_type_spec> 21 18

<fp_attribute> 83 92

<handle_type_spec> 32 18

<import> 8 7

<import_file> 10 9

<import_files> 9 8, 9

<imports> 7 6, 7

<inclusive_OR_expression> 97 96, 97

<integer_modifiers> 26 27

<integer_size_spec> 25 26

<integer_type_spec> 27 18

<interface> 1

<interface_attr> 76 75

<interface_attr_list> 75 74, 75

<interface_attributes> 74 2

<interface_body> 5 4

<interface_init> 3 1

<interface_start> 2 1

<interface_tail> 4 1

<logical_AND_expression> 96 95, 96

<logical_OR_expression> 95 94, 95

<member> 51 50

<member_list> 50 49, 50

<multiplicative_expression> 104 103, 104

<named_type_spec> 20 18

<ne_union_body> 37 35

<ne_union_case> 41 37, 39

<ne_union_cases> 39 37

<ne_union_case_label> 45 43, 44

<ne_union_case_list> 43 44

<ne_union_member> 47 41

<neu_switch_id> 88

<neu_switch_type> 87

<old_attribute_syntax> 73 51, 67

<operation_dcl> 62 12

 Chapter 11. Interface Definition Language 283

Table 12 (Page 3 of 3). Cross Reference of the Backus-Naur Format for the Interface Definition Language

Production Rule Defined Used

<optional_imports> 6 5

<optional_unsigned_kw> 24 27, 28

<param_dcl> 67 66

<param_list> 66 63, 66

<param_names> 64 63

<parameter_dcls> 63 60

<pipe_type_spec> 56 19

<pointer> 59 58, 59

<pointer_class> 77 76

<pop_name_space> 34 38, 49

<port_list> 79 76, 79

<port_spec> 81 79

<primary_expression> 107 106

<push_name_space> 33 38, 49

<relational_expression> 101 100, 101

<rest_of_attribute_list> 90 89

<shift_expression> 102 101, 102

<simple_type_spec> 18 17, 35, 92

<struct_type_spec> 49 19

<type_dcl> 15 12

<type_declarator> 16 15

<type_spec> 17 13, 16, 48, 51, 56, 62, 67

<unary_expression> 106 105

<union_body> 38 35

<union_case> 42 40

<union_case_label> 46 44

<union_case_list> 44 42, 44

<union_cases> 40 38, 40

<union_member> 48 42

<union_type_spec> 35 19

<version_number> 78 76

<void_type_spec> 31 18

284 Application Development Guide: Core Components

Chapter 12. Attribute Configuration Language

The Attribute Configuration Language is used for writing an attribute configuration file (ACF). Use the
attributes in the ACF to change the interaction between the application code and stubs without affecting
the client/server network interaction.

Syntax Notation Conventions

The syntax of the Attribute Configuration Language is similar to the syntax of the Interface Definition
Language (IDL). For syntax information, see “Syntax Notation Conventions” on page 221.

Use of Brackets

The use of [] (brackets) can be either a required part of the syntax or can denote that a string is optional
to the syntax. To differentiate between the two, brackets that are required are shown as [] (regular type
brackets). Brackets that contain optional strings are shown as [] (italicized brackets).

Use of the Vertical Bar

A | (vertical bar) denotes a logical OR.

Attribute Configuration File (ACF)

The ACF changes the way the IDL compiler interprets the interface definition, written in the Interface
Definition Language (IDL). The IDL file defines a means of interaction between a client and a server.
For new server implementations to be compatible across the network with existing servers, the interaction
between the client and server must not be changed. If the interaction between an application and a
specific stub needs to change, you must provide an ACF when you build this stub.

The ACF affects only the interaction between the generated stub code and the local application code; it
has no effect on the interaction between local and remote stubs. Therefore, client and server writers are
likely to have different ACFs that they can change as desired.

Naming the ACF

To name the ACF, if it is an HFS file, replace the extension of the IDL file (.idl) with the extension of the
ACF (.acf). The ACF associated with your_idl_filename.idl is your_idl_filename.acf.

If it is a partitioned data set, replace the member name of the IDL data set with the same member name
in the ACF data set. The IDL compiler searches the data set referred to by the DDNAME ACF with the
same member name as in the IDL data set. For example, for an IDL file in
USERPRFX.APPLNAME.IDL(BINOP), the IDL compiler searches for the ACF in
USERPRFX.APPLNAME.ACF(BINOP).

 Copyright IBM Corp. 1994, 2001 285

Compiling the ACF

When you issue the idl command, naming the IDL file to compile, the compiler searches for a
corresponding ACF and compiles it along with the IDL file. the compiler also searches for any ACF (there
can be more than one) associated with any imported IDL files. The stubs that the compiler creates
contain the appropriate changes.

 ACF Features

The ACF attributes and the features associated with the attributes are as follows:

include statement Includes header files in the generated code

auto_handle, explicit_handle, implicit_handle, binding_callout
Controls binding

comm_status, fault_status Indicates parameters to hold status conditions
occurring in the call

cs_char, cs_tag_rtn, cs_stag, cs_drtag, cs_rtag
Controls the transmission of international (non-PCS)
characters

code, nocode Controls which operations of the IDL file are compiled

encode, decode Controls the generation of IDL encoding services stubs
to perform encoding or decoding operations

extern_exceptions Indicates user-defined parameters to hold status
conditions occurring in the call

represent_as Controls conversion between local and network data
types

enable_allocate Forces the initialization of the memory management
routines

heap Specifies objects to be allocated from heap memory.

Note: For performance reasons, use of the heap
attribute on the z/OS DCE product is not
recommended.

 Structure

The structure of the ACF is:

 interface_header
 {
 interface_body
 }

Follow these structural rules when writing an attribute configuration file:

� The base name of the ACF must be the same as the base name of the IDL file although the
extensions are different.

� The interface name in the ACF must be the same as the interface name in the corresponding IDL file.

� With a few exceptions, any type, parameter, or operation names in the ACF must be declared in the
IDL file, or defined in files included by use of the include statement, as the same class of name.

286 Application Development Guide: Core Components

� Except for additional status parameters, any parameter name that occurs within an operation in the
ACF must also occur within that operation in the IDL file.

ACF Interface Header

The ACF interface header has the following structure:

[[acf_attribute_list]] interface idl_interface_name

The acf_attribute_list is optional. The interface header attributes can include one or more of the following
attributes, entered within brackets. If you use more than one attribute, separate them with commas and
include the list within a single pair of brackets. (Note that some of these attributes can also be used in the
ACF body as described in “ACF Interface Body.”)

 � code
 � nocode
� implicit_handle(handle_type handle_name)

 � auto_handle
 � explicit_handle
 � encode
 � decode
� binding_callout(routine_name)

 � extern_exceptions(exception_name[,exception_name]...)
� cs_tag_rtn(tag_set_routine)

The following example shows how to use more than one attribute in the ACF interface header:

[auto_handle, binding_callout(rpc_ss_bind_authn_client)] interface phone_direct
{
}

ACF Interface Body

The ACF interface body can contain the elements in the following list. Note that some of the attributes
listed here can also be used in the ACF header, as described in “ACF Interface Header.” If you use more
than one attribute, separate them with commas and include the list within a single pair of brackets.

� An include statement:

include "filename" [, "filename"] . . .;

Note: Omit the extension of the file name in an include statement; the IDL compiler appends the
correct extension for the language you are using. The IDL compiler appends the .h extension.

� A declared type:

typedef [[represent_as (local_type_name)] | [heap] |
[cs_char (local_type_name)]] type_name;

 � An operation:

[[explicit_handle] | [comm_status] | [fault_status] |
[code] | [nocode] | [enable_allocate] |
[encode] | [decode] | [cs_tag_rtn (tag_set_routine)]] operation_name ([parameter_list]);

A parameter_list is a list of zero or more parameter names as they appear in the corresponding
operation definition of the IDL file. You do not need to use all the parameter names that occur in the
IDL operation definition; use only those to which you attach an ACF attribute. If you use more than
one parameter name, the names must be separated by commas.

� A parameter within an operation:

 Chapter 12. Attribute Configuration Language 287

[[comm_status] | [fault_status] | [heap] | [cs_stag] | [cs_drtag] | [cs_rtag]] parameter_name

The include Statement

This statement specifies any additional header files you want included in the generated stub code. You
can specify more than one header file.

Use the include statement whenever you use the represent_as, implicit_handle, or cs_char attributes
and the specified type is not defined or imported in the IDL file.

The include statement has the following syntax. (An example is shown with the represent_as example in
“The represent_as Attribute” on page 293.)

include "filename" ;

The auto_handle Attribute

This attribute causes the client stub and RPC runtime to manage the binding to the server by using a
directory service. Any operation in the interface that has no parameter containing binding information is
bound automatically to a server so the client does not have to specify a binding to a server.

When an operation is automatically bound, the client does not have to specify the server on where an
operation runs. If you make a call on an operation without explicit binding information in an interface for
which you have specified auto_handle, and no client/server binding currently exists, the RPC runtime
system selects an available server and establishes a binding. This binding is used for this call and
subsequent calls to all operations in the interface that do not include explicit binding information while the
server is still available.

An abrupt server ending, network failure, or other problems can cause a break in binding. If this occurs
during an automatically bound operation, RPC issues the call to another server, provided one is available,
and the operation is idempotent or the RPC runtime system determines that the call did not start to run on
the server. Similarly, if a communications or server failure occurs between calls, RPC binds to another
server for the next call if a server is available.

Note: Authenticated RPC is not supported with the automatic binding method.

If the client stub cannot find a server to run the operation, it reports this by returning the status code
rpc_s_no_more_bindings in the comm_status parameter, or by raising the exception
rpc_x_no_more_bindings if the operation does not use the comm_status attribute for error reporting. If
a binding breaks, the RPC runtime starts its search at the directory service entry following the one where
the binding broke. Even if a server earlier in the list becomes available, it is not treated as a candidate for
binding. After the RPC runtime tries each server in the list, it reinitializes the list of server candidates and
tries again. If the second attempt is unsuccessful, the RPC runtime reports the status code,
rpc_s_no_more_bindings. The next call on an operation in the interface starts from the top of the list
when looking for a server to bind to.

The auto_handle attribute can occur at most once in the ACF.

If an interface uses the auto_handle attribute, the presence of a binding handle or context handle
parameter in an operation overrides auto_handle for that operation.

The auto_handle attribute declaration has the following syntax. (See the example at the end of this
section.)

� For an interface:

288 Application Development Guide: Core Components

[auto_handle] interface interface_name

You cannot use auto_handle if you use implicit_handle or if you use explicit_handle in the interface
header. You also cannot use auto_handle if you use the encode or decode ACF attributes.

Example Using the auto_handle Attribute

ACF

[auto_handle] interface math_1
 {
 }

IDL File

 [uuid(b3c86900-2d27-11c9-ab09-08002b0ecef1)]
 interface math_1
 {

/$ This operation has no handle parameter,
$ therefore, uses automatic binding.

 $/
long add([in] long a,

[in] long b);

 /$
$ This operation has an explicit handle parameter, h,
$ that overrides the [auto_handle] ACF attribute.
$ Explicit handles also override [implicit_handle].

 $/
long subtract ([in] handle_t h,

[in] long a,
[in] long b);

 }

The explicit_handle Attribute

This attribute allows the application program to manage the binding to the server. The explicit_handle
attribute indicates that a binding handle is passed to the runtime as an operation parameter.

The explicit_handle attribute has the following syntax. (See the example at the end of this section.)

� For an interface:

[explicit_handle] interface interface_name

� For an operation:

[explicit_handle] operation_name ([parameter_list]) ;

When used as an ACF interface attribute, the explicit_handle attribute applies to all operations in the IDL
file. When used as an ACF operation attribute, this attribute applies to only the operation you specify.

If you use the explicit_handle attribute as an ACF interface attribute, you must not use the auto_handle
or implicit_handle attributes. Also, you cannot use the encode or decode ACF attributes if you use
explicit_handle.

Using the explicit_handle attribute on an interface or operation has no effect on operations in IDL that
have explicit binding information in their parameter lists.

Example Using the explicit_handle Attribute

ACF

 Chapter 12. Attribute Configuration Language 289

[explicit_handle] interface math_2
 {

/$ This causes the operation, as called by the client, to have the
$ parameter handle_t IDL_handle, at the start of the parameter
$ list, before the parameters specified here in the IDL file.

 $/
 }

IDL File

 [uuid(41ce5b80-0ba7-11ca-87ba-08002b111685)]
 interface math_2
 {
long add([in] long a,

[in] long b);
 }

The implicit_handle Attribute

This attribute allows the application program to manage the binding to the server. You specify the data
type and name of the handle variable as part of the implicit_handle attribute. The implicit_handle
attribute informs the compiler of the name and type of the global variable through which the binding handle
is implicitly passed to the client stub. A variable of this type and name is defined in the client stub code,
and the application initializes the variable before making a call to this interface.

The implicit_handle attribute declaration has the following syntax. (See the example at the end of this
section.)

� For an interface:

[implicit_handle (handle_type handle_name)] interface interface_name

If an interface uses the implicit_handle attribute, the presence of a binding handle or in or in,out context
handle parameter in an operation overrides the implicit handle for that operation.

The implicit_handle attribute can occur at most once in the ACF.

You cannot use the implicit_handle attribute if you are using the auto_handle attribute or the
explicit_handle attribute as an interface attribute. You also cannot use implicit_handle if you use the
encode or decode ACF attributes.

If the type in the implicit_handle clause is not handle_t, then it is treated as if it has the handle attribute.
For a description of the handle attribute see Chapter 11, “Interface Definition Language” on page 221.

The ACF in the following example changes the math_3 interface to use an implicit handle.

Example Using the implicit_handle Attribute

ACF

[implicit_handle(user_handle_t global_handle)] interface math_3
 {
 /$

$ Since user_handle_t is not a type defined in the IDL, you
$ must specify an include file that contains the definition

 $/
 include "user_handle_t_def";
 }

IDL File

290 Application Development Guide: Core Components

 [uuid(a01d0280-2d27-11c9-9fd3-08002b0ecef1)]
 interface math_3
 {
long add([in] long a,

[in] long b);
 }

The comm_status and fault_status Attributes

The comm_status and fault_status attributes cause the status code of any communications failure or
server runtime failure that occurs in an RPC to be stored in a parameter or returned as an operation
result, instead of being raised to the client user code as an exception.

The comm_status attribute causes communications failures to be reported through a specified parameter.
The fault_status attribute causes server runtime failures to be reported through a specified parameter.
Applying both attributes causes all remote and communications failures to be reported through status.
Any local exception caused by an error during marshalling, correctness checking performed by the client
stubs, or an error in application routines continues to be returned as an exception.

The comm_status and fault_status attributes have the following syntax.

� For an operation:

[comm_status | fault_status] operation_name ([parameter_list]);

� For a parameter:

operation_name ([comm_status | fault_status] parameter_name);

Note: You can apply one of each attribute to the same operation and possibly the parameter at the
same time. Separate the attributes with a comma.

If the parameter named in a comm_status or fault_status attribute is in the parameter list for
the operation in the IDL file, it must have the out attribute in the IDL file. (Additional ACF
parameters do not have in and out directional attributes.)

If the status attribute occurs on the operation, the returned value result must be defined as type
error_status_t in the IDL file. If an error occurs during the operation, the error code is returned as the
operation result. If the operation completes successfully, the value returned to the client is the value
returned by the manager code.

Note: The error_status_t type is equivalent to unsigned32, which is the data type used by the RPC
runtime for an error status. The status code error_status_ok is equivalent to rpc_s_ok, which is
the RPC runtime success status code.

If the status attribute occurs on a parameter, the parameter name does not have to be defined in the IDL
file, although it can be. Note the following:

� If the parameter name is one used in the IDL file, that parameter must be an output parameter of type
error_status_t. If the operation completes successfully, the value of this parameter is the value
returned by the manager code.

� If the parameter name is different from any name defined within the operation definition in the IDL file,
then the IDL compiler creates an extra output parameter of type error_status_t in your application
code after the last parameter defined in the IDL file. In a successfully completed remote call, the
extra parameter has the value error_status_ok.

In either case, if an error occurs during the remote call, the error code is returned to the parameter that
has the status attribute. z/OS DCE Messages and Codes describes the status codes.

 Chapter 12. Attribute Configuration Language 291

If you define both additional comm_status and additional fault_status parameters, they are automatically
added at the end of the procedure declaration in the order of specification in the ACF.

The code and nocode Attributes

The code and nocode attributes allow you to control which operations in the IDL file have client stub code
generated for them by the compiler. These attributes affect only the generation of a client stub; they have
no effect when generating the server stub.

The code and nocode attributes have the following syntax. (See the examples at the end of this section.)

� For an interface:

[code | nocode] interface interface_name

� For an operation:

[code | nocode] operation_name ([parameter_list]);

When you specify nocode as an attribute on an ACF interface, stub code is not generated for the
operations in the corresponding IDL interface unless you also specify code for the particular operations for
which you want stub code generated. Similarly, when you specify code (the default) as an attribute on an
ACF interface, stub code is generated for the operations in the corresponding IDL interface unless you
also specify nocode for the particular operations for which you do not want stub code generated.

Do not use nocode on any of the operations if the compiler is generating only server stub code, because
it has no effect. Server stubs must always contain generated code for all operations.

In the following example, the IDL compiler generates client stub code for the operations open, read, and
close, but not for the operation write. An alternative method for specifying the same behavior is to use
[nocode] write() in the ACF.

Example Using the code and no_code Attributes

ACF

[nocode,auto_handle] interface open_read_close
 {
 [code] open();
 [code] read();
 [code] close();
 }

Note that at least one operation in your ACF file should have the [code] attribute (the default) specified.
That is, you should not specify all operations in your IDL file as [nocode] or else the IDL compiler will not
generate executable client stub code for any operations. This makes the client stub useless for those
operations.

IDL File

 [uuid(2166d580-0c69-11ca-811d-08002b111685)]
 interface open_read_close
 {
void open (...);
void read (...);
void write (...);
void close (...);

 }

292 Application Development Guide: Core Components

The represent_as Attribute

This attribute associates a local data type that your application code uses with a data type defined in the
IDL file. Use of the represent_as attribute means that during marshalling and unmarshalling, conversions
occur between the data type used by the application code, and the data type specified in the IDL.

The represent_as attribute has the following syntax (See the example at the end of this section.)

typedef [represent_as (local_type_name)] net_type_name;

The local_type_name is the local data type that the application code uses. You can define it in the IDL file
or in an application header file. If you do not define it in the IDL file, use the include statement in the
ACF to make its definition available to the stubs.

The net_type_name is the data type that is defined in the IDL file.

The represent_as attribute can appear at most once in a typedef declaration in an ACF.

If you use the represent_as attribute, you must write routines that perform the conversions between the
local and network types, and routines that release the memory storage used to hold the converted data.
The conversion routines are part of your application code.

The suffix for the routine names, the function of each, and where they are used (client or server) are
shown in the following list:

_from_local Allocates storage instance of the network type and converts from the local type to the
network type (used for client and server).

_to_local Converts from the network type to the local type (used for client and server).

_free_inst Frees storage instance used for the network type (used by client and server).

_free_local Frees storage used by the server for the local type (used in server). This routine frees any
object pointed to by its argument, but does not attempt to free the argument itself.

Suppose that the represent_as attribute is applied to either the type of a parameter or to a component of
a parameter, and that the parameter has the out or in,out attribute. Then the _free_local routine will be
called automatically for the data item that has the type to which the represent_as attribute was applied.

Suppose that the represent_as attribute is applied to the type of a parameter and that the parameter has
only the in attribute. Then the _free_local routine will be called automatically.

Finally, suppose that the represent_as attribute is applied to the type of a component of a parameter, and
that the parameter has only the in attribute. Then the _free_local routine will not be called automatically
for the component. The manager application code must release any resources that the component uses,
possibly by explicitly calling the _free_local routine.

Append the suffix of the routine name to the net_type_name. The syntax for these routines is as follows:

void net_type_name_from_local (
 (local_type_name *),

(net_type_name **))

void net_type_name_to_local (
(net_type_name *),

 (local_type_name *))

void net_type_name_free_inst ((net_type_name *))

 Chapter 12. Attribute Configuration Language 293

void net_type_name_free_local ((local_type_name *))

Example Using the represent_as Attribute

ACF

[auto_handle] interface phonedir
 {
 /$

$ You must specify an included file that contains the
$ definition of my_dir_t.

 $/
 include "user_types";

 /$
$ The application code wants to pass data type my_dir_t
$ rather than dir_t. The [represent_as] clause allows
$ this, and you must supply routines to convert dir_t
$ to/from my_dir_t.

 $/
typedef [represent_as(my_dir_t)] dir_t;

 }

IDL File

 [uuid(06a12100-2d26-11c9-aa24-08002b0ecef1)]
 interface phonedir
 {
 typedef struct
 {
 short int area_code;
 long int phone_num;
 char last_name[20];
 char first_name[15];
 char city[20];
 } dir_t;
void add ([in] dir_t $info);
void lookup ([in] char city[20],

[in] char last_name[20],
[in] char first_name[15],
[out] dir_t $info);

void delete ([in] dir_t $info);
 }

The enable_allocate Attribute

The enable_allocate attribute on an operation causes the server stub to initialize the rpc_ss_allocate()
routine. The rpc_ss_allocate() routine requires initialization of its environment before it can be called.
The server stub automatically initializes (enables) rpc_ss_allocate() if the operation uses either full
pointers, or a type with the represent_as attribute. If the operation does not meet either of these
conditions, but the manager application code needs to make use of the rpc_ss_allocate() and
rpc_ss_free() routines, then use the enable_allocate attribute to force the stub code to enable.

The enable_allocate attribute has the following syntax:

� For an operation:

[enable_allocate] operation_name ([parameter_list]);

Example Using the enable_allocate Attribute

ACF

294 Application Development Guide: Core Components

[auto_handle] interface phonedir
 {
[enable_allocate] lookup ();

 }

IDL File

 [uuid(06a12100-2d26-11c9-aa24-08002b0ecef1)]
 interface phonedir
 {
 typedef struct
 {
 short int area_code;
 long int phone_num;
 char last_name[20];
 char first_name[15];
 char city[20];
 } dir_t;
void add ([in] dir_t $info);
void lookup ([in] char city[20],

[in] char last_name[20],
[in] char first_name[15],
[out] dir_t $info);

void delete ([in] dir_t $info);
 }

The heap Attribute

This attribute specifies that the server stub’s copy of a parameter or of all parameters of a specified type is
allocated in heap memory, rather than on the stack.

The heap attribute has the following syntax. (See the example at the end of this section.)

� For a type:

typedef [heap] type_name;

� For a parameter:

operation_name ([heap] parameter_name);

Any identifier occurring as a parameter name within an operation declaration in the ACF must also be a
parameter name within the corresponding operation declaration in the IDL.

The heap attribute is ignored for pipes, context handles, and scalars.

Example Using the heap Attribute

ACF

[auto_handle] interface galaxies
 {
typedef [heap] big_array;

 }

IDL File

 [uuid(e61de280-0d0b-11ca-6145-08002b111685)]
 interface galaxies
 {
typedef long big_array[1000];

 }

 Chapter 12. Attribute Configuration Language 295

The extern_exceptions Attribute

By default, the IDL compiler declares and initializes all exceptions listed in an exceptions interface
attribute in the stub code that it generates. You can use the extern_exceptions attribute to override this
behavior; the extern_exceptions attribute allows you to specify one or more exceptions listed in the
exceptions interface attribute that you do not want the IDL-generated stub code to declare.

The extern_exceptions attribute has the following syntax. (See the example at the end of this section.)

[extern_exceptions (exception_name [,exception_name]...)] interface interface_name

The extern_exceptions attribute indicates that the specified exceptions are defined and initialized in some
other external manner before calling the extern_exceptions attribute. They may be predefined
exceptions (such as exc_e_exquota) that were provided by another interface, or exceptions that are
defined and initialized explicitly by the application itself.

Example Using the extern_exceptions Attribute

In the following example, the exception named in the list in the extern_exceptions attribute in the ACF is
not defined or initialized in the IDL-generated stub code. All of the other exceptions listed in the
exceptions interface attribute are defined and initialized in the generated stub.

ACF

[extern_exceptions(exc_e_quota)] interface binop {}
 /$
 $The exc_e_exquota exception is a predefined exception
 $(provided in exc_handling.h) and so does not need
 $to be declared and initialized in the IDL-generated stub.
 $/

IDL File

[uuid(06255501-08af-11cb-8c4f-08002b13d56d),
version (1.1),
 exceptions (
 exc_e_exquota,
 binop_e_aborted,
 binop_e_too_busy,
 binop_e_shutdown)
] interface binop
 {
 long binop_add(

[in] long a,
[in] long b

);
 }

The encode and decode Attributes

The encode and decode attributes are used in conjunction with IDL encoding services routines (idl_es*)
to enable RPC applications to encode data types in input parameters into a byte stream and decode data
types in output parameters from a byte stream without invoking the RPC runtime. Encoding and decoding
operations are analogous to marshalling and unmarshalling, except that the data is stored locally, and is
not transmitted over the network.

The stubs that perform encoding or decoding operations are different from the stubs that perform RPC
operations. The ACF attributes encode and decode direct the IDL compiler to generate encoding or

296 Application Development Guide: Core Components

decoding stubs for operations defined in a corresponding IDL interface rather than generating RPC stubs
for those operations.

The encode and decode attributes have the following syntax. (See the example at the end of this
section.)

For an interface:

[encode] | [decode] | [encode,decode] interface interface_name

For an operation:

[encode] | [decode] | [encode,decode] operation_name ([parameter_list]);

When used as an ACF interface attribute, the encode and decode attributes apply to all operations
defined in the corresponding IDL file. When used as an ACF operation attribute, encode and decode
apply only to the operation you specify. If you apply the encode or decode attribute to an ACF interface
or operation, you must not use the auto_handle or the implicit_handle ACF attributes.

When you apply the encode or decode attribute to an operation, the IDL compiler generates IDL
encoding services stubs that support encoding or decoding, depending on the attribute used, in the client
stub code, and does not generate stub code for the operation in the server stub. To generate an IDL
encoding services stub that supports both encoding and decoding, apply both attributes to the operation.

If you apply the encode or decode attribute to all of the operations in an interface, no server stub is
generated. If you apply the encode and decode attributes to some, but not all, of the operations in an
interface, the stubs for the operations that do not have the encode and decode attributes applied to them
are generated as RPC stubs.

When data encoding takes place, only the operation's in parameters provide data for the encoding. When
data decoding takes place, the decoded data is delivered only to the operation's out parameters.

If data is being both encoded and decoded, you generally declare all of the operation's parameters to be
in,out. However, you can encode data using the in parameters of one operation, and decode it using the
out parameters of another operation if the types and order of the in and out parameters are the same.
For equivalence, the IDL encoding services treat a function result as an out parameter that appears after
all other out parameters.

In the following example, the IDL compiler generates IDL encoding services stub code for the
in_array_op1, out_array_op1, and array_op2 operations, but not for the array_op3 operation. The stub
code generated for the in_array_op1 operation supports encoding, the stub code generated for the
out_array_op1 operation supports decoding, and the stub code generated for the array_op2 operation
supports both encoding and decoding. The stub code generated for the array_op3 is an RPC client stub.
For further information on using the IDL encoding services, see “Creating Portable Data Using the IDL
Encoding Services” on page 211 and the z/OS DCE Application Development Reference.

Example Using the encode and decode Attributes

ACF

interface es_array
{
 [encode] in_array_op1();
 [decode] out_array_op1();

[encode, decode] array_op2();
}

 Chapter 12. Attribute Configuration Language 297

IDL File

[uuid(20aac780-5398-11c9-b996-08002b13d56d), version(0)]
interface es_array
{

void in_array_op1([in] handle_t h, [in] long arr[100]);
void out_array_op1([in] handle_t h, [out] long arr[100]);
void array_op2([in] handle_t h, [in,out] long big[100]);
void array_op3([in] handle_t h, [in,out] long big[100]);

}

The cs_char Attribute

The cs_char attribute is intended for use in internationalized RPC applications. It is used in conjunction
with the cs_stag, cs_drtag, cs_rtag and cs_tag_rtn attributes and the DCE RPC routines for automatic
code set conversion to provide RPC applications with a mechanism for ensuring character and code set
interoperability between clients and servers transferring international (non-PCS) characters.

The cs_char attribute is very similar in function to the represent_as attribute: it associates a local data
type that your application code uses with a data type defined in the IDL file. The cs_char attribute
permits the application code to use the local data type for international character data, and converts
between the local data type and the format specified in the IDL file when transferring international
characters over the network. The cs_char ACF attribute permits the conversion of characters, arrays of
characters, and strings of characters between the format in which the application code requires them and
the format in which they are transmitted over the network.

As with represent_as, use of the cs_char attribute means that during marshalling and unmarshalling,
conversions occur between the data type that the application code is using and the data type specified in
the IDL. In the case of cs_char, the local data type is automatically converted between the local data
type in the local code set encoding and the idl_byte data type in the network code set encoding. The
network code set is the code set encoding that the application code, through the use of code set
conversion routines, has selected to use when transmitting the international characters over the network.

The cs_char attribute differs from the [transmit_as] attribute in that it does not affect the network contract
between the client and server. It differs from the [represent_as] attribute in that multiple data items (for
example, the characters of an array or string) can be converted with a single stub call to a code set
conversion routine, and that the conversion can modify array size and data limit information between what
is transmitted over the network and what is used by application code.

The cs_char attribute has the following syntax. (See the examples at the end of this section.)

typedef [cs_char (local_type_name)] net_type_name;

The local_type_name is the local data type that the application code uses. You can define it in the IDL
file or in an application header file. If you do not define it in the IDL file, use the include statement in the
ACF to make its definition available to the stubs.

The net_type_name is the data type that is defined in the IDL file. When used with the cs_char attribute,
this data type is always byte in the IDL file.

If you use the cs_char attribute, you must write the following stub support routines for each local type that
you define:

� Routines that check the buffer storage requirements for international character data to be converted to
determine whether or not more buffer space needs to be allocated to hold the converted data

� Routines to perform conversion between local and network code sets

298 Application Development Guide: Core Components

The suffix for the routine names, the function of each, and where they are used (client or server) appear in
the following list:

local_type_name_net_size() Calculates the necessary buffer size for code set conversion from a
local code set to a network code set. Client and server stubs call this
routine before they marshall any international character data.

local_type_name_local_size() Calculates the necessary buffer size for code set conversion from a
network code set to a local code set. Client and server stubs call this
routine before they unmarshall any international character data.

local_type_name_to_netcs() Converts international character data from a local code set to a
network code set. Client and server stubs call this routine before they
marshall any international character data.

local_type_name_from_netcs() Converts international character data from a network code set to a
local code set. Client and server stubs call this routine after they
unmarshall any international character data.

You specify the name for the local data type in the local_type_name portion of the function name. The
name that you specify cannot exceed 20 characters, because the entire generated name must not exceed
the 31-character limit for C identifiers.

For each piece of international character data being marshalled, the _net_size and _to_netcs routines are
called once each. For each piece of international character data being unmarshalled, the _local_size and
_from_netcs routines are called once each.

DCE RPC provides buffer sizing and code set conversion routines for the cs_byte data types (the
cs_byte type is equivalent to the byte type). If they meet the needs of your application, you can use
these RPC routines (cs_byte_*) instead of providing your own routines.

If you do provide your own routines for buffer sizing and code set conversion, they must follow a specific
signature. See the z/OS DCE Application Development Reference for a complete description of the
required signatures for the cs_byte_ routines.

Restrictions When international character data is to be unmarshalled, a stub needs to have received a
description of the codeset being used before it receives the data. For this reason, the cs_char attribute

cannot be applied to the base type of a pipe, or to a type used in constructing the base type of a pipe.:
The cs_char attribute also cannot be applied to a type if there is an array that has this type as a base
type and the array has more than one dimension, or if the attributes min_is, max_is, first_is, last_is, or
string have been applied to the array. As a result, all instances of the type to which cs_char has been
applied must be scalars or one-dimensional arrays. Only the length_is and/or size_is attributes can be
applied to these arrays.

The following restrictions apply to the use of variables that appear in array attributes:

� Any parameter that is referenced by a size_is or length_is attribute of an array parameter whose
base type has the cs_char attribute cannot be referenced by any attribute of an array parameter
whose base type does not have the cs_char attribute.

� Any structure field that is referenced by a size_is or length_is attribute of an array field whose base
type has the cs_char attribute cannot be referenced by any attribute of an array field whose base type
does not have the cs_char attribute.

The cs_char attribute cannot interact with the transmit_as or represent_as attributes. This restriction
imposes the following rules:

 Chapter 12. Attribute Configuration Language 299

� The cs_char attribute cannot be applied to a type that has the transmit_as attribute, nor can it be
applied to a type in whose definition a type with the transmit_as attribute is used.

� The cs_char attribute cannot be applied to a type that has the represent_as attribute, nor can it be
applied to a type in whose definition a type with the represent_as attribute is used.

� The cs_char attribute cannot be applied to the transmitted type specified in a transmit_as attribute or
to any type used in defining such a transmitted type.

The cs_char attribute cannot be applied to any type belonging to the referent of a pointer with a max_is
or size_is attribute. It also cannot be applied to the base type of an array parameter that has the unique
or ptr attribute applied to it.

An application that uses the cs_char ACF attribute cannot use the IDL encoding services encode and
decode ACF attributes.

Examples Using the cs_char Attribute

Arrays of cs_char can be fixed, varying, conformant, or conformant varying. The treatment of a scalar
cs_char is similar to that of a fixed array of one element. The following examples show the relationship
between IDL declarations and declarations in the generated header file when the cs_char attribute has
been applied. The examples assume that the ACF contains the type definition:

typedef [cs_char(ltype)] my_byte;

For a fixed array, if the IDL file contains:

typedef struct {
 my_byte fixed_array[80];
 } fixed_struct;

the declaration generated in the header file is:

typedef struct {
 ltype fixed_array[80];
 } fixed_struct;

The number of array elements in the local and network representations of the data must be the same as
the array size stated in the IDL.

For a varying array, if the IDL file contains:

typedef struct {
 long l;

[length_is(l)] my_byte varying_array[80];
 } varying_struct;

the declaration generated in the header file is:

typedef struct {
 idl_long_int l;
 ltype varying_array[80];
 } varying_struct;

Neither the number of array elements in the local representation nor the number of array elements in the
network representation may exceed the array size in the IDL.

For a conformant array, if the IDL file contains:

300 Application Development Guide: Core Components

typedef struct {
 long s;

[size_is(s)] my_byte conf_array[];
 } conf_struct;

the declaration generated in the header file is:

typedef struct {
 idl_long_int s;
 ltype conf_array[1];
 } conf_struct;

The number of array elements in the local representation and the number of array elements in the network
representation need not be the same. The conversions between these numbers are done in the
_net_size and _local_size routines.

For a conformant varying array, if the IDL file contains:

typedef struct {
 long s;
 long l;

[size_is(s), length_is(l)] my_byte open_array[];
 } open_struct;

the declaration generated in the header file is:

typedef struct {
 idl_long_int s;
 idl_long_int l;
 ltype open_array[1];
 } open_struct;

The maximum number of array elements in the local representation and the maximum number of array
elements in the network representation need not be the same. The conversions between these numbers
are done in the _net_size and _local_size routines.

For fixed or varying arrays, the size of the storage available to hold the local data is determined by the
array size specified in the IDL and the local type specified in the cs_char attribute. The array size is fixed
and cannot be modified during the RPC marshalling and unmarshalling.

For fixed arrays, the number of bytes of data on the client, the server, and the network must be exactly
equal to the number defined in the IDL file. Following are additional restrictions for fixed arrays:

� The number of array elements in the local (client and server) and network representations of the data
must be the same as the array size defined in the IDL.

� Because the array size is the input length used by the code set conversion, the complete array must
be populated with valid data.

� Customized stub buffer sizing routines and code set conversion routines must be written if the
application requires the idl_cs_in_place_convert conversion type to be used. The routines provided
by z/OS DCE RPC do not support the idl_cs_in_place_convert conversion type.

� Customized stub tag-setting routines may be written or the DCE RPC tag-setting routine
rpc_cs_get_tags may be invoked to set the appropriate tag values for transmitting the data over the
network. The application programmer and application administrator must ensure that the code set
conversion between server and client will not result in data expansion or contraction.

� Customized character and code sets compatibility evaluation routines may be written. z/OS DCE RPC
rpc_cs_eval_with_universal() must not be invoked because universal conversion may cause data

 Chapter 12. Attribute Configuration Language 301

expansion. rpc_cs_eval_without_universal() may be used, but remember that the conversion model
used by this routine is: RMIR first, then SMIR, then CMIR. When using this routine, the application
programmer and application administrator must ensure that conversions can be performed without
data expansion or contraction.

For a varying array, neither the number of array elements in the local representation nor the number of
array elements in the network representation may exceed the array size in the IDL.

Restrictions similar to those for fixed arrays also apply to varying arrays. The value of length_is is the
input length used by the code set conversion routine. Expansion and contraction of data is allowed within
the array size defined in the IDL file.

Conformant or conformant varying arrays can be used without restrictions because they are designed to
allow the data expansion and contraction which can occur during code set conversion. You must
determine the transformations between local storage size and network storage size with reference to the
characters being transmitted or received. Where a variable-width character set is in use, this means
making the most conservative assumption about the size of the data.

The cs_stag, cs_drtag, and cs_rtag Attributes

The cs_stag, cs_drtag and cs_rtag attributes are used in conjunction with the cs_char and (optionally)
the cs_tag_rtn attributes and DCE RPC routines for automatic code set conversion to provide
internationalized RPC applications with a mechanism to ensure character and code set interoperability
between clients and servers handling international character data.

The cs_stag, cs_drtag and cs_rtag attributes are parameter ACF attributes that correspond to the
sending tag, desired receiving tag, and receiving tag parameters defined in operations in the IDL file that
handle international character data. These operation parameters tag international characters being
passed in the operation's input and output parameters with code set identifying information. The cs_stag,
cs_drtag and cs_rtag ACF parameter attributes declare the tag parameters in the corresponding
operation definition to be special code set parameters.

The cs_stag attribute has the following syntax:

operation_name ([cs_stag] parameter_name);

The cs_stag attribute identifies the code set used when the client sends international characters to the
server. Operations defined in the IDL file that specify international characters in in parameters must use
the cs_stag attribute in the associated ACF.

The cs_drtag attribute has the following syntax:

operation_name ([cs_drtag] parameter_name);

The cs_drtag attribute identifies the code set the client would like the server to use when returning
international characters.

The cs_rtag attribute has the following syntax:

operation_name ([cs_rtag] parameter_name);

The cs_rtag attribute identifies the code set that is actually used when the server sends international
characters to the client. Operations defined in the IDL file that specify international characters in out
parameters must apply the cs_rtag attribute in the associated ACF.

Example Using the cs_stag, cs_drtag, and cs_rtag Attributes

302 Application Development Guide: Core Components

Here is an example ACF for an IDL file in which the operation my_op has the tag parameters my_stag,
my_drtag, and my_rtag, whose types are either unsigned long or [ref] unsigned long.

my_op([cs_stag] my_stag, [cs_drtag] my_drtag, [cs_rtag] my_rtag);

For more information about the cs_stag, cs_drtag, and cs_rtag ACF attributes and their use in
internationalized RPC applications, see Chapter 9, “Writing Internationalized RPC Applications” on
page 143.

The cs_tag_rtn Attribute

The cs_tag_rtn attribute is an ACF attribute for use in RPC applications that handle international
character data. This attribute specifies the name of a routine that the client and server stubs will call to
set an operation's code set tag parameters to specific code set values. The cs_tag_rtn attribute is an
optional ACF attribute that you can use to provide code set tag transparency for callers of your interface's
operations. If an operation that transfers international character data has the cs_tag_rtn attribute applied
to it in the corresponding ACF, the code set tag parameters will not appear in the operation's definition
within the generated header file. If the cs_tag_rtn attribute is not used, the operation's caller must
provide appropriate values to the operation's code set tag parameters before international character data
is marshalled.

The cs_tag_rtn attribute has the following syntax. (See the example at the end of this section.)

For an interface:

[cs_tag_rtn (tag_set_routine)] interface interface_name

For an operation:

[cs_tag_rtn (tag_set_routine)] operation_name ([parameter_list]);

When used as an ACF interface attribute, the cs_tag_rtn attribute applies to all operations defined in the
corresponding IDL file. When used as an ACF operation attribute, the cs_tag_rtn attribute applies only to
the operation you specify.

The tag_set_routine is the name of the stub support routine that the client and server stubs will call to set
the operation's code set tag parameters. The IDL compiler will generate a function prototype for
tag_set_routine in the generated header file.

Applications can specify the DCE RPC tag-setting routine rpc_cs_get_tags(), if it meets their applications'
needs, or they can write their own tag-setting routines. The routine name must be distinct from any type
name, procedure name, constant name, or enumeration name appearing in the interface definition. It
must also have a specific calling signature. See the description of the rpc_cs_get_tags() routine in the
z/OS DCE Application Development Reference for a complete description of the required routine
signature.

When the tag-setting routine is called from a client stub, it is called before any in parameters are
marshalled. When called from a server stub, it is called before any out parameters are marshalled. For
more information on the cs_tag_rtn attribute and its use in internationalized RPC applications, see
Chapter 9, “Writing Internationalized RPC Applications” on page 143.

Example Using the cs_tag_rtn Attribute

As shown in the following example, the cs_tag_rtn attribute is used in conjunction with the cs_char,
cs_stag, cs_drtag and cs_rtag ACF attributes. In the example, the stub generated for a_op will call the
tag-setting routine set_tags to set the code set tag parameters to specific values before any data is

 Chapter 12. Attribute Configuration Language 303

marshalled. For b_op, it is the responsibility of the operation's caller to ensure that the code set tag
parameters are set correctly before any data is marshalled.

IDL File

typedef byte my_byte;

void a_op(
[in] unsigned long stag,
[in] unsigned long drtag,
[out] unsigned long $p_rtag,
[in] long s,
[in, out] long $p_l,
[in, out, size_is(s), length_is($p_l)] my_byte a[]

);

void b_op(
[in] unsigned long stag,
[in] unsigned long drtag,
[out] unsigned long $p_rtag,
[in] long s,
[in, out] long $p_l,
[in, out, size_is(s), length_is($p_l)] my_byte a[]

);

ACF

typedef [cs_char(ltype)] my_byte;

[cs_tag_rtn(set_tags)] a_op([cs_stag] stag,
 [cs_drtag] drtag,

[cs_rtag] p_rtag);

b_op([cs_stag] stag,
 [cs_drtag] drtag,

[cs_rtag] p_rtag);

Generated Header File

typedef byte my_byte;

void a_op(
/$ [in] $/ idl_long_int s,
/$ [in, out] $/ idl_long_int $p_l,
/$ [in, out, size_is(s), length_is($p_l)] $/ ltype a[]

);

void b_op(
/$ [in] $/ idl_ulong_int stag,
/$ [in] $/ idl_ulong_ing drtag,
/$ [out] $/ idl_ulong_int $p_rtag,
/$ [in] $/ idl_long_int s,
/$ [in, out] $/ idl_long_int $p_l,
/$ [in, out, size_is(s), length_is($p_l)] $/ ltype a[]

);

304 Application Development Guide: Core Components

The binding_callout Attribute

The binding_callout attribute permits you to specify the name of a routine that the client stub is to call
automatically to modify a server binding handle before it initiates a remote procedure call. This attribute is
intended for use by client applications that employ the automatic binding method through the auto_handle
ACF interface attribute. In automatic binding, it is the client stub, rather than the client application code,
that obtains the binding handle to the server. The binding_callout attribute allows a client application
using automatic binding to modify the binding handle obtained by the client stub. Without this attribute, it
is impossible for the client application to modify the binding handle before the client stub attempts to
initiate a remote procedure call to the selected server.

Clients typically use this attribute to augment automatic binding handles with security context, for example,
so that authenticated RPC is used between client and server.

The binding_callout attribute has the following syntax.

[binding_callout (routine_name)] interface interface_name

The routine_name specifies the name of a binding callout routine that the client stub will call to modify the
server binding handle before initiating the remote procedure call to the server. The IDL compiler will
generate a function prototype for routine_name in the generated header file.

You can specify the name of a routine that you supply, or you can specify the DCE RPC routine
rpc_ss_bind_authn_client() to modify the binding handle, if it meets the needs of your application. See
the z/OS DCE Application Development Reference for a description of the rpc_ss_bind_authn_client()
routine.

The binding callout routine you provide must have a specific routine signature. See the description of
rpc_ss_bind_authn_client() in the z/OS DCE Application Development Reference for information about
the required routine signature.

The binding_callout attribute can occur at most once in the ACF and applies to all of the operations in
the corresponding IDL file.

A binding callout routine should return the error_status_ok status code when it successfully modifies the
binding handle or determines that no action is necessary. This status code causes the client stub to
initiate the remote procedure call.

A binding callout routine can also return error status. If it does, the client stub does not initiate the remote
procedure call. Instead, if the auto_handle attribute has been applied in the ACF, the client stub attempts
to locate another server of the interface, and then calls the binding callout routine again. If auto_handle
is not in use, the client stub invokes its normal error-handling logic. A binding callout routine for a client
using auto_handle can return the status code rpc_s_no_more_bindings to prevent the client stub from
searching for another server and instead invoking its error-handling logic immediately.

By default, the client stub handles an error condition by raising an exception. If a binding callout routine
returns one of the rpc_s_ status codes, the client stub raises a matching rpc_x_ exception. However, if a
binding callout routine returns any other type of status code, the client stub will most likely raise it as an
unknown status exception.

If the comm_status parameter ACF attribute has been applied to an operation, the client stub handles an
error condition by returning the error status value in the comm_status parameter. Consequently, a
binding callout routine can return any error status value to the client application code if the comm_status
attribute has been applied to the operation.

 Chapter 12. Attribute Configuration Language 305

A binding callout routine can raise a user-defined exception rather than return a status code to report
application-specific error conditions back to the client application code using exceptions.

Summary of Attributes

Table 13 lists the attributes available for use in the ACF and where in the file they can be used.

ACF Grammar Synopsis

The syntax description in this section uses an extended Backus-Naur Form (BNF) to represent ACF
grammar. Table 14 lists the symbols used in this section and their meanings:

Table 13. Summary of the ACF Attributes

Attribute Where Used

auto_handle Interface header

binding_callout Interface header

code Interface header, operation

comm_status Operation, parameter

cs_char Type

cs_drtag Parameter

cs_rtag Parameter

cs_stag Parameter

cs_tag_rtn Operation, interface

decode Operation, interface

enable_allocate Operation

encode Operation, interface

explicit_handle Interface header, operation

extern_exception Interface header

fault_status Operation, parameter

heap Type, parameter

implicit_handle Interface header

nocode Interface header, operation

represent_as Type

Table 14 (Page 1 of 4). Backus-Naur Format for the Attribute Configuration File Language

Number Production Rule

 1 <acf_interface> ::= <acf_interface_header> <acf_interface_body>

 2 <acf_interface_header> ::= <acf_interface_attr_list> interface <acf_interface_name>

 3 <acf_interface_attr_list> ::= [<acf_interface_attrs>]
| φ

306 Application Development Guide: Core Components

Table 14 (Page 2 of 4). Backus-Naur Format for the Attribute Configuration File Language

Number Production Rule

 4 <acf_interface_attrs> ::= <acf_interface_attr>
| <acf_interface_attrs> , <acf_interface_attr>

 5 <acf_interface_attr> ::= <acf_code_attr>
| <acf_nocode_attr>
| <acf_binding_callout_attr>
| <acf_explicit_handle_attr>
| <acf_inline_attr>
| <acf_outofline_attr>
| <acf_implicit_handle_attr>
| <acf_auto_handle_attr>
| <acf_extern_exceps_attr>
| decode
| encode

 6 <acf_implicit_handle_attr> ::= implicit_handle (<acf_implicit_handle>)

 7 <acf_implicit_handle> ::= <acf_impl_type> <acf_impl_name>

 8 <acf_impl_type> ::= <acf_handle_type>
| IDENTIFIER

 9 <acf_handle_type> ::= handle_t

 10 <acf_impl_name> ::= IDENTIFIER

11 <acf_extern_exceps_attr> ::= extern_exceps (
::= | extern_exceps

12 <acf_ext_excep_list> ::= <acf_ext_excep>
: | <acf_ext_excep_list> , <acf_ext_excep>

13 <acf_ext_excep> ::= IDENTIFIER

 14 <acf_interface_name> ::= IDENTIFIER

 15 <acf_interface_body> ::= { <acf_body_elements> }
| { }
| error
| error }

 16 <acf_body_elements> ::= <acf_body_element>
| <acf_body_elements> <acf_body_element>

 17 <acf_body_element> ::= <acf_include> ;
| <acf_type_declaration> ;
| <acf_operation_declaration> ;
| error ;

 18 <acf_include> ::= include <acf_include_list>
| include error

 19 <acf_include_list> ::= <acf_include_name>
| <acf_include_list> , <acf_include_name>

 20 <acf_include_name> ::= STRING

 Chapter 12. Attribute Configuration Language 307

Table 14 (Page 3 of 4). Backus-Naur Format for the Attribute Configuration File Language

Number Production Rule

 21 <acf_type_declaration> ::= typedef error
| typedef <acf_type_attr_list> <acf_named_type_list>

 22 <acf_named_type_list> ::= <acf_named_type>
| <acf_named_type_list> , <acf_named_type>

 23 <acf_named_type> ::= IDENTIFIER

 24 <acf_type_attr_list> ::= [<acf_rest_of_attr_list>
| φ

 25 <acf_rest_of_attr_list> ::= <acf_type_attrs>]
| error ;
| error]

 26 <acf_type_attrs> ::= <acf_type_attr>
| <acf_type_attrs> , <acf_type_attr>

 27 <acf_type_attr> ::= <acf_represent_attr>
| <acf_heap_attr>
| <acf_inline_attr>
| <acf_outofline_attr>

 28 <acf_represent_attr> ::= represent_as (<acf_repr_type>)

 29 <acf_repr_type> ::= IDENTIFIER

 30 <acf_operation_declaration> ::= <acf_op_attr_list> <acf_operations>

 31 <acf_operations> ::= <acf_operation>
| <acf_operations> , <acf_operation>

 32 <acf_operation> ::= IDENTIFIER (<acf_parameter_list>)

 33 <acf_op_attr_list> ::= [<acf_op_attrs>]
| φ

 34 <acf_op_attrs> ::= <acf_op_attr>
| <acf_op_attrs> , <acf_op_attr>

 35 <acf_op_attr> ::= <acf_commstat_attr>
| <acf_code_attr>
| <acf_nocode_attr>
| <acf_enable_allocate_attr>
| <acf_explicit_handle_attr>
| <acf_faultstat_attr>
| encode
| decode

36 <acf_binding_callout_attr> ::= binding_callout (<acf_binding_callout_name>)

37 <acf_binding_callout_name> ::= IDENTIFIER

 38 <acf_parameter_list> ::= <acf_parameters>
| φ

308 Application Development Guide: Core Components

Table 14 (Page 4 of 4). Backus-Naur Format for the Attribute Configuration File Language

Number Production Rule

 39 <acf_parameters> ::= <acf_parameter>
| <acf_parameters> , <acf_parameter>

 40 <acf_parameter> ::= <acf_param_attr_list> IDENTIFIER

 41 <acf_param_attr_list> ::= [<acf_param_attrs>]
| φ

 42 <acf_param_attrs> ::= <acf_param_attr>
| <acf_param_attrs> , <acf_param_attr>

 43 <acf_param_attr> ::= <acf_commstat_attr>
| <acf_faultstat_attr>
| <acf_heap_attr>
| <acf_inline_attr>
| <acf_outofline_attr>

 44 <acf_auto_handle_attr> ::= auto_handle

 45 <acf_code_attr> ::= code

 46 <acf_nocode_attr> ::= nocode_kw

 47 <acf_enable_allocate_attr> ::= enable_allocate

 48 <acf_explicit_handle_attr> ::= explicit_handle

 49 <acf_heap_attr> ::= heap

 50 <acf_inline_attr> ::= in_line

 51 <acf_outofline_attr> ::= out_of_line

 52 <acf_commstat_attr> ::= comm_status

 53 <acf_faultstat_attr> ::= fault_status

Table 15 is an index of the BNF production rules in Table 14 on page 306. Use Table 15 as an index to
find where a production rule is defined and where it is used in Table 14.

Table 15 (Page 1 of 3). Cross Reference of the
Backus-Naur Format for the Attribute Configuration
File Language

Production Rule Defined Used

<acf_auto_handle_attr> 44 5

<acf_binding_callout_attr> 36

<acf_binding_callout_name> 37

<acf_body_element> 17 16

<acf_body_elements> 16 15, 16

<acf_code_attr> 45 5, 35

<acf_commstat_attr> 52 35, 43

 Chapter 12. Attribute Configuration Language 309

Table 15 (Page 2 of 3). Cross Reference of the
Backus-Naur Format for the Attribute Configuration
File Language

Production Rule Defined Used

<acf_enable_allocate_attr> 47 35

<acf_explicit_handle_attr> 48 5, 35

<acf_ext_excep> 13 12

<acf_ext_excep_list> 12

<acf_extern_exceps_attr> 11 5

<acf_faultstat_attr> 53 35, 43

<acf_handle_type> 9 8

<acf_heap_attr> 49 27, 43

<acf_impl_name> 10 7

<acf_impl_type> 8 7

<acf_implicit_handle> 7 6

<acf_implicit_handle_attr> 6 5

<acf_include> 18 17

<acf_include_list> 19 18, 19

<acf_include_name> 20 19

<acf_inline_attr> 50 5, 27, 43

<acf_interface> 1

<acf_interface_attr> 5 4

<acf_interface_attr_list> 3 2

<acf_interface_attrs> 4 3, 4

<acf_interface_body> 15 1

<acf_interface_header> 2 1

<acf_interface_name> 14 2

<acf_named_type> 23 22

<acf_named_type_list> 22 21, 22

<acf_nocode_attr> 46 5, 35

<acf_op_attr> 35 34

<acf_op_attr_list> 33 30

<acf_op_attrs> 34 33, 34

<acf_operation> 32 31

<acf_operation_declaration> 30 17

<acf_operations> 31 30, 31

<acf_outofline_attr> 51 5, 27, 43

<acf_param_attr> 43 42

<acf_param_attr_list> 41 40

<acf_param_attrs> 42 41, 42

<acf_parameter> 40 39

<acf_parameter_list> 38 32

<acf_parameters> 39 38, 39

<acf_repr_type> 29 28

<acf_represent_attr> 28 27

<acf_rest_of_attr_list> 25 24

310 Application Development Guide: Core Components

Table 15 (Page 3 of 3). Cross Reference of the
Backus-Naur Format for the Attribute Configuration
File Language

Production Rule Defined Used

<acf_type_attr> 27 26

<acf_type_attr_list> 24 21

<acf_type_attrs> 26 25, 26

<acf_type_declaration> 21 17

 Chapter 12. Attribute Configuration Language 311

312 Application Development Guide: Core Components

Part 3. Using the DCE Threads APIs

This part shows you how to increase the performance of your distributed applications using the DCE
Threads APIs. You are introduced to Threads concepts and shown several models for multithreaded
programming. In addition, you are shown how to use the DCE Threads exception-handling interface to
handle abnormal conditions in your applications. A comparison between DCE Threads concepts and
z/OS multitasking will assist you in avoiding pitfalls caused by semantic differences.

Chapter 13, “Introduction to Multithreaded Programming” on page 315 to Chapter 17, “DCE Threads
Example” on page 349 describes DCE Threads from OSF that is based on the POSIX 1003.4a, Draft 4
standard. The threads package that ships with UNIX System Services and Language Environment is
based on the POSIX 10003.4a, Draft 6 standard. This threads package, which is referred to as UNIX
System Services Threads in this book, is fully described in z/OS C/C++ Run-Time Library Reference,
SA22-7821. To enable interoperability with other DCE implementations, z/OS DCE provides a mapping
interface between the UNIX System Services Threads and DCE Threads. Chapter 19, “Migrating between
UNIX System Services and DCE Threads” on page 361 shows you how to invoke either the DCE Threads
package or the UNIX System Services Threads package for your applications. For compatibility with other
DCE implementations your applications need to invoke the DCE Threads package. Chapter 19,
“Migrating between UNIX System Services and DCE Threads” on page 361 also describes the differences
between DCE Threads and UNIX System Services Threads so you can migrate between the two
packages if you require.

Note: The following threads function that may be available in the Distributed Computing Environment
product from OSF, or on DCE offerings from other vendor, are not supported in z/OS DCE:

� The following interfaces are not supported and return -1, errno ENOSYS:

 – pthread_attr_getinheritsched()
 – pthread_attr_getprio()
 – pthread_attr_getsched()
 – pthread_attr_setinheritsched()
 – pthread_attr_setprio()
 – pthread_attr_setsched()
 – pthread_getprio()
 – pthread_getscheduler()
 – pthread_setprio()
 – pthread_setscheduler()

� For all pthread interfaces (including mutexes, threads, condition variables and so on), the interfaces do
not accept copies of the objects as a parameter. The object returned from the pthread interface to
create the object must be used at all times.

� Unlike the OSF DCE implementation, the z/OS DCE implementation of the following functions can
raise an exception (exc_e_cpa_error) in error situations:

 – pthread_lock_global_np()
 – pthread_unlock_global_np()

� pthread_cond_timedwait() expects an absolute hardware time (that is, time-of-day clock value) for the
wait time instead of the DCE software clock time, which is what OSF/DCE expects.
pthread_get_expiration_np() returns a software adjusted time as in the OSF/DCE model, and is used
as input to pthread_cond_timedwait().

� exc_report() does not print out a message to stderr as expected. z/OS DCE uses Reliability,
Availability and Serviceability (RAS) services to log messages instead of this function.

� pthread_mutex_init cannot initialize a mutex more than once.

 Copyright IBM Corp. 1994, 2001 313

Chapter 13. Introduction to Multithreaded
Programming 315

Advantages of Using Threads 315
Software Models for Multithreaded

Programming 315
Boss/Worker Model 316
Work Crew Model 316
Pipelining Model 316
Combinations of Models 317

Potential Disadvantages with Multithreaded
Programming 317

Chapter 14. Thread Concepts and
Operations 319

Thread Operations 319
Starting a Thread 319
Terminating a Thread 319
Waiting for a Thread to Terminate 320
Deleting a Thread 320

New Primitives 321
Attributes Objects 321

Creating an Attributes Object 321
Deleting an Attributes Object 321
Thread Attributes 322
Mutex Attributes 323
Condition Variable Attributes 323

Synchronization Objects 323
Mutexes . 323
Condition Variables 325
Other Synchronization Methods 327

One-Time Initialization Routines 327
Thread-Specific Data 327
Thread Cancelation 328
Thread Scheduling 329

Chapter 15. Programming with Threads . 331
Using Signals 331

Types of Signals 331
DCE Threads Signal Handling 332
Alternatives to Using Signals 333

Nonthreaded Libraries 333
Working with Nonthreaded Software 334

Changing Nonthreaded Code to Be
Thread-Reentrant 334

Avoiding Nonreentrant Software 334
Global Lock 335
Thread-Specific Storage 335

Using Synchronization Objects 335
Race Conditions 335
Deadlocks 336

Signaling a Condition Variable 336

Chapter 16. Using the DCE Threads
Exception-Returning Interface 337

Syntax for C 337
Using the Exception-Returning Interface . . . 339
Operations on Exceptions 339

Declaring and Initializing an Exception
Object . 340

Raising an Exception 340
Defining a Region of Code over Which

Exceptions Are Caught 340
Catching a Particular Exception or All

Exceptions 340
Defining Epilog Actions for a Block 341
Importing a System-Defined Error Status

into the Program as an Exception 341
Rules and Conventions for Modular Use of

Exceptions 342
DCE Threads Exceptions and Definitions . . 343
z/OS ABENDs Caught as Exceptions 344
Catching Specific System or User ABENDs . 346
Detecting the First Catch of an Exception . . 346
Handling Unexpected Exceptions 347

Chapter 17. DCE Threads Example 349
Details of Program Logic and Implementation 349
Threads Example — Searching for Prime

Numbers . 351

Chapter 18. Comparing POSIX
Multithreading to z/OS Multitasking . . . 357

Types of Threads 358
Choosing the Type of Thread 359

Chapter 19. Migrating between UNIX
System Services and DCE Threads . . . 361

Differences between UNIX System Services
and DCE Threads 361

Choosing DCE or UNIX System Services
Threads . 362

Mutexes . 362
Differences between DCE Threads and UNIX

System Services Threads 362
Changes to Threads APIs 363
Specifying Attributes Objects 363
Call Attributes Not Supported by UNIX

System Services Threads 363
Types Not Supported by UNIX System

Services Threads 364
Mutex Types 364
Cancelability Versus Interruptibility 364
Semantic Differences 364
Miscellaneous Differences 365

314 Application Development Guide: Core Components

Chapter 13. Introduction to Multithreaded Programming

DCE Threads is a user-level (non-kernel) threads package based on the pthreads interface specified by
POSIX in 1003.4a, Draft 4. This chapter introduces multithreaded programming, which is the division of a
program into multiple threads (parts) that execute concurrently. In addition, this chapter describes four
software models that improve multithreaded programming performance.

A thread is a single sequential flow of control within a program. It is the active execution of a designated
routine, including any nested routine invocations. Within a single thread, there is a single point of
execution. Most traditional programs consist of a single thread.

Each thread has its own thread identifier, scheduling policy and priority, errno value, thread-specific data
bindings, and the required system resources to support a flow of control.

Advantages of Using Threads

With a thread package, a programmer can create several threads within a process. Threads execute
concurrently, and within a multithreaded process, there are multiple points of execution at any time.
Threads execute within a single address space. Multithreaded programming offers the following
advantages:

 � Performance

Threads improve the performance (throughput, computational speed, responsiveness, or some
combination) of a program. Multiple threads are useful in a multiprocessor system where threads run
concurrently on separate processors. In addition, multiple threads also improve program performance
on single-processor systems by permitting the overlap of input and output or other slow operations
with computational operations.

Think of threads as running simultaneously, regardless of the number of processors present. You
cannot make any assumptions about the start or finish times of threads or the sequence in which they
execute, unless they are explicitly synchronized.

 � Shared Resources

When you use multiple threads instead of separate processes multiple threads share a single address
space, all open files, and other resources.

 � Potential Simplicity

Multiple threads may reduce the complexity of some applications that are inherently suited for threads.

Software Models for Multithreaded Programming

The following sections describe four software models for which multithreaded programming is especially
well suited:

 � Boss/worker model

� Work crew model

 � Pipelining model

� Combinations of models

 Copyright IBM Corp. 1994, 2001 315

 Boss/Worker Model

In a boss/worker model of program design, one thread functions as the boss because it assigns tasks to
worker threads. Each worker performs a different type of task until it is finished, at which point the worker
interrupts the boss to indicate that it is ready to receive another task. Alternatively, the boss polls workers
periodically to see whether or not each worker is ready to receive another task.

A variation of the boss/worker model is the work queue model. The boss places tasks in a queue, and
workers check the queue and take tasks to perform. An example in an office environment is a secretarial
typing pool. The office manager puts documents to be typed in a basket, and typists take documents from
the basket to work on.

Work Crew Model

In the work crew model, multiple threads work together on a single task. The task is divided into pieces
that are performed in parallel, and each thread performs one piece. An example is a group of people
cleaning a house. Each person cleans certain rooms or performs certain types of work (washing floors,
polishing furniture, and so forth), and each works independently.

The following figure shows a task performed by three threads in a work crew model.

Setup

Thread A

Thread B

Thread C

Cleanup

(Time)

TASK

Figure 55. Work Crew Model

 Pipelining Model

In the pipelining model, a task is divided into steps. The steps must be performed in sequence to produce
a single instance of the desired output. The work done in each step (except for the first and last) is based
on the preceding step and is a prerequisite for the work in the next step. However, the program is
designed to produce multiple instances of the desired output, and the steps are designed to operate in a
parallel time frame so that each step is kept busy.

An example is an automobile assembly line. Each step or stage in the assembly line is continually busy
receiving the product of the previous stage’s work, performing its assigned work, and passing the product
along to the next stage. A car needs a body before it can be painted, but at any one time numerous cars
are receiving bodies, and then they are being painted.

In a multithreaded program using the pipelining model, each thread represents a step in the task. The
following figure shows a task performed by three threads in a pipelining model.

316 Application Development Guide: Core Components

Thread A

TASK

Thread B Thread C

(Time)

Figure 56. Pipelining Model

Combinations of Models

You may find it appropriate to combine the software models in a single program if your task is complex.
For example, a program could be designed using the pipelining model, but one or more steps could be
handled by a work crew. In addition, tasks could be assigned to a work crew by taking a task from a work
queue and deciding (based on the task characteristics) which threads are needed for the work crew.

Potential Disadvantages with Multithreaded Programming

When you design and code a multithreaded program, consider the following problems and accommodate
or eliminate each problem as appropriate:

 � Potential Complexity

The level of expertise required for designing, coding, and maintaining multithreaded programs may be
higher than for most single-threaded programs because multithreaded programs might need shared
access to resources, mutexes, and condition variables. Weigh the potential benefits against the
complexity and its associated risks.

 � Nonreentrant Software

If a thread calls a routine or library that is not reentrant, use the global locking mechanism to prevent
the nonreentrant routines from modifying a variable that another thread modifies. “Avoiding
Nonreentrant Software” on page 334 discusses nonreentrant software in more detail.

Note: A multithreaded program must be reentrant; that is, it must allow multiple threads to execute at
the same time. Therefore, be sure that your compiler generates reentrant code before you do
any design or coding work for multithreading.

If your program is nonreentrant, any thread synchronization techniques that you use are not
guaranteed to be effective.

 � Race Conditions

A race condition is a type of programming error which causes unpredictable and erroneous program
behavior. “Race Conditions” on page 335 discusses race conditions in more detail.

 � Deadlocks

A type of programming error called a deadlock causes two or more threads to be blocked from
executing. “Deadlocks” on page 336 discusses deadlocks in more detail.

 � Blocking Calls

Certain system or library calls may cause an entire process to block while waiting for the call to
complete. As a result, all other threads stop executing.

 Chapter 13. Introduction to Multithreaded Programming 317

318 Application Development Guide: Core Components

Chapter 14. Thread Concepts and Operations

This chapter discusses concepts and techniques related to DCE Threads.

For detailed information on the multithreading routines referred to in this chapter, see the z/OS DCE
Application Development Reference.

 Thread Operations

A thread changes states as it runs, waits to synchronize, or is ready to be run. A thread is in one of the
following states:

Waiting The thread is not eligible to execute because it is synchronizing with another thread or with
an external event.

Ready The thread is eligible to be executed by a processor.

Running The thread is currently being executed by a processor.

Terminated The thread has completed all of its work.

Figure 57 shows the transitions between states for a typical thread implementation.

Waiting Ready Running Terminated

Figure 57. Thread State Transitions

The operations that you can perform include:

 � Starting
 � Waiting for
 � Terminating
 � Deleting threads.

Starting a Thread

To start a thread, create it using the pthread_create() routine. It creates the thread, assigns specified or
default attributes, and starts execution of the function you specified as the thread’s start routine. A unique
identifier (handle) for that thread is returned from the pthread_create() routine.

Terminating a Thread

A thread exists until it terminates and the pthread_detach() routine is called for the thread. The
pthread_detach() routine can be called for a thread before or after it terminates. If the thread terminates
before pthread_detach() is called for, the thread continues to exist and can be synchronized (joined) until
it is detached. Thus, the object (thread) can be detached by any thread that has access to a handle to
the object.

 Copyright IBM Corp. 1994, 2001 319

Note: pthread_detach() must be called to release the memory allocated for the thread objects so that
this storage does not build up and cause the process to run out of memory. For example, after a
thread returns from a call to join, it detaches the joined-to thread if no other threads join with it.
Similarly, if a thread has no other threads joining with it, it detaches itself so that its thread object
is deallocated as soon as it terminates.

A thread terminates for any of the following reasons:

� The thread returns from its start routine; this is the usual case.

� The thread calls the pthread_exit() routine.

The pthread_exit() routine terminates the calling thread and returns a status value indicating the
thread’s exit status to any potential joiners.

� The thread is canceled by a call to the pthread_cancel() routine.

The pthread_cancel() routine requests termination of a specified thread if cancelation is permitted.
See “Thread Cancelation” on page 328 for more information on canceling threads and controlling
whether cancelation is permitted.

� An error occurs in the thread.

Examples of errors that cause thread termination are programming errors, segmentation faults, or
exceptions that are not handled.

Waiting for a Thread to Terminate

A thread waits for the termination of another thread by calling the pthread_join() routine. Execution in the
current thread is suspended until the specified thread terminates. If multiple threads call this routine and
specify the same thread, all threads resume execution when the specified thread terminates.

Do not confuse pthread_join() with other routines that cause waits, and that are related to the use of a
particular multithreading feature. For example, use pthread_cond_wait() or pthread_cond_timedwait()
to wait for a condition variable to be signaled or broadcast. (See “Condition Variables” on page 325 for
information about condition variables.)

Deleting a Thread

A thread is automatically deleted after it terminates; that is, no explicit deletion operation is required. Use
pthread_detach() to free the storage of a terminated thread. Use pthread_cancel() to request that a
running thread terminate itself.

If the thread has not yet terminated, the pthread_detach() routine marks the thread for deletion, and its
storage is reclaimed immediately when the thread terminates. A thread cannot be joined or canceled after
the pthread_detach() routine is called for the thread, even if the thread has not yet terminated.

If a thread that is not detached terminates, its storage remains so that other threads can join with it.
Storage is reclaimed when the thread is eventually detached.

For more information, see “Terminating a Thread” on page 319.

320 Application Development Guide: Core Components

 New Primitives

Routines implemented by DCE Threads that are not specified by Draft 4 of the POSIX 1003.4a standard
are indicated by an _np suffix on the name. These routines have not been incorporated into the POSIX
standard, and as such are extensions to that document.

 Attributes Objects

An attributes object is used to describe the behavior of threads, mutexes, and condition variables. This
description consists of the individual attribute values that are used to create an attributes object. Whether
an attribute is valid depends on whether it describes threads, mutexes, or condition variables.

When you create an object, you can accept the default attributes for that object, or you can specify an
attributes object that contains individual attributes that you have set.

The following subsections describe how to create and delete attributes objects and describe the individual
attributes that you can specify for different objects.

Creating an Attributes Object

To create an attributes object, use one of the following routines, depending on the type of object to which
the attributes apply:

pthread_attr_create() For thread attributes objects

pthread_condattr_create() For condition variable attributes objects

pthread_mutexattr_create() For mutex attributes objects.

These routines create an attributes object containing default values for the individual attributes. To modify
any attribute values in an attributes object, use one of the set routines described in the following
subsections.

Creating an attributes object or changing the values in an attributes object does not affect the attributes of
objects previously created.

Deleting an Attributes Object

To delete an attributes object, use one of the following routines:

pthread_attr_delete() For thread attributes objects

pthread_condattr_delete() For condition variable attributes objects

pthread_mutexattr_delete() For mutex attributes objects.

Deleting an attributes object does not affect the attributes of objects previously created.

 Chapter 14. Thread Concepts and Operations 321

 Thread Attributes

Note to Readers

The DCE Threads stacksize attribute below is the only attribute supported by z/OS DCE.

With a thread attributes object you can specify values for thread attributes other than the defaults when
you create a thread with the pthread_create() routine. To use a thread attributes object, perform the
following steps:

1. Create a thread attributes object by calling the pthread_attr_create() routine.

2. Call the routines discussed in the following subsections to set the individual attributes of the thread
attributes object.

3. Create a new thread by calling the pthread_create() routine and specifying the identifier of the thread
attributes object.

With z/OS DCE, you can only change the stacksize thread attribute for a new thread. A new thread is
assigned the default values for the remaining thread attributes listed below. You cannot change the
following thread attributes on z/OS DCE as you might on other DCE platforms:

� Scheduling policy attribute
� Scheduling priority attribute
� Inherit scheduling attribute

The UNIX System Services Threads facility supports other threads objects, such as thread weight,
detachstate, as well as stacksize. Note that for DCE applications, threads are always MEDIUM weight by
default. Refer to z/OS UNIX System Services Programming Tools for information on how to set these
attributes.

Scheduling Policy Attribute: The scheduling policy attribute describes the overall scheduling
policy of the threads in your application.

z/OS DCE does not support any control over scheduling policy. Threads are dispatched as first in first out
(FIFO) by default.

“Thread Scheduling” on page 329 describes and shows the effect of scheduling policy on thread
scheduling.

Scheduling Priority Attribute: With z/OS DCE, all threads in a process have equal priority.
There is no preferential treatment of any threads in terms of mutexes or condition variables.

Inherit Scheduling Attribute: On z/OS DCE, a newly created thread inherits the scheduling
attributes (scheduling priority and policy) of the creating thread by default.

Stacksize Attribute: The stacksize attribute is the minimum size (in bytes) of the memory required
for a thread’s stack. The default value for z/OS DCE is 512 kilobytes.

You can change the stack size from the default by setting the STACK Language Environment runtime
option. You can also use the #pragma directive to set this option in your application code. See the z/OS
DCE Application Development Guide: Introduction and Style for information on recommended Language
Environment runtime options to use with z/OS DCE applications.

322 Application Development Guide: Core Components

 Mutex Attributes

Use a mutex attributes object to specify values for mutex attributes (other than the defaults) when you
create a mutex with the pthread_mutex_init() routine.

The mutex type attribute specifies whether a mutex is fast, recursive, or nonrecursive. (See “Mutexes” for
definitions.) Set the mutex type attribute by calling the pthread_mutexattr_setkind_np() routine. (Any
routine with the _np suffix is nonportable). If you do not use a mutex attributes object to select a mutex
type, calling the pthread_mutex_init() routine creates a fast mutex by default.

Condition Variable Attributes

Currently, attributes affecting condition variables are not defined. You cannot change any attributes in the
condition variable attributes object.

“Condition Variables” on page 325 describes the purpose and uses of condition variables.

 Synchronization Objects

In a multithreaded program, you must use synchronization objects whenever there is a possibility of
corruption of shared data or conflicting scheduling of threads that have mutual scheduling dependencies.
The following subsections discuss two kinds of synchronization objects: mutexes and condition variables.

 Mutexes

A mutex (mutual exclusion) is an object that multiple threads use to ensure the integrity of a shared
resource that they access, most commonly shared data. A mutex has two states: locked and unlocked.
For each piece of shared data, all threads accessing that data must use the same mutex. Each thread
locks the mutex before it accesses the shared data and unlocks the mutex when it is finished accessing
that data. If the mutex is locked by another thread, the thread requesting the lock is blocked when it tries
to lock the mutex if you call pthread_mutex_lock(). The blocked thread continues and is not blocked if
you call pthread_mutex_trylock().

var

mutex_var

Thread A Thread B

access

lock block

Figure 58. Only One Thread Can Lock a Mutex

Each mutex must be initialized. (To initialize mutexes as part of the program’s one-time initialization code,
see “One-Time Initialization Routines” on page 327.) To initialize a mutex, use the pthread_mutex_init()
routine. With this routine, you specify an attributes object, which allows you to specify the mutex type.
The following are types of mutexes:

 Chapter 14. Thread Concepts and Operations 323

� A fast mutex (the default) is locked only once by a thread. If the thread tries to lock the mutex again
without first unlocking it, the thread waits for itself to release the first lock and deadlocks on itself.

Note: With z/OS DCE, a fast mutex is the same as a nonrecursive mutex. That is, although the
FAST_MUTEX attribute exists, it adopts the behavior of a nonrecursive mutex, which is
described below.

� A recursive mutex can be locked more than once by a given thread without causing a deadlock. The
thread must call the pthread_mutex_unlock() routine the same number of times that it called the
pthread_mutex_lock() routine before another thread can lock the mutex.

Recursive mutexes have the notion of a mutex owner. When a thread successfully locks a recursive
mutex, it owns that mutex and the lock count is set to 1. Any other thread attempting to lock the
mutex blocks until the mutex becomes unlocked. If the owner of the mutex attempts to lock the mutex
again, the lock count increments, and the thread continues running. When an owner unlocks a
recursive mutex, the lock count decrements. The mutex remains locked and owned until the count
reaches 0 (zero). It is an error for any thread other than the owner to attempt to unlock the mutex.

A recursive mutex is useful if a thread needs exclusive access to a piece of data, and it needs to call
another routine (or itself) that needs exclusive access to the data. A recursive mutex allows nested
attempts to lock the mutex to succeed rather than deadlock.

This type of mutex requires more careful programming. Never use a recursive mutex with condition
variables because the implicit unlock performed for a pthread_cond_wait() or
pthread_cond_timedwait() may not actually release the mutex. In that case, no other thread can
satisfy the condition of the predicate.

� A nonrecursive mutex is locked only once by a thread, like a fast mutex. If the thread tries to lock the
mutex again without first unlocking it, the thread receives an error. Thus, nonrecursive mutexes are
more informative than fast mutexes because fast mutexes block in such a case, leaving it up to you to
determine the reasons thread no longer executes. If someone other than the owner tries to unlock a
nonrecursive mutex, an error is returned.

To lock a mutex, use one of the following routines, depending on what you want to happen if the mutex is
locked:

pthread_mutex_lock() If the mutex is locked, the thread waits for the mutex to become available.

pthread_mutex_trylock() If the mutex is locked, the thread continues without waiting for the mutex to
become available. The thread immediately checks the return status to see if
the lock was successful, and then takes whatever action is appropriate if it
was not.

When a thread is finished accessing a piece of shared data, it unlocks the associated mutex by calling the
pthread_mutex_unlock() routine.

If another thread is waiting on the mutex, its execution is unblocked. If more than one thread is waiting on
the mutex, the scheduling policy and the thread scheduling priority determine which thread acquires the
mutex.

You can delete a mutex and reclaim its storage by calling the pthread_mutex_destroy() routine. Use this
routine only after the mutex is no longer needed by any thread. Mutexes are automatically deleted when
the program terminates.

324 Application Development Guide: Core Components

 Condition Variables

A condition variable allows a thread to block its own execution until some shared data reaches a
particular state. Cooperating threads check the shared data and wait on the condition variable. For
example, one thread in a program produces work-to-do packets and another thread consumes these
packets (does the work). If the work queue is empty when the consumer thread checks it, that thread
waits on a work-to-do condition variable. When the producer thread puts a packet on the queue, it signals
the work-to-do condition variable.

A condition variable is used to wait for a shared resource to assume some specific state (a predicate). A
mutex, on the other hand, is used to protect some shared resource while the resource is being
manipulated.

For example, a thread A may need to wait for a thread B to finish a task X before thread A proceeds to
execute a task Y. Thread B can tell thread A that it has finished task X by using a variable to which they
both have access, a condition variable. When thread A is ready to execute task Y, it looks at the
condition variable to see if thread B is finished. (Figure 59 illustrates this.)

mutex_ready

mutex_ready

Thread A

lock

ready

YES

NO
(lock)
wait

(unlock)

unlock

Figure 59. Thread A Waits on Condition Ready, Then Wakes Up and Proceeds

First, thread A locks the mutex named mutex_ready that is associated with the condition variable. Then it
reads the predicate associated with the condition variable named ready. If the predicate indicates that
thread B has finished task X, then thread A can unlock the mutex and proceed with task Y. If the
condition variable predicate indicates that thread B has not yet finished task X, thread A waits for the
condition variable to change. Thread A calls the wait primitive. Waiting on the condition variable
automatically unlocks the mutex, allowing thread B to lock the mutex when it has finished task X as shown
in Figure 60 on page 326.

 Chapter 14. Thread Concepts and Operations 325

mutex_ready

mutex_ready

ready=
YES

Signal

write

X

Thread B

unlock

lock

Figure 60. Thread B Signals Condition Ready

Thread B updates the predicate named ready associated with the condition variable to the state thread A
is waiting for. It also executes a signal on the condition variable while holding the mutex mutex_ready.
Thread A wakes up, verifies that the condition variable is in the correct state, and proceeds to execute
task Y as shown in Figure 59 on page 325.

Note: Although the condition variable is used for explicit communication among threads, the
communication is anonymous. Thread B does not necessarily know that thread A is waiting on the
condition variable that thread B signals. And thread A does not know that it was thread B that
woke it up from its wait on the condition variable.

Use the pthread_cond_init() routine to create a condition variable. To create condition variables as part
of the program’s one-time initialization code, see “One-Time Initialization Routines” on page 327.

Use the pthread_cond_wait() routine to cause a thread to wait until the condition is signaled or
broadcast. This routine specifies a condition variable and a mutex that you have locked. (If you have not
locked the mutex, the results of pthread_cond_wait() are unpredictable.) This routine unlocks the mutex
and causes the calling thread to wait on the condition variable until another thread calls one of the
following routines:

pthread_cond_signal() To wake one thread that is waiting on the condition variable

pthread_cond_broadcast() To wake all threads that are waiting on a condition variable.

If you want to limit the time that a thread waits for a condition to be signaled or broadcast, use the
pthread_cond_timedwait() routine. This routine specifies the condition variable, mutex, and absolute
time when the wait should expire, if the condition variable is not signaled or broadcast.

You can delete a condition variable and reclaim its storage by calling the pthread_cond_destroy()
routine. Use this routine only after the condition variable is no longer needed by any thread. Condition
variables are automatically deleted when the program terminates.

326 Application Development Guide: Core Components

Other Synchronization Methods

There is another synchronization method that is not anonymous — the join primitive. With this primitive,
one thread can wait for another specific thread to complete its execution. When the second thread is
finished, the first thread unblocks and continues its execution. Unlike mutexes and condition variables, the
join primitive is not associated with any particular shared data.

One-Time Initialization Routines

You probably have one or more routines that must be executed before any thread executes code in your
application, but must be executed only once regardless of the sequence in which threads start executing.
For example, you may want to create mutexes and condition variables (each of which must be created
only once) in an initialization routine. Multiple threads can call the pthread_once() routine, or the
pthread_once() routine can be called multiple times in the same thread, resulting in only one call to the
specified routine.

Use the pthread_once() routine to ensure that your application initialization routine is executed only a
single time, that is, by the first thread that tries to initialize the application. This routine is the only way to
guarantee that one-time initialization is performed in a multithreaded environment on a given platform.
The pthread_once() routine is of particular use for runtime libraries, which are often called the first time
after multiple threads are created.

 Thread-Specific Data

The thread-specific data interfaces allow each thread to associate an arbitrary value with a shared key
value created by the program.

Thread-specific data is like a global variable in which each thread can keep its own value, but is
accessible to the thread anywhere in the program.

Use the following routines to create and access thread-specific data:

pthread_keycreate() To create a unique key value.

pthread_setspecific() To associate data with a key.

pthread_getspecific() To obtain the data associated with a key.

The pthread_keycreate() routine generates a unique key value that is shared by all threads in the
process. This key is the identifier of a piece of thread-specific data. Each thread uses the same key
value to assign or retrieve a thread-specific value. This keeps your data separate from other
thread-specific data. One call to the pthread_keycreate() routine creates a cell in all threads. Call this
routine to specify a routine to be called to destroy the context value associated with this key when the
thread terminates.

The pthread_setspecific() routine associates the address of some data with a specific key. Multiple
threads associate different data (by specifying different addresses) with the same key. For example, each
thread points to a different block of dynamically allocated memory that it has reserved.

The pthread_getspecific() routine obtains the address of the thread-specific data value associated with a
specified key. Use this routine to locate the data associated with the current thread’s context.

 Chapter 14. Thread Concepts and Operations 327

 Thread Cancelation

Canceling is a mechanism by which one thread terminates another thread (or itself). When you request
that a thread be canceled, you are requesting that it terminate as soon as possible. However, the target
thread can control how quickly it terminates by controlling its general cancelability and its asynchronous
cancelability.

The following is a list of the pthread routines that are cancelation points:

 � pthread_setasynccancel()

 � pthread_testcancel()

 � pthread_delay_np()

 � pthread_join()

 � pthread_cond_wait()

 � pthread_cond_timedwait().

General cancelability (referred to as controlled cancelability by UNIX System Services Threads) is enabled
by default. A thread is canceled only at specific places in the program, for example, when the
pthread_cond_wait() routine is called. If general cancelability is enabled, request the delivery of any
pending cancel request by using the pthread_testcancel() routine. With this routine, you can permit
cancelation to occur at places where it may not otherwise be permitted under general cancelability. It is
especially useful within very long loops to ensure that cancel requests are noticed within a reasonable
time.

If you disable general cancelability, the thread cannot be terminated by any cancel request. Disabling
general cancelability means that a thread could wait indefinitely if it does not come to a normal conclusion;
therefore, be careful about disabling general cancelability.

Asynchronous cancelability, when enabled, allows cancels to be delivered to the enabling thread at any
time, not only at those times that are permitted when just general cancelability is enabled. Use
asynchronous cancelation primarily during long processes that do not have specific places for cancel
requests. Asynchronous cancelability is disabled by default. Disable asynchronous cancelability when
calling threads routines or any other runtime library routines that are not explicitly documented as
cancel-safe.

Note: If general cancelability is disabled, the thread cannot be canceled, regardless of whether
asynchronous cancelability is enabled or disabled. The setting of asynchronous cancelability is
relevant only when general cancelability is enabled.

Use the following routines to control the canceling of threads:

pthread_setcancel() To enable and disable general cancelability

pthread_testcancel() To request delivery of a pending cancel to the current thread

pthread_setasynccancel() To enable and disable asynchronous cancelability

pthread_cancel() To request that a thread be canceled.

328 Application Development Guide: Core Components

 Thread Scheduling

Note to Readers

Thread scheduling is not supported by z/OS DCE. The default thread scheduling policy is first in first
out.

 Chapter 14. Thread Concepts and Operations 329

330 Application Development Guide: Core Components

Chapter 15. Programming with Threads

This chapter discusses issues you face when writing a multithreaded program and how to deal with those
issues.

The following topics are discussed in this chapter:

 � Using signals

� Avoiding nonreentrant software

� Using synchronization objects.

Note to Readers

z/OS DCE does not support the fork() system call for DCE applications. As a consequence, the
atfork() system call is also unsupported. As system calls using z/OS DCE are thread-reentrant, the
fork() and atfork() jacket routines are also not supported on z/OS DCE. If you transfer your DCE
application from another platform that supports fork() and atfork(), you have to remove these calls to
run your application using z/OS DCE.

 Using Signals

The following subsections cover three topics: types of signals, DCE Threads signal handling, and
alternatives to using signals.

Types of Signals

Signals are delivered as a result of some event. Such signals are grouped into the following four
categories of pairs that are orthogonal to each other:

� Terminating and synchronous

 � Terminating and asynchronous

� Nonterminating and synchronous

� Nonterminating and asynchronous.

The action that DCE Threads takes when a particular signal is delivered depends on the characteristics of
that signal.

Terminating Signals: Terminating signals result in the termination of the process by default.
Whether a particular signal is terminating or not is independent of whether it is synchronously or
asynchronously delivered.

 Copyright IBM Corp. 1994, 2001 331

Nonterminating Signals: Nonterminating signals do not result in the termination of the process by
default.

Nonterminating signals represent events that can be either internal or external to the process. The
process may require notification about or ignore these events. When a nonterminating asynchronous
signal is delivered to the process, DCE Threads awakens any threads that are waiting for the signal. This
is the only action that DCE Threads takes, because the signal has no effect by default.

Synchronous Signals: Synchronous signals are the result of an event that occurs inside a process
and are delivered synchronously with respect to that event. For example, if a floating-point calculation
results in an overflow, then a SIGFPE (floating-point exception signal) is delivered to the process
immediately following the instruction that resulted in the overflow.

The default behavior for DCE Threads when a synchronous terminating signal occurs, is not to handle the
signal, possibly resulting in a core dump. If an application using DCE Threads wants to handle signals, it
must set up a signal handler by calling sigaction(). Note that the DCE Threads behavior is similar to the
default behavior of most UNIX programs.

Synchronous, terminating signals represent an error that has occurred in the currently executing thread.

Asynchronous Signals: Asynchronous signals are the result of an event that is external to the
process and are delivered at any point in a thread’s execution when such an event occurs. For example,
when a user running a program enters kill SIGINT process (running under the UNIX Emulator), a SIGINT
(interrupt signal) is delivered to the process.

Asynchronous, terminating signals represent an occurrence of an event that is external to the process, and
if it is not handled, results in the termination of the process. When an asynchronous terminating signal is
delivered, DCE Threads catches it and checks to see if any threads are waiting for it. If threads are
waiting, they are awakened, and the signal is considered handled and is dismissed. If there are no
waiting threads, then DCE Threads causes the process to be terminated as if the signal had not been
handled.

DCE Threads Signal Handling

DCE Threads provides the POSIX sigwait() service to allow threads to perform activities similar to signal
handling without having to deal with signals directly. It also provides a jacket for sigaction() that allows
each thread to have its own handler for synchronous signals.

To provide these mechanisms, DCE Threads installs signal handlers for most of the signals during
initialization.

DCE Threads do not provide handlers for several signals. These signals and a reason why handlers are
not provided are listed below.

Signal Reason Handler Is Not Provided

SIGKILL and SIGSTOP These signals cannot be caught by user mode code.

SIGTRAP Catching this signal interferes with debugging.

SIGTSTP and SIGQUIT These signals are caught only while a thread has issued a sigwait() call,
because their default actions are otherwise valuable.

332 Application Development Guide: Core Components

The POSIX sigwait() Service: The DCE Threads implementation of the POSIX sigwait() service
allows any thread to block until one of a specified set of signals is delivered. A thread waits for any of the
asynchronous signals, except for SIGKILL and SIGSTOP.

A thread cannot wait for a synchronous signal. Synchronous signals are the result of an error during the
execution of a thread, and if the thread is waiting for a signal, then it is not executing. Therefore, a
synchronous signal cannot occur for a particular thread while it is waiting, and so the thread waits forever.

The POSIX sigaction() Service: The DCE Threads implementation of the POSIX sigaction()
service allows for per-thread handlers to be installed for catching synchronous signals. The sigaction()
routine only modifies behavior for individual threads and only works for synchronous signals. Setting the
signal action to SIG_DFL for a specific signal will restore the thread’s default behavior for that signal.
Attempting to set a signal action for an asynchronous signal is an error.

Alternatives to Using Signals

Avoid using signals in multithreaded programs. DCE Threads provides alternatives to signal handling.
These alternatives are discussed in “Using Synchronization Objects” on page 335 and “Signaling a
Condition Variable” on page 336.

Note: In order to implement these alternatives, DCE Threads must install its own signal handlers. These
are installed when DCE Threads initializes itself.

Following are two reasons for avoiding signals:

� Signals cannot be used in a modular way in a multithreaded program.

� Signals, used as an asynchronous programming technique, are unnecessary in a multithreaded
program.

In a multithreaded program, signals cannot be used in a modular way because, as on most current
implementations of UNIX, signals are inherently a process construct. There is only one instance of each
signal and of each signal handler routine for all of the threads in an application. If one thread handles a
particular signal in one way, and a different thread handles the same signal in a different way, then the
thread that installs its signal handler last handles the signal. This rule applies only to asynchronously
generated signals; synchronous signals are handled on a per-thread basis when using DCE Threads, that
is, when _DCE_THREADS is defined.

Do not use asynchronous programming techniques in conjunction with threads, particularly those that
increase parallelism, such as using timer signals and I/O signals. These techniques can be complicated.
They are also unnecessary because threads provide a mechanism for parallel execution that is simpler
and less prone to error where concurrence can be of value. Furthermore, most of the threads routines are
not supported for use in interrupt routines (such as signal handlers), and portions of runtime libraries
cannot be used reliably inside a signal handler.

 Nonthreaded Libraries

As programming with threads becomes common practice, you need to ensure that threaded code and
nonthreaded code (code that is not designed to work with threads) work properly together in the same
application. For example, you may write a new application that uses threads (for example, an RPC
server) and link it with a library that does not use threads (and is thus not thread-safe). In such a
situation, you can do one of the following:

� Work with the nonthreaded software

 Chapter 15. Programming with Threads 333

� Change the nonthreaded software to be thread-safe.

Working with Nonthreaded Software

Thread-safe code is code that works properly in a threaded environment. To work with nonthread-safe
code, associate the global lock with all calls to such code.

You can implement the lock on the side of the routine user or the routine provider. For example, you can
implement the lock on the side of the routine user if you write a new application like an RPC server that
uses threads, and you link it with a library that does not. Or, if you have access to the nonthreaded code,
the locks can be placed on the side of the routine provider, within the actual routine. Implement the locks
as follows:

1. Associate one lock, a global lock, with execution of such code.

2. Require all of your threads to lock prior to execution of nonthreaded code.

3. Perform an unlock when execution is complete.

By using the global lock, you ensure that only one thread executes in outside libraries that may call each
other, and in unknown code. Using a single global lock is safer than using multiple local locks because it
is difficult to be aware of everything a library may be doing or of the interactions that library can have with
other libraries.

Changing Nonthreaded Code to Be Thread-Reentrant

Thread-reentrant code is code that works properly while multiple threads execute it concurrently.
Thread-reentrant code is thread-safe, but thread-safe code may not be thread-reentrant. Document your
code as being thread-safe or thread-reentrant.

More work is involved in making code thread-reentrant than in making code thread-safe. To make code
thread-reentrant, do the following:

� Use proper locking protocols to access global or static variables.

� Use proper locking protocols when you use code that is not thread-safe.

� Store thread-specific data on the stack or heap.

� Ensure that the compiler produces thread-reentrant code.

� Document your code as being thread-reentrant.

Avoiding Nonreentrant Software

The following subsections discuss two methods to help you avoid the pitfalls of nonreentrant software.
These methods are:

 � Global lock

 � Thread-specific storage.

334 Application Development Guide: Core Components

 Global Lock

Use a global lock that has the characteristics of a recursive mutex, instead of a regular mutex when calling
routines that you think are nonreentrant. (When in doubt, assume the code is nonreentrant.)

The pthread_lock_global_np() routine is a locking protocol that is used to call nonreentrant routines,
often found in existing library packages that were not designed to run in a multithreaded environment.

The way to call a library function that is not reentrant from a multithreaded program is to protect the
function with a mutex. If every function that calls a library locks a particular mutex before the call and
releases the mutex after the call, then the function completes without interference. However, this is
difficult to do successfully because the function may be called by many libraries. A global lock solves this
problem by providing a universal lock. Any code that calls any nonreentrant function uses the same lock.

To lock a global lock, call the pthread_lock_global_np() routine. To unlock a global lock, call the
pthread_unlock_global_np() routine.

 Thread-Specific Storage

To avoid nonreentrancy when writing new software, avoid using global variables to store data that is
thread-specific data. See “Thread-Specific Data” on page 327 for more information.

Alternatively, allocate thread-specific data on the stack or heap and explicitly pass its address to called
routines.

Using Synchronization Objects

The following subsections discuss the use of mutexes to prevent two potential problems: race conditions
and deadlocks. Also discussed are reasons why you should signal a condition variable with the
associated mutex locked.

 Race Conditions

A race condition occurs when two or more threads perform an operation, and the result of the operation
depends on unpredictable timing factors; specifically, when each thread executes and waits and when
each thread completes the operation.

An example of a race condition:

1. Both A and B are executing (X = X + 1).

2. A reads the value of X (for example, X = 5).

3. B then reads the value of X and increments it (making X = 6).

4. A is rescheduled and now increments X. Based on its earlier read operation, A reads X as (X+1 =
5+1 = 6). X is now 6. X should be 7 because it was incremented once by A and once by B.

To avoid race conditions, ensure that any variable modified by more than one thread has only one mutex
associated with it. Do not assume that a simple add operation can be completed without allowing another
thread to execute. Such operations are generally not portable, especially to multiprocessor systems. If it
is possible for two threads to share a data point, use a mutex.

 Chapter 15. Programming with Threads 335

 Deadlocks

A deadlock occurs when one or more threads are permanently blocked from executing because each
thread waits on a resource held by another thread in the deadlock. A thread can also deadlock on itself.

The following is one technique for avoiding deadlocks:

1. Associate a sequence number with each mutex.

2. Lock mutexes in sequence.

3. Do not attempt to lock a mutex with a sequence number lower than that of a mutex the thread already
holds.

Another technique — useful when a thread needs to lock the same mutex more than once before
unlocking it — is to use a recursive mutex. This technique prevents a thread from deadlocking on itself.

Signaling a Condition Variable

When you are signaling a condition variable and that signal may cause the condition variable to be
deleted, you should signal or broadcast with the mutex locked.

The recommended coding for signaling a condition variable appears at the end of this chapter. The
following two C code fragments show coding that is not recommended. The following C code fragment is
executed by a releasing thread:

pthread_mutex_lock (m);
.../$ Change shared variables to allow another thread to proceed $/
pthread_mutex_unlock (m); <---- Point A
pthread_cond_signal (cv); <---- Statement 1

The following C code fragment is executed by a potentially blocking thread:

pthread_mutex_lock (m);
while (!predicate ...

pthread_cond_wait (cv, m);

pthread_mutex_unlock (m);

Note: It is possible for a potentially blocking thread to be running at Point A while another thread is
interrupted. The potentially blocking thread can then see the predicate true, and therefore not
become blocked on the condition variable.

Signaling a condition variable without first locking a mutex is not a problem. However, if the released
thread deletes the condition variable without any further synchronization at Point A, then the releasing
thread will fail when it attempts to execute Statement 1 because the condition variable no longer exists.

This problem occurs when the releasing thread is a worker thread and the waiting thread is the boss
thread, and the last worker thread tells the boss thread to delete the variables that are being shared by
boss and worker.

The following C code fragment shows the recommended coding for signaling a condition variable while the
mutex is locked:

pthread_mutex_lock (m);
.../$ Change shared variables to allow some other thread to proceed $/

pthread_cond_signal (cv); <---- Statement 1
pthread_mutex_unlock (m);

336 Application Development Guide: Core Components

Chapter 16. Using the DCE Threads Exception-Returning
Interface

DCE Threads provides the following two ways to obtain information about the status of a threads routine:

� The routine returns a status value to the thread.

� The routine raises an exception.

When you write a multithreaded program, choose only one of the above methods of receiving status.
These two methods cannot be used together in the same code module.

The POSIX P1003.4a (pthreads) Draft standard specifies that errors be reported to the thread by setting
the external variable errno to an error code and returning a function value of -1. This
status-value-returning interface is documented in the z/OS DCE Application Development Reference.
However, an alternative to status values is provided by DCE Threads in the exception-returning interface.

This chapter introduces and provides conventions for the modular use of the exception-returning interface
to DCE Threads.

Syntax for C

Access to exceptions from the C language is defined by the macros in the <dce/exc_handling.h> header
file. The <dce/exc_handling.h> header file is included automatically when you include
<dce/pthread_exc.h>. See “Using the Exception-Returning Interface” on page 339.

The example in Figure 61 shows the syntax for handling exceptions:

TRY
 try_block
[CATCH (exception_name)
 handler_block]...
[CATCH_ALL
 handler_block]
ENDTRY

Figure 61. Syntax for Handling Exceptions

A try_block or a handler_block is a sequence of statements, the first of which may be declarations, as in
a normal block. If an exception is raised in the try_block, the catch clauses are evaluated to see if any
one matches the current exception.

The CATCH or CATCH_ALL clauses absorb an exception. That is, they catch an exception passing out
of the try_block, and direct it into the associated handler_block. Propagation of the exception, by
default, then ends. Within the lexical scope of a handler, you can explicitly cause propagation of the same
exception to resume (this is called reraising the exception), or you can raise some new exception.

The RERAISE statement is allowed in any handler statements and causes the current exception to be
reraised. Propagation of the caught exception resumes.

The RAISE (exception_name) statement is allowed anywhere, and passes a particular exception to a
higher level.

 Copyright IBM Corp. 1994, 2001 337

TRY
sort(); /$ Call a function that may raise an exception.

$ An exception is accomplished by long jumping
$ out of some nested routine back to the TRY
$ clause. Any output parameters or return values
$ of the called routine are therefore indeterminate.

 $/

CATCH (pthread_cancel_e)
printf("Canceled while sorting\n"); RERAISE;

CATCH_ALL
printf("Some other exception while sorting\n"); RERAISE;

ENDTRY

Figure 62. Using the RERAISE Statement

In the preceding example, if the pthread_cancel_e exception is raised within the function call, the first
printf runs. If any other exception is raised within sort(), the second printf runs. In either situation,
passing of the exception to the next level resumes because of the RERAISE statement. (If the code is
unable to fully recover from the error, or does not understand the error, it needs to do what it did in the
previous example and further pass on the error to its callers.)

The following shows the syntax for an epilog:

TRY try_block
[FINALLY final_block]
ENDTRY

The final_block runs whether the try_block runs to completion without raising an exception, or an
exception is raised in the try_block. If an exception is raised in the try_block, propagation of the
exception is resumed after running the final_block. if an exception is raised in the try_block but is
caught either via CATCH or CATCHALL, the final_block is run but the exception is not resumed.

Note that a CATCH_ALL handler and RERAISE could be used to do this, but the epilog code would then
have to be duplicated in two places, as follows:

TRY
 try_block
CATCH_ALL
 final_block
 RERAISE;
ENDTRY
{ final_block }

A FINALLY statement has exactly this meaning, but avoids code duplication.

Another example of the FINALLY statement is shown in Figure 63 on page 339:

338 Application Development Guide: Core Components

pthread__mutex_lock (some_object.mutex);
some_object.num_waiters = some_object.num_waiters + 1;
TRY

while (! some_object.data_available)
 pthread_cond_wait (some_object.condition);

/$ The code to act on the data_available goes here $/
FINALLY

some_object.num_waiters = some_object.num_waiters - 1;
 pthread_mutex_unlock (some_object.mutex);
ENDTRY

Figure 63. Example of a FINALLY statement

In the preceding example, the call to pthread_cond_wait() could raise the pthread_cancel_e exception.
The final_block ensures that the shared data associated with the lock is correct for the next thread that
acquires the mutex.

Using the Exception-Returning Interface

To use the exception-returning interface, replace

#include <pthread.h>

with the following include statement:

#include <dce/pthread_exc.h>

Operations on Exceptions

An exception is an object that describes an error condition. Operations on exception objects allow errors
to be reported and handled. If an exception is handled correctly, the program can recover from errors.
For example, if an exception is raised from a parity error while reading a tape, the recovery action may be
to retry 100 times before giving up.

With the DCE Threads Exception-Returning Interface, you can perform the following operations on
exceptions:

� Declare and initialize an exception object

� Raise an exception

� Define a region of code over which exceptions are caught

� Catch a particular exception or all exceptions

� Define epilog actions for a block

� Import a system-defined error status into the program as an exception.

These operations are discussed in the following subsections.

 Chapter 16. Using the DCE Threads Exception-Returning Interface 339

Declaring and Initializing an Exception Object

Declaring and initializing an exception object documents that a program reports or handles a particular
error. Having the error expressed as an exception object provides future extensibility as well as portability.
Following is an example of declaring and initializing an exception object:

EXCEPTION parity_error; /$ Declare it $/
EXCEPTION_INIT (parity_error); /$ Initialize it $/

Raising an Exception

Raising an exception means reporting an error by passing an exception to a higher level, instead of by
returning a value. Passing an exception up to a higher level means searching all the active scopes for
code that handles error situations, and running that code. The active scopes are those that are visible to
the program. If a scope does not define a handler or epilog block, the scope is simply torn down as the
exception is passed on through the stack. This is sometimes called unwinding the stack.

A DCE Threads exception cannot resume at the location at which it occurs. It must instead resume at the
point where it is caught.

If an exception is not handled, the entire application process is ended. Ending the entire process rather
than ending the faulting thread only, cleanly ends the application at the point of error. This prevents the
disappearance of the faulting thread from causing problems at some later point.

An example of raising an exception is:

RAISE (parity_error);

Defining a Region of Code over Which Exceptions Are Caught

Defining a region of code over which exceptions are caught allows you to call functions that can raise an
exception and specify the recovery action.

Following is an example of defining an exception-handling region (without indicating any recovery actions):

TRY {
 read_tape ();
 }
ENDTRY;

Catching a Particular Exception or All Exceptions

It is possible to discriminate among errors and perform different actions for each error.

Following is an example of catching a particular exception and specifying the recovery action (in this case,
a message). The exception is reraised (passed to its callers) after catching the exception and running the
recovery action:

340 Application Development Guide: Core Components

TRY {
 read_tape ();
 }
CATCH (parity_error) {

printf ("Oops, parity error, program ending\n");
printf ("Try cleaning the heads!\n");

 RERAISE;
 }
ENDTRY

Figure 64. Catching a Particular Exception

Defining Epilog Actions for a Block

With a FINALLY mechanism, multithreaded programs can restore invariants as certain scopes are
unwound, for example, restoring shared data to a correct state and releasing locks. This is often the ideal
way to define, in one place, the cleanup activities for a normal or abnormal exit from a block that has
changed an invariant.

Figure 65 shows an example of specifying an invariant action whether or not there is an error:

lock_tape_drive (t);
TRY
 TRY
 read_tape ();
 CATCH (parity_error)

printf ("Oops, parity error, program ending\n");
printf ("Try cleaning the heads!\n");

 RERAISE;
 ENDTRY

/$ Control gets here only if no exception is raised $/
/$ Now we can use the data off the tape $/

FINALLY
/$ Control gets here normally, or if any exception is raised $/

 unlock_tape_drive (t);
ENDTRY

Figure 65. An Example of an Invariant Action

Importing a System-Defined Error Status into the Program as an
Exception

Most systems define error messages by integer-sized status values. Each status value corresponds to
some error message text that should be expressed in the user’s own language. The capability to import a
status value as an exception permits the DCE Threads Exception-Returning Interface to raise or handle
system-defined errors as well as programmer-defined exceptions.

An example of importing an error status into an exception is as follows:

exc_set_status (&parity_error, EPARITY);

The parity_error exception can then be raised and handled like any other exception. If an exception is
initialized as an address exception, that is, the only way to reference it is by its address, use
exc_set_status() to change the exception to status type. This renders it representable as a status value
as well.

 Chapter 16. Using the DCE Threads Exception-Returning Interface 341

The exc_raise_status() call raises exceptions by status value instead of address. In the above example,
if a system call fails with errno EPARITY, it is possible to raise an exception even if a specific parity
address exception does not exist by calling exc_raise_status(EPARITY).

With the exc_set_status() call a CATCH clause can intercept such an exception. The exc_get_status()
allows a CATCH_ALL to determine the status value representing the problem. The latter is valuable when
a specific exception does not exist.

See z/OS DCE Application Development Reference for more information on the exc_set_status(),
exc_raise_status(), and exc_get_status() calls.

Rules and Conventions for Modular Use of Exceptions

Adhere to the following rules and conventions to ensure that exceptions are used in a modular way. This
enables independent software components to be written without requiring knowledge of each other:

� Use unique names for exceptions.

A naming convention makes sure that the names for exceptions that are declared EXTERN from
different modules do not clash. The following convention is recommended:

<facility-prefix>_<error_name>_e

For example, pthread_cancel_e.

� Avoid putting code in a TRY routine that belongs before it.

The TRY only guards statements for which the statements in the FINALLY, CATCH, or CATCH_ALL
clauses are always valid.

A common misuse of TRY is to put code in the try_block that needs to be placed before TRY. An
example of this misuse is as follows:

TRY
handle = open_file (file_name);
/$ Statements that may raise an exception here $/

FINALLY
 close (handle);
 ENDTRY

The preceding FINALLY code assumes that no exception is raised by open_file. The code accesses
an identifier that is not valid in the FINALLY part if open_file is changed to raise an exception. The
preceding example needs to be rewritten as follows:

handle = open_file (file_name);
TRY

 {
/$ Statements that may raise an exception here $/

 }
 FINALLY
 close (handle);
 ENDTRY

The code that opens the file belongs prior to TRY, and the code that closes the file belongs in the
FINALLY statement. (If open_file raises exceptions, it may need a separate try_block.)

� Raise exceptions to their proper scope.

Write functions that pass exceptions to their callers so that the function does not change any
persistent process state before raising the exception. A call to the matching close call is required only
if the open_file operation is successful in the current scope.

342 Application Development Guide: Core Components

When open_file fails and raises an exception, close must not be called because you cannot close a
file that is not open. So open_file should not be part of the TRY clause.

� Do not place a RETURN or nonlocal GOTO between TRY and ENDTRY as this destroys the integrity
of the exception handling facility and may cause indeterminate problems.

Important Note to Users

It is not valid to use RETURN or GOTO, or to leave by any other means, a TRY, CATCH,
CATCH_ALL, or FINALLY block. Special code is generated by the ENDTRY macro, and it must
be run.

� Use the ANSI C volatile attribute.

Variables that are read or written by exception-handling code must be declared with the ANSI C
volatile attribute. Run your tests with the optimize compiler option to ensure that the compiler
thoroughly tests your exception-handling code.

� Reraise exceptions that are not fully handled.

You need to reraise any exception that you catch, unless your handler performs the complete recovery
action for the error. This rule permits an unhandled exception to pass on to some final default handler
that prints an error message to end the offending thread. (An unhandled exception is an exception for
which recovery is incomplete.)

A corollary of this rule is that CATCH_ALL handlers must reraise the exception because they may
catch any exception, and usually cannot do recovery actions that are correct for every exception.

Following this convention is important so that you also do not absorb a cancel or thread-exit request.
These are mapped into exceptions so that exception handling has the full power to handle all
exceptional conditions from access violations to thread exit. (In some applications, it is important to be
able to catch these to work around an erroneously written library package, for example, or to provide a
fully fault-tolerant thread.)

DCE Threads Exceptions and Definitions

Table 16 lists the DCE Threads exceptions and briefly explains the meaning of each exception. Exception
names beginning with exc_ are generic and belong to the exception facility, the underlying system, or
both. Exception names beginning with pthread_ are raised as the result of internal activity in the DCE
Threads facility and are not meant to be raised by your code.

Table 16 (Page 1 of 2). DCE Threads Exceptions

Exception Definition

exc_decovf_e An unhandled decimal overflow trap exception occurred.

exc_exquota_e The operation failed because of an insufficient quota.

exc_fltdiv_e An unhandled floating-point division by zero trap exception occurred.

exc_fltovf_e An unhandled floating-point overflow trap exception occurred.

exc_fltund_e An unhandled floating-point underflow trap exception occurred.

exc_illaddr_e The data or object could not be referred to.

exc_insfmem_e There is insufficient virtual storage for the requested operation.

exc_intdiv_e An unhandled integer divide by zero trap exception occurred.

exc_intovf_e An unhandled integer overflow trap exception occurred..

exc_nopriv_e There is insufficient privilege for the requested operation.

 Chapter 16. Using the DCE Threads Exception-Returning Interface 343

To see how to catch z/OS abends as exceptions, see below.

z/OS ABENDs Caught as Exceptions

The z/OS DCE exception package can catch z/OS system ABENDs. You can catch any abend, or just
those that can be mapped to an exception type by using the CATCH_ALL clause. The z/OS DCE
exception package is implemented so that all abends that can be caught by the Language Environment
Condition Manager are caught by a CATCH_ALL clause. z/OS ABENDs are mapped to a set of exception
values. Table 17 on page 345 shows this mapping.

Table 16 (Page 2 of 2). DCE Threads Exceptions

Exception Definition

exc_privinst_e An unhandled privileged instruction fault exception occurred.

exc_resaddr_e An unhandled reserved addressing fault exception occurred.

exc_resoper_e An unhandled reserved operand fault exception occurred.

exc_SIGBUS_e An unhandled bus error signal occurred.

exc_SIGEMT_e An unhandled EMT trap signal occurred.

exc_SIGFPE_e An unhandled floating-point exception signal occurred.

exc_SIGILL_e An unhandled improper instruction signal occurred.

exc_SIGIOT_e An unhandled IOT trap signal occurred.

exc_SIGPIPE_e An unhandled broken pipe signal occurred.

exc_SIGSEGV_e An unhandled segmentation violation signal occurred.

exc_SIGSYS_e An unhandled bad system call signal occurred.

exc_SIGTRAP_e An unhandled trace or breakpoint trap signal occurred.

exc_SIGXCPU_e An unhandled CPU-time limit exceeded signal occurred.

exc_SIGXFSZ_e An unhandled file-size limit exceeded signal occurred.

exc_subrng_e An unhandled subscript out-of-range trap exception occurred.

exc_uninitexc_e An uninitialized exception was raised.

pthread_badparam_e An improper parameter was used

pthread_cancel_e A thread cancelation is in progress

pthread_defer_q_full_e No space is currently available to process an interrupt request.

pthread_existence_e The object referred to does not exist.

pthread_in_use_e The object referred to is already in use.

pthread_nostackmem_e No space is currently available to create a new stack.

pthread_nostack_e The current stack was not created by DCE Threads.

pthread_signal_q_full_e Unable to process condition signal from interrupt level.

pthread_stackovf_e An attempted stack overflow was detected.

pthread_unimp_e This is an unimplemented feature.

pthread_use_error_e The requested operation is improperly run.

344 Application Development Guide: Core Components

A coding example that shows how to create and catch z/OS system ABENDs as exceptions is shown in
Figure 66.

EXCEPTION noload_e;
int status, reason_code;

EXCEPTION_INIT (&noload_e);
exc_set_status (&noload_e, 0X'00806000');

TRY
. . .

CATCH (noload_e) /$ handle S806 ABEND $/
. . .

CATCH (exc_illaddr_e) /$ handle S0C4 ABEND $/
. . .

CATCH_ALL /$ handle any other ABEND $/

exc_get_status (THIS_CATCH, &status);
exc_get_reason_code (THIS_CATCH, &reason_code);

printf ("Error: ABEND S%03d-%02d occurred!\n", status, reason_code);

ENDTRY

Figure 66. Coding Example: Setting z/OS S806 ABEND to be an Exception

Exceptions use POSIX signal handlers to process synchronous exceptions and pass control to CATCH
processes. Consequently, you can use Language Environment user handlers to get control prior to any

Table 17. z/OS ABENDs
Mapped as OSF Portable
Exceptions

ABEND Exception

SX'047' exc_privinst_e

SX'0C1' exc_illinstr_e

SX'0C2' exc_nopriv_e

SX'0C3' exc_resoper_e

SX'0C4' exc_illaddr_e

SX'0C5' exc_resaddr_e

SX'0C7' exc_aritherr_e

SX'0C8' exc_intovf_e

SX'0C9' exc_intdiv_e

SX'0CA' exc_decovf_e

SX'0CC' exc_fltovf_e

SX'0CD' exc_fltund_e

SX'0CF' exc_fltdiv_e

 Chapter 16. Using the DCE Threads Exception-Returning Interface 345

CATCH processing. However, your Language Environment condition handler should always return and
propagate the condition to other Language Environment condition handling services. Refer to the
Language Environment documentation for more information on Language Environment condition handlers.

Catching Specific System or User ABENDs

To catch specific z/OS system ABENDs that are not defined in Table 17 on page 345, or to catch user
ABENDs (that is, application generated ABENDs), use the following procedure:

1. Dynamically initialize an exception object that has been previously declared using the
EXCEPTION_INIT() function call. This step defines the exception.

2. Change the exception to a status type using the exc_set_status() function call. The object type and
status value of the exception are changed. The exception object parameter required for this call is set
in the above step.

3. Change the status field to be a user defined type for user or z/OS system abends. These user
defined types can be formed by merging the abend code with the reason code as follows.

 The format for the status value is 0X'00sssuuu', where

� sss represents the system abend code
� uuu represents the user abend code.

For example, z/OS system abend SX'047' can be mapped to a status value of 0X'00470000'. User
abend code UX'888' can be mapped to status value 0X'00000888'. The reason code of an abend
is not part of the exception value, thus you must query it separately when you catch an exception
using exc_get_reason_code().

Note: The status code values in the range of 0X'00FFFFFF' are reserved for exception abend codes. If
you create a status code that is in this range, there is no way for the exception package to
distinguish this user code from an abend code.

Detecting the First Catch of an Exception

To detect the first catch of a specific exception to perform cleanup or a set of specialized function but only
once during the exception, use the exc_first_catch() macro. This method is useful in nested TRY/CATCH
clauses. An example of its use is provided in Figure 67 on page 347.

346 Application Development Guide: Core Components

TRY {
 .
 .
 .
}

CATCH () {
 exc_first_catch()
 .
 .
 TRY {
 .
 .
 .
 }

CATCH () {
 exc_first_catch()
 .
 .
 .
 }

}

Figure 67. Detecting the First Catch of an Exception

Handling Unexpected Exceptions

If an unexpected exception occurs, a dump of diagnostic information is generated by the Language
Environment recovery facility under certain conditions. You will receive a message indicating this.
Diagnostic information will be logged in the file specified by DD:CEEDUMP. The format of this file is
specified by the Language Environment CEEDUMP service. Refer to z/OS Language Environment
Programming Guide, SA22-7561, for information on the diagnostic information, which includes:

� Program status word (PSW)

� Instruction-length code (ILC) and data in PSW

� z/OS abend code and reason code

� Values in all general registers at time of abend

� Load module name and address of module

� Offset into module

� Stack frame traceback of all called functions and all threads as supplied by Language Environment.

� Values in local variables that are formatted if the application is compiled with proper test options.

� Any other Language Environment supplied dump option.

With Language Environment dump services, multiple dumps can be written to the CEEDUMP file as
exceptions are raised, or user invoked dumps take place. The dump file is managed by Language
Environment and shows the latest dump at the top of the file. Each dump is identified with a title, and the
exceptions package provides a title you can use to find out what caused the dump. Following is the dump
title format for exceptions:

<process>(<correlation_id>)-<exception_keyword>: <exception_value>

An example of a dump title for a system abend caught in a CATCH_ALL clause is:

 Chapter 16. Using the DCE Threads Exception-Returning Interface 347

EUVSCD(0)-CATCH_ALL: S0C4-04

An example of a user abend is:

EUVTDTSD(1)-NO TRY: U4097-08

An example of a dump title for a system abend caught in a FINALLY clause is:

EUVPCT(0)-FINALLY: S0D6-04

An example of a dump title for not having a specific catch clause for a software exception is:

EUVRRPCD(2)-NO CATCH: 0x12345678

For exceptions occurring within user processes or applications, the process is EUVZUSER.

Determine the cause of the exception by analyzing the dump and then take appropriate action. See z/OS
DCE Messages and Codes for information on taking appropriate action. If you require information on
reading CEEDUMPs, consult z/OS Language Environment Debugging Guide, GA22-7560.

Table 18 shows scenarios that lead to a CEEDUMP being taken:

Table 18. Exception Dump Scenarios

When a dump occurs, the Exceptions component queries the Reliability, Availability, and Serviceability
(RAS) services component to determine if a symptom string is logged to identify the dump. If required,
the RAS services are notified so that a symptom string defined in the catch area is attached to the dump.
If no catch is made for the exception, a generic symptom string is attached by the Exceptions component
to the dump.

Source of
Exception

No TRY/CATCH
Active

TRY/CATCH
Active

Exception
Uncaught

TRY/CATCH
Active

Exception Caught
by CATCH

TRY/CATCH Active

Exception caught
by CATCH_ALL or
FINALLY

Software Exception
Raised (RAISE)

NO DUMP No DUMP NO DUMP NO DUMP

Software SIGNAL
Raised (raise)

NO DUMP NO DUMP NO DUMP NO DUMP

System Abend Exception DUMP in
handler

Exception DUMP in
handler

NO DUMP Exception DUMP in
handler

User Abend Exception DUMP in
handler

Exception DUMP in
handler

NO DUMP Exception DUMP in
handler

RERAISED
Exception

NO DUMP NO DUMP NO DUMP NO DUMP

348 Application Development Guide: Core Components

Chapter 17. DCE Threads Example

The example in this chapter shows the use of DCE Threads in a C program that performs a prime number
search. The program finds a specified number of prime numbers, and then sorts and displays these
numbers. Several threads participate in the search. Each thread:

1. Takes a number (the next one to be checked)

2. Checks if the number is a prime number

3. Records the number if it is prime

4. Takes another number, and so on.

This program shows the work crew model of programming (described in “Work Crew Model” on
page 316). The workers (threads) increment a number (current_num) to get their next work assignment,
which, in this case, is the same task as before but with a different number to check for a prime. As a
whole, the worker threads are responsible for finding a specified number of prime numbers, at which point
their work is completed.

Details of Program Logic and Implementation

The number of workers to be used and the requested number of prime numbers to be found are defined
constants. A macro is used to check for bad status (bad status returns a value of -1), and to print a given
string and the associated error value upon bad status. Data to be accessed by all threads (mutexes,
condition variables, and so forth) is declared as global items.

Worker threads execute the prime search routine, which begins by synchronizing with the boss (or parent)
thread using a predicate and a condition variable. Always enclose a condition wait in a predicate loop to
prevent a thread from continuing if it receives a spurious wake up. The lock associated with the condition
variable must be held by the thread when the condition wait call is made. The lock is implicitly released
within the condition wait call and acquired again when the thread resumes. The same mutex must be
used for all operations performed on a specific condition variable.

After the parent sets the predicate and broadcasts, the workers begin finding prime numbers until
canceled by a fellow worker who has found the last requested prime number. Upon each iteration, the
workers increment the current number and take the new value as their work item. A mutex is locked and
unlocked around the operation to get the next work item. The purpose of the mutex is to ensure the
completeness and integrity of this operation, and the visibility of the new value across all threads. This
type of locking protocol needs to be performed on all global data to ensure its visibility and protect its
integrity.

Each worker thread then determines if its current work item (a number) is prime by trying to divide
numbers into it. If the number proves to be indivisible, it is put on the list of primes. Cancel operations
are explicitly turned off while working with the list of primes to better control any cancelations that do
occur. The list and its current count are protected by locks, which also protect the cancelation process of
all other worker threads upon finding the last requested prime. While still under the prime list lock, the
current worker checks to see if it has found the last requested prime, and if so, unsets a predicate and
cancels all other worker threads. Cancels are then reenabled. The canceling thread falls out of the work
loop as a result of the predicate that it unsets.

The parent thread’s flow of execution is as follows: set up the environment, create worker threads,
broadcast to them that they can start, join each thread as it finishes, and sort and print the list of primes.

 Copyright IBM Corp. 1994, 2001 349

� Setting up of the environment requires initializing mutexes and the one condition variable used in the
example.

� Creation of worker threads is straightforward and utilizes the default attributes
(pthread_attr_default()). Notice again that locking is performed around the predicate on which the
condition variable wait loops. In this case, the locking is simply done for visibility and is not related to
the broadcast function.

� As the parent joins each of the returning worker threads, it receives an exit value from them that
indicates whether a thread exited normally or not. In this case, the exit values on all but one of the
worker threads are -1, indicating that they were canceled.

� The list is then sorted to ensure that the prime numbers are in order from lowest to highest.

The following pthread routines are used in this example:

 � pthread_cancel()

 � pthread_cond_broadcast()

 � pthread_cond_init()

 � pthread_cond_wait()

 � pthread_create()

 � pthread_detach()

 � pthread_exit()

 � pthread_join()

 � pthread_mutex_init()

 � pthread_mutex_lock()

 � pthread_mutex_unlock()

 � pthread_setcancel()

 � pthread_testcancel()

350 Application Development Guide: Core Components

Threads Example — Searching for Prime Numbers

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
/$
 $ Constants used by the example.
 $/
#define workers 5 /$ Threads to perform prime check $/
#define request 110 /$ Number of primes to find $/
/$
 $ Macros
 $/
#define check(status,string) if (status == -1) perror (string)
/$
 $ Global data
 $/
pthread_mutex_t prime_list; /$ Mutex for use in accessing the prime $/
pthread_mutex_t current_mutex; /$ Mutex associated with current number $/
pthread_mutex_t cond_mutex; /$ Mutex used for ensuring CV integrity $/
pthread_cond_t cond_var; /$ Condition variable for thread start $/
int current_num= -1;/$ Next number to be checked, start odd $/
int thread_hold= 1; /$ Number associated with condition state $/
int count=0; /$ Count of prime numbers - index to primes $/
int primes[request];/$ Store prime numbers - synchronize access $/
pthread_t threads[workers];/$ Array of worker threads $/
/$
 $ Worker thread routine.
 $
 $ Worker threads start with this routine, which begins with a condition
 $ wait designed to synchronize the workers and the parent. Each worker
 $ thread then takes a turn taking a number for which it will determine
 $ whether or not it is prime.
 $
 $/
void
prime_search (pthread_addr_t arg)
 {

div_t div_results; /$ DIV results: quot and rem $/
int numerator; /$ Used for determining primeness $/
int denominator; /$ Used for determining primeness $/
int cut_off; /$ Number being checked div 2 $/
int notifiee; /$ Used during a cancelation $/
int prime; /$ Flag used to indicate primeness $/
int my_number; /$ Worker thread identifier $/
int status; /$ Hold status from pthread calls $/
int not_done=1; /$ Work loop predicate $/
my_number = (int)arg;

Figure 68 (Part 1 of 5). Threads Example Searching

 Chapter 17. DCE Threads Example 351

 /$
$ Synchronize threads and the parent using a condition variable, for
$ which the predicate (thread_hold) will be set by the parent.

 $/
status = pthread_mutex_lock (&cond_mutex);
check(status,"1:Mutex_lock bad status\n");

while (thread_hold) {
status = pthread_cond_wait (&cond_var, &cond_mutex);
check(status,"3:Cond_wait bad status\n");

 }

status = pthread_mutex_unlock (&cond_mutex);
check(status,"4:Mutex_unlock bad status\n");

 /$
$ Perform checks on ever larger integers until the requested
$ number of primes is found.

 $/
while (not_done) {

/$ cancelation point $/
 pthread_testcancel ();

/$ Get next integer to be checked $/
status = pthread_mutex_lock (¤t_mutex);
check(status,"6:Mutex_lock bad status\n");

current_num = current_num + 2; /$ Skip even numbers $/
numerator = current_num;

status = pthread_mutex_unlock (¤t_mutex);
check(status,"9:Mutex_unlock bad status\n");

/$ Only need to divide in half of number to verify not prime $/
cut_off = numerator/2 + 1;
prime = 1;

/$ Check for prime; exit if something evenly divides $/
for (denominator = 2; ((denominator < cut_off) && (prime));

 denominator++) {
prime = numerator % denominator;

 }
if (prime != 0) {

/$ Explicitly turn off all cancels $/
 pthread_setcancel(CANCEL_OFF);

Figure 68 (Part 2 of 5). Threads Example Searching

352 Application Development Guide: Core Components

 /$
$ Lock a mutex and add this prime number to the list. Also,
$ if this fulfills the request, cancel all other threads.

 $/
status = pthread_mutex_lock (&prime_list);
check(status,"10:Mutex_lock bad status\n");

if (count < request) {
primes[count] = numerator;

 count++;
 }

else if (count == request) {
not_done = 0;

 count++;
for (notifiee = 0; notifiee < workers; notifiee++) {

if (notifiee != my_number) {
status = pthread_cancel (threads[notifiee]);
check(status,"12:Cancel bad status\n");

 }
 }
 }

status = pthread_mutex_unlock (&prime_list);
check(status,"13:Mutex_unlock bad status\n");

/$ Reenable cancels $/
 pthread_setcancel(CANCEL_ON);
 }
 pthread_testcancel ();
 }

pthread_exit ((pthread_addr_t) my_number);
 }
int main()
 {

int worker_num; /$ Counter used when indexing workers $/
int exit_value; /$ Individual worker's return status $/
int list; /$ Used to print list of found primes $/
int status; /$ Hold status from pthread calls $/
int index1; /$ Used in sorting prime numbers $/
int index2; /$ Used in sorting prime numbers $/
int temp; /$ Used in a swap; part of sort $/
int not_done; /$ Indicates swap made in sort $/

 setlocale(LC_ALL, "");

Figure 68 (Part 3 of 5). Threads Example Searching

 Chapter 17. DCE Threads Example 353

 /$
$ Create mutexes

 $/
status = pthread_mutex_init (&prime_list, pthread_mutexattr_default);
check(status,"15:Mutex_init bad status\n");
status = pthread_mutex_init (&cond_mutex, pthread_mutexattr_default);
check(status,"16:Mutex_init bad status\n");
status = pthread_mutex_init (¤t_mutex, pthread_mutexattr_default);
check(status,"17:Mutex_init bad status\n");

 /$
$ Create conditon variable

 $/
status = pthread_cond_init (&cond_var, pthread_condattr_default);
check(status,"45:Cond_init bad status\n");

 /$
$ Create the worker threads.

 $/
for (worker_num = 0; worker_num < workers; worker_num++) {

status = pthread_create (
 &threads[worker_num],
 pthread_attr_default,
 (pthread_startroutine_t)prime_search,
 (pthread_addr_t)worker_num);

check(status,"19:Pthread_create bad status\n");
 }

 /$
$ Set the predicate thread_hold to zero, and broadcast on the
$ condition variable that the worker threads may proceed.

 $/
status = pthread_mutex_lock (&cond_mutex);
check(status,"20:Mutex_lock bad status\n");

thread_hold = 0;

status = pthread_cond_broadcast (&cond_var);
check(status,"20.5:cond_broadcast bad status\n");

status = pthread_mutex_unlock (&cond_mutex);
check(status,"21:Mutex_unlock bad status\n");

Figure 68 (Part 4 of 5). Threads Example Searching

354 Application Development Guide: Core Components

 /$
$ Join each of the worker threads in order to obtain their
$ summation totals, and to ensure each has completed

 $ successfully.
 $

$ Mark thread storage free to be reclaimed upon termination by
$ detaching it.

 $/
for (worker_num = 0; worker_num < workers; worker_num++) {

status = pthread_join (
 threads[worker_num],
 (void$$)&exit_value);

check(status,"23:Pthread_join bad status\n");

if (exit_value == worker_num) printf("thread terminated normally\n");

status = pthread_detach (&threads[worker_num]);
check(status,"25:Pthread_detach bad status\n");

 }

 /$
$ Take the list of prime numbers found by the worker threads and
$ sort them from lowest value to highest. The worker threads work
$ concurrently; there is no guarantee that the prime numbers
$ will be found in order. Therefore, a sort is performed.

 $/
not_done = 1;
for (index1 = 1; ((index1 < request) && (not_done)); index1++) {

for (index2 = 0; index2 < index1; index2++) {
if (primes[index1] < primes[index2]) {

temp = primes[index2];
primes[index2] = primes[index1];
primes[index1] = temp;
not_done = 0;

 }
 }
 }

 /$
$ Print out the list of prime numbers that the worker threads

 $ found.
 $/

printf ("The list of %d primes follows:\n", request);
 printf("%d",primes[0]);

for (list = 1; list < request; list++) {
printf (",%d", primes[list]);

 }

 printf ("\n");

 return(0);
 }

Figure 68 (Part 5 of 5). Threads Example Searching

 Chapter 17. DCE Threads Example 355

356 Application Development Guide: Core Components

Chapter 18. Comparing POSIX Multithreading to z/OS
Multitasking

Although the z/OS operating system has the ability to dispatch multiple threads of execution, it is different
from the POSIX definition. To compare the two, you must first understand the meaning of some key C
and POSIX constructs.

Heap The area of memory from which dynamic storage is allocated using the ANSI memory
allocation routines like malloc(), calloc(), free(), and so on.

Static Area The area of memory where global variables (variables declared outside the scope of the
main() program or outside the scope of any subroutines) and string constants (string values
that appear within double quotation marks within a program) are stored. Variables that are
declared static within the scope of a subroutine are also stored in this area.

Stack The area of memory used for parameter passing and for storing automatic variables
(variables defined within the scope of main() program or any subroutine).

Process A single program that consists of one main() program and any number of subroutines.
Each process has its own heap and static area.

Thread A subroutine dispatched as a separate executable entity from the main() program (which
itself is also a thread).

task A TASK (in z/OS) is a unit of execution. POSIX threads, as used by DCE, are mapped to
z/OS tasks (TCBs). These mappings occur in two flavors:

 � heavy weight

pthread creation is the same as task creation, and pthread deletion is the same as
task deletion (TCB DETACH). z/OS resource managers are run.

 � medium weight

pthread creation is an association of a thread with an existing z/OS TCB on a
one-for-one basis. pthread deletion ends this association; the z/OS task is not
DETACHed and z/OS resource managers are not run.

DCE uses medium weight threads.

The key distinction between z/OS tasking and POSIX threading is that each z/OS task is close to being a
separate process, whereas each POSIX thread is actually a program subroutine. Refer to Figure 69 on
page 358 for a comparison of threads to processes. In the following sections, the term thread refers to
the POSIX execution entity, while the term task refers to the z/OS execution entity.

 Copyright IBM Corp. 1994, 2001 357

Registers Registers Registers Registers

Heap Heap

Static Static

Code Code

Stack Stack Stack Stack

Process Process

Memory Memory

Thread Thread Thread

Figure 69. Threading Model Overview

Although a z/OS task is more easily mapped to a process, it is still necessary to associate a POSIX thread
with a z/OS task. The z/OS DCE threading services map each thread to a separate Task Control Block
(TCB), but do not change the semantics of UNIX System Services Threads. A TCB is a data area used to
store information regarding a z/OS operating system dispatchable unit called a task.

Types of Threads

The z/OS DCE threading service defines two types of threads:

Heavy-weight This type of thread is given a new TCB each time one is created. Thus, there is an
exact mapping between threads and tasks.

Medium-weight This type of thread is subdispatched, meaning that dispatching is controlled within the
threads implementation itself. (Task dispatching is still handled by z/OS.) A pool of
TCBs is used where any TCB may be used as the means to execute the thread. There
is a configurable maximum limit of TCBs as well as a configurable ratio of TCBs to
threads (because you can have more threads than TCBs). Because threads are
subdispatched using a pool of TCBs, multiple threads may share the same TCB.

If for any reason the TCB abnormally terminates (ABENDs) while executing a thread, the
recovery exit (for example, ESTAE or ESPIE) does not distinguish between threads.
Consequently, the TCB will indiscriminately clear up resources, including resources that
are still being used by a thread running under a different TCB.

The type of thread is selectable based on a field within the thread attribute (which is created by the caller).
The default for DCE Threads is to use medium-weight threads. For UNIX System Services Threads,
which are described in z/OS C/C++ Run-Time Library Reference, SA22-7821, the default is heavy-weight
threads.

358 Application Development Guide: Core Components

Note to Readers

For z/OS DCE, this field is set internally to medium-weight threads. To change the thread weight, see
the description of the pthread_attr_setweight_np() API in z/OS C/C++ Run-Time Library Reference,
SA22-7821.

Choosing the Type of Thread
Note: This section does not apply to manager Threads, that is, the threads created by RPC in DCE
server applications to handle incoming RPCs. Most thread attributes are set in the attributes object and
cannot be changed dynamically by the manager code. This section only applies to threads you create
using pthread_create().

You must consider the following when choosing the type of thread:

1. Desired performance characteristics.

Medium-weight threads minimize both the dispatch time (the time it takes to search the thread queue
to find a ready thread, reset the machine registers and initiate its execution) as well as the context
switch time (the time taken to put one thread back onto the dispatch queue and dispatch another
thread).

2. The z/OS recovery characteristics of a thread.

Heavy-weight threads should be used when issuing z/OS subsystem calls (for example, calls to Virtual
Telecommunications Access Method (VTAM) or DATABASE 2 (DB2)). The reason is that
subsystems will often attach cleanup exits that they expect to be driven when a task terminates.
Because medium-weight threads are subdispatched using a pool of TCBs, multiple threads may share
the same TCB.

 Chapter 18. Comparing POSIX Multithreading to z/OS Multitasking 359

360 Application Development Guide: Core Components

Chapter 19. Migrating between UNIX System Services and
DCE Threads

The DCE Threads package is based on the pthreads interface specified in the POSIX 1003.4a, Draft 4
standard. The z/OS UNIX System Services Threads package is based on the POSIX 1003.4a, Draft 6
standard. Throughout this chapter, the z/OS UNIX System Services Threads package is referred to as
UNIX System Services Threads, whereas the DCE Threads package is referred to as DCE Threads.

There are two sets of Threads services to choose from because the POSIX Threads standard, 1003.4a, is
an evolving standard. DCE Threads captures the Threads services at the Draft 4 level, and z/OS UNIX
System Services captures the Threads services at the Draft 6 level.

The reasons for using the two types of threading packages are summarized in Table 19.

Table 19. Reasons for Using DCE or UNIX System Services Threads

If you are programming with DCE threads, refer to the earlier chapters contained in Part 3, “Using the
DCE Threads APIs” on page 313. If you are programming with UNIX System Services threads, refer to
the threading information in z/OS C/C++ Run-Time Library Reference, SA22-7821. Note that for
consistency, you should not mix draft 4 and draft 6 in your source code. You can, however, code a DCE
application using draft 6, and link it using the DCE library which is based on draft 4. The following
information highlights the differences between the two packages, and assists you if you are migrating your
multithreaded application between the them.

Differences between UNIX System Services and DCE Threads

There are three major differences between the two packages:

 � Signals

DCE threads implements per-thread signal handling for synchronous signals. UNIX System Services
threads does not. See “Using Signals” on page 331 for a detailed discussion of DCE-style signal
handling.

 � Mutexes

DCE threads offers three types of mutexes (see “Mutexes” on page 323) and a global lock (see
“Global Lock” on page 335). UNIX System Services threads offers two types of mutexes and no
global lock.

DCE Threads UNIX System Services Threads

� Portability of DCE applications, written on other DCE
platforms, to and from the z/OS platform. DCE
implementations are most likely to support the
standard DCE threads interfaces.

� Non-POSIX extensions. DCE Threads offers a
number of services that are not in the UNIX System
Services Threads suite:

– _np (non-portable) services

– Exception handling (see Chapter 16, “Using the
DCE Threads Exception-Returning Interface” on
page 337)

– Three types of mutex objects.

Greater evolution of the Threads standard

 Copyright IBM Corp. 1994, 2001 361

 � Programming Interfaces

There are semantic and syntactic differences of related pthread API calls between the two packages.

Choosing DCE or UNIX System Services Threads

To use either of the above Threads packages, you must include either the pthread.h header file or the
dce/pthread_exc.h header file. The dce/pthread_exc.h header file enables the exception returning
interface as well as the pthread interface.

The pthread.h file is included as follows:

#include <pthread.h>

The dce/pthread_exc.h file is included as follows:

#include <dce/pthread_exc.h>

To use the DCE Threads package, define the C language macro constant _DCE_THREADS. You can
define the constant by one of the following methods:

� Specifying a compile-time definition

� Defining the constant in the source file prior to the inclusion of the pthread.h header file in your
source.

To use the UNIX System Services threads package, do not define the _DCE_THREADS macro constant.
Note that if you use the UNIX System Services threads package, you cannot use the DCE threads APIs
that return exceptions.

 Mutexes

A detailed discussion of the three types of DCE Threads mutexes is found in “Mutexes” on page 323.
Briefly, the three types are fast, recursive, and nonrecursive. UNIX System Services Threads supports
two types: recursive and nonrecursive.

For z/OS DCE, the DCE Threads fast mutex is equivalent to nonrecursive. In other words, the fast mutex
does not exist; identifying a fast mutex to pthread_mutex_setkind_np() results in a nonrecursive mutex.

Differences between DCE Threads and UNIX System Services Threads

If your multithreaded programming application uses the DCE threads APIs based on the POSIX 1003.4
Draft 4 standard, and you want to run it using the UNIX System Services Threads package available on
z/OS, be aware of the following semantic and syntactic differences between the two threading packages.
You must change your application accordingly. Conversely, if your multithreaded application has been
written for the Draft 6 standard and you want to run it using the Draft 4 standard, you must reverse those
changes.

The following information is a summary of the differences. For a complete understanding of the UNIX
System Services Threads package, refer to z/OS C/C++ Run-Time Library Reference, SA22-7821, and for
DCE threads APIs refer to z/OS DCE Application Development Reference.

362 Application Development Guide: Core Components

Changes to Threads APIs

The following DCE Threads APIs have been changed (in their entirety) to their corresponding UNIX
System Services Threads APIs. Thus, if you use one of the following DCE Threads APIs in your
application, and you want to migrate to the UNIX System Services Threads, replace the DCE Threads API
with the corresponding UNIX System Services API in the following list:

DCE Threads API UNIX System Services Threads API

pthread_setcancel() pthread_setintr()

pthread_setasynccancel() pthread_setintrtype()

pthread_testcancel() pthread_testintr()

pthread_attr_create() pthread_attr_init()

pthread_attr_delete() pthread_attr_destroy()

pthread_condattr_create() pthread_condattr_init()

pthread_condattr_delete() pthread_condattr_destroy()

pthread_mutexattr_create() pthread_mutexattr_init()

pthread_mutexattr_delete() pthread_mutexattr_destroy()

pthread_keycreate() pthread_key_create()

pthread_yield() pthread_yield(NULL)

Specifying Attributes Objects

The attribute parameter on the DCE Threads version of the following calls have changed to a pointer on
the UNIX System Services Threads version of the calls:

 � pthread_create()

 � pthread_cond_init()

 � pthread_mutex_init().

In addition, other DCE Threads attribute APIs such as pthread_attr_getstacksize() have been changed to
return attribute values in output buffers rather than by function return.

Call Attributes Not Supported by UNIX System Services Threads

The following DCE Threads call attributes are not supported by UNIX System Services Threads:

 � pthread_attr_default

 � pthread_mutexattr_default

 � pthread_condattr_default.

When using UNIX System Services Threads, specify default attributes with NULL where an attribute object
is required.

 Chapter 19. Migrating between UNIX System Services and DCE Threads 363

Types Not Supported by UNIX System Services Threads

The following types are not available on UNIX System Services Threads:

 � pthread_startroutine_t

 � pthread_initroutine_t

 � pthread_cleanup_t

 � pthread_destructor_t

 � pthread_addr_t.

 Mutex Types

The following DCE Threads mutex types are redefined for the UNIX System Services Threads package:

DCE Threads mutex type UNIX System Services Threads mutex type

MUTEX_RECURSIVE __MUTEX_RECURSIVE

MUTEX_RECURSIVE_NP __MUTEX_RECURSIVE

MUTEX_FRIENDLY __MUTEX_RECURSIVE

MUTEX_NON_RECURSIVE __MUTEX_NONRECURSIVE

MUTEX_NON_RECURSIVE_NP __MUTEX_NONRECURSIVE

MUTEX_NONRECURSIVE_NP __MUTEX_NONRECURSIVE

MUTEX_FAST_NP __MUTEX_NONRECURSIVE

Cancelability Versus Interruptibility

The DCE Threads notion of cancelability and the constants CANCEL_ON and CANCEL_OFF is not
available in the UNIX System Services Threads. In its place is the notion of interruptability and the
following constants:

 � PTHREAD_INTR_ENABLE

 � PTHREAD_INTR_DISABLE

 � PTHREAD_INTR_CONTROLLED

 � PTHREAD_INTR_ASYNCHRONOUS.

 Semantic Differences

Be aware of the following semantic differences between the two threads packages:

� OSF DCE Threads allows multiple callers of the pthread_join() targeting a single thread. z/OS DCE
Threads and UNIX System Services Threads allow only one thread to join another thread.

� The UNIX System Services Threads API pthread_setintr() is an interruption point. The related DCE
Threads API pthread_setcancel() is not a cancelation point.

� The default thread type for DCE Threads is medium-weight threads while the default thread type for
UNIX System Services Threads is heavy-weight threads.

In addition to the above, there is a syntactic difference with pthread_mutex_trylock() call in that the UNIX
System Services Threads and DCE Threads return codes for this call are different.

364 Application Development Guide: Core Components

 Miscellaneous Differences

In addition to the above, be aware of the following differences between DCE Threads and UNIX System
Services Threads:

� The DCE Threads pthread_once_init macro constant is known in the UNIX System Services Threads
package as the PTHREAD_ONCE_INIT macro constant.

� For the pthread_yield() API call, the parameter in the DCE Threads package is void, while in UNIX
System Services Threads it is void $, and NULL is expected.

 Chapter 19. Migrating between UNIX System Services and DCE Threads 365

366 Application Development Guide: Core Components

Part 4. Using the DCE Distributed Time Service APIs

This part of the book shows you how to use the DTS APIs in DCE applications to translate among
different time formats and representations to determine event sequencing, duration, and scheduling. In
addition, you are shown how to use external time-provider services with the DCE Time-Provider Interface.
The final chapter presents a programming example showing you how to use the DTS APIs.

Chapter 20. Introduction to the
Distributed Time Service API 369

DTS Time Representation 369
Absolute Time Representation 369
Relative Time Representation 372

Time Structures 373
The utc Structure 374
The tm Structure 375
The timespec Structure 375
The reltimespec Structure 376

DTS API Header Files 376
DTS API Routine Functions 376

Chapter 21. Time-Provider Interface . . . 379

General TPI Control Flow 379
ContactProvider Procedure 381
ServerRequestProviderTime Procedure . . 382

Time-Provider Process IDL File 382
Initializing the Time-Provider Process 386
Time-Provider Algorithm 388
DTS Synchronization Algorithm 389
Running the Time-Provider Process 389

Running a User-Written Time Provider
Program 389

Sources of Additional Information 390

Chapter 22. DTS API Routines
Programming Example 391

 Copyright IBM Corp. 1994, 2001 367

368 Application Development Guide: Core Components

Chapter 20. Introduction to the Distributed Time Service API

This chapter describes the DCE Distributed Time Service (DTS) programming routines. You can use
these routines to obtain timestamps that are based on Coordinated Universal Time (UTC). You can also
use the DTS routines to translate among different timestamp formats and perform calculations on
timestamps. Applications can use the timestamps that DTS supplies to determine event sequencing,
duration, and scheduling. Applications can call the DTS routines from server or clerk systems.

The DCE DTS routines are written in the C programming language. You should be familiar with the basic
DTS concepts before you attempt to use the Applications Programming Interface (API). The DTS
chapters of z/OS DCE Administration Guide provides conceptual information about DTS.

The DTS API routines offer the following basic functions:

� Retrieving timestamp information

� Converting from a binary timestamp and other timestamps that use different time structures

� Converting from a binary timestamp and text string representation

� Converting between UTC time and local time

� Manipulating binary timestamps

� Comparing two binary time values

� Calculating binary time values

� Obtaining time zone information.

Note: For information on the relationship between the DCE DTS and synchronization of System/390
and zSeries 900 hardware clocks, including the 9037 External Time Reference feature used by z/OS
systems, refer to z/OS DCE Administration Guide.

The following sections describe how DTS represents time, discuss the DTS time structures and the DTS
API header files, and briefly describe the DTS API routines.

DTS Time Representation

Coordinated Universal Time (UTC) is the international time standard that has largely replaced Greenwich
Mean Time (GMT). The standard is administered by the International Time Bureau (BIH), and is widely
used. DTS uses opaque binary timestamps that represent UTC for all of its internal processes. You
cannot read or disassemble a DTS binary timestamp; with the DTS API, applications can convert or
manipulate timestamps, but cannot display them directly. However, DTS also translates the binary
timestamps into text strings, which can be displayed.

Absolute Time Representation

An absolute time is a point on a time scale. For DTS, absolute times refer to the UTC time scale;
absolute time measurements are derived from DCE system clocks or external time-providers. When DTS
reads a DCE system clock time, it records the time in an opaque binary timestamp that also includes the
inaccuracy and other information. When you display an absolute time, DTS converts the time to a text
string as shown in the following display:

1990-11-21-13:30:25.785-04:00I000.082

 Copyright IBM Corp. 1994, 2001 369

DTS displays all times in a format that complies with the International Organization for Standardization
(ISO) 8601 (1988) standard.

Note: The inaccuracy portion of the time is not defined in the ISO standard. (Times that do not include
an inaccuracy are accepted.) Figure 70 explains the ISO format that generated the previous display.

Figure 70. ISO Format for Time Displays

The relative time preceded by the plus (+) or minus (-) character indicates the hours and minutes that the
calendar date and time are offset from UTC. The presence of this Time Differential Factor (TDF) in the
string also indicates that the calendar date and time are the local time of the system, not UTC. Local time
is UTC plus the TDF. The Inaccuracy designator I indicates the beginning of the inaccuracy component
associated with the time.

Although DTS displays all times in the previous format, variations to the ISO format shown in Figure 71 on
page 371 are also accepted as input for the text string conversion routines.

370 Application Development Guide: Core Components

Figure 71. Changed ISO Format acceptable as Input

The Time designator, T, separates the calendar date from the time, a , (comma), separates seconds from
fractional seconds, and the + (plus) or - (minus) character indicates the beginning of the Time Differential
Factor (TDF) or the inaccuracy component.

Examples of Valid Time Formats: The following represents July 4, 1776 17:01 GMT and an
unspecified inaccuracy (default).

1776-7-4-17:01:00

The following represents a local time of 12:01 (17:01 GMT) on July 4, 1776 with a TDF of -5 hours and an
inaccuracy of 100 seconds.

1776-7-4-12:01:00-05:00I100

Both of the following represent 12:00 GMT in the current day, month, and year with an unspecified
inaccuracy.

12:00 and T12

The following represents July 14, 1792 00:00 GMT with an unspecified inaccuracy.

1792-7-14

 Chapter 20. Introduction to the Distributed Time Service API 371

Relative Time Representation

A relative time is a discrete time interval that is usually added to, or subtracted from, another time. A
TDF associated with an absolute time is one example of a relative time. A relative time is normally used
as input for commands or system routines.

Figure 72 shows the full syntax for a relative time.

Figure 72. Full Syntax for a Relative Time

The following example shows a relative time of 21 days, 8 hours, and 30 minutes, 25 seconds with an
inaccuracy of 0.300 seconds:

21-08:30:25.000I000.300

The following example shows a negative relative time of 20.2 seconds with an unspecified inaccuracy
(default).

-20.2

The following example shows a relative time of 10 minutes, 15.1 seconds with an inaccuracy of 4
seconds:

10:15.1I4

Notice that a relative time does not use the calendar date fields, because these fields concern absolute
time. A positive relative time is unsigned; a negative relative time is preceded by a - (minus) sign. A
relative time is often subtracted from, or added to, another relative or absolute time. Relative times that
DTS uses internally are opaque binary timestamps. The DTS API offers several routines that can be used
to calculate new times using relative binary timestamps.

Representing Periods of Time

A given duration of a period of time can be represented by a data element of variable length that uses the
syntax shown in Figure 73 on page 373.

372 Application Development Guide: Core Components

P Y M W D T H M S In n n n n n n n

Period Designator

Years/Year Designator

Months/Month Designator

Weeks/Week Designator

Days/Day Designator

Inaccuracy Designator/Inaccuracy

Seconds/Second Designator

Minutes/Minute Designator

Hours/Hour Designator

Time Designator

Figure 73. Time Period Data Element Syntax

The data element contains the following parts:

� The designator P precedes the part that includes the calendar components, including the following:

Y The number of years followed by the designator

M The number of months followed by the designator

W The number of weeks followed by the designator

D The number of days followed by the designator

� The designator T precedes the part that includes the time components, including the following:

H The number of hours followed by the designator

M The number of minutes followed by the designator

S The number of seconds followed by the designator

� The designator I precedes the number of seconds of inaccuracy.

The following example represents a period of 1 year, 6 months, 15 days, 11 hours, 30 minutes, and 30
seconds and an unspecified inaccuracy:

P1Y6M15DT11H30M30S

The following example represents a period of 3 weeks and an inaccuracy of 4 seconds:

P3WI4

 Time Structures

DTS can convert between several types of binary time structures that are based on different base dates
and time unit measurements. DTS uses UTC-based time structures, and can convert other types of time
structures to its own presentation of UTC-based time. The DTS API routines are used to perform these
conversions for applications on your system.

Table 20 on page 374 lists the absolute time structures that the DTS API uses to change binary times for
applications.

 Chapter 20. Introduction to the Distributed Time Service API 373

Table 21 lists the relative time structures that the DTS API uses to change time structures for applications.

The remainder of this section explains the DTS time structures in detail.

The utc Structure

Coordinated Universal Time (UTC) is useful for measuring time across local time zones and for avoiding
the seasonal changes (summer time or daylight savings time) that can affect the local time. DTS uses
128-bit binary numbers to represent time values internally; throughout this book, these binary numbers
representing time values are referred to as binary timestamps. The DTS utc structure determines the
ordering of the bits in a binary timestamp; all binary timestamps that are based on the utc structure
contain the following information:

� The count of 100-nanosecond units since 00:00:00.00, 15 October 1582 (the date of the Gregorian
reform to the Christian calendar)

� The count of 100-nanosecond units of inaccuracy applied to the preceding item

� The Time Differential Factor (TDF)

� The DTS version number

� The DST flag.

The binary timestamps that are derived from the DTS utc structure have an opaque format. This format is
a cryptic character sequence that DTS uses and stores internally. The opaque binary timestamp is
designed for use in programs, protocols, and databases.

Note: Applications use the opaque binary timestamps when storing time values or when passing them to
DTS.

The API provides the necessary routines for converting between opaque binary timestamps and other
strings that can be displayed and read by users.

Table 20. Absolute Time Structures

Structure Time Units Base Date Approximate Range

utc 100-nanosecond 15 October 1582 A.D. 1 to A.D. 30,000

tm second 1 January 1900 A.D. 1 to A.D. 30,000

timespec nanosecond 1 January 1970 A.D. 1970 to A.D. 2038

Table 21. Relative Time Structures

Structure Time Units Approximate Range

relutc 100-nanosecond +/- 30,000 years

tm second +/- 30,000 years

reltimespec nanosecond +/- 68 years

374 Application Development Guide: Core Components

The tm Structure

The tm structure is based on the time in years, months, days, hours, minutes, and seconds since 00:00:00
GMT (Greenwich Mean Time), 1 January 1900. The tm structure is defined in the <time.h> header file.

The tm structure declaration is shown in Figure 74:

struct tm {
int tm_sec; /$ Seconds (0 - 59) $/
int tm_min; /$ Minutes (0 - 59) $/
int tm_hour; /$ Hours (0 - 23) $/
int tm_mday; /$ Day of Month (1 - 31) $/
int tm_mon; /$ Month of Year (0 - 11) $/
int tm_year; /$ Year - 1900 $/
int tm_wday; /$ Day of Week (Sunday = 0) $/
int tm_yday; /$ Day of Year (0 - 364) $/
int tm_isdst; /$ Nonzero if Daylight Savings Time $/

/$ is in effect $/
 };

Figure 74. tm Structure Declaration

Not all of the tm structure fields are used for each routine that converts between tm structures and utc
structures. (See the parameter descriptions that accompany the routines in z/OS DCE Application
Development Reference for additional information about which fields are used for specific routines.)

The timespec Structure

The timespec structure is normally used in combination with or in place of the tm structure to provide
finer resolution for binary times. The timespec structure is similar to the tm structure, but the timespec
structure specifies the number of seconds and nanoseconds since the base time of 00:00:00 GMT, 1
January 1970. You can find the structure in the <dce/utc.h>. header file.

The timespec structure declaration is shown in Figure 75:

struct timespec {

time_t tv_sec; /$ Seconds since 00:00:00 GMT, $/
/$ 1 January 1970 $/

long tv_nsec; /$ Additional nanoseconds since $/
 /$ tv_sec $/

 } timespec_t;

Figure 75. timespec Structure Declaration

 Chapter 20. Introduction to the Distributed Time Service API 375

The reltimespec Structure

The reltimespec structure represents relative time. You can find the reltimespec structure in the
<dce/utc.h> header file.

The reltimespec structure declaration is shown in Figure 76:

struct reltimespec {

long tv_sec; /$ Seconds of relative time $/
long tv_nsec; /$ Additional nanoseconds of $/

 /$ relative time $/

 } reltimespec_t;

Figure 76. reltimespec Structure Declaration

DTS API Header Files

The time.h and <dce/utc.h> header files contain the data structures, type definitions, and define
statements that are referred to by the DTS API routines. The <dce/utc.h> header file includes time.h,
and contains the timespec, reltimespec, and utc structures.

The <dce/utc.h> header file is located in /usr/include/dce.

DTS API Routine Functions

Figure 77 on page 377 categorizes the DTS portable interface routines by function.

376 Application Development Guide: Core Components

utc_anytime
utc_gmtime
utc_localtime
utc_mkanytime
utc_mkgmtime
utc_mklocaltime
utc_mkreltime
utc_reltime

utc_binreltime
utc_bintime
utc_mkbinreltime
utc_mkbintime

utc_ascanytime
utc_ascgmtime
utc_asclocaltime
utc_ascreltime
utc_mkasctime
utc_mkascreltime

To/From To/From To/From
Structures: Structures: text string:tm timespec

Converting Times ...

Retrieving Time ...

Manipulating Times ...

Obtaining Timezone
Information ...

Comparing Times ...

Calculating Times ...

utc_gettime
utc_getusertime

utc_boundtime
utc_spantime
utc_pointtime

utc_anyzone
utc_gmtzone
utc_localzone

utc_cmpintervaltime
utc_cmpmidtime

utc_abstime
utc_addtime
utc_mulftime
utc_multime
utc_subtime

Figure 77. DTS API Routines Shown by Functional Grouping

An alphabetical listing of the DTS portable interface routines and a brief description of each one follows:

utc_abstime Computes the absolute value of a binary relative timestamp.

utc_addtime Computes the sum of two binary timestamps; the timestamps can be two relative
times or a relative time and an absolute time.

utc_anytime Converts a binary timestamp into a tm structure, using the TDF information
contained in the timestamp to determine the TDF returned with the tm structure.

utc_anyzone Gets the time zone label and offset from GMT, using the TDF contained in the
input utc.

utc_ascanytime Converts a binary timestamp into a text string that represents an arbitrary time
zone.

utc_ascgmtime Converts a binary timestamp into a text string that expresses a GMT time.

 Chapter 20. Introduction to the Distributed Time Service API 377

utc_asclocaltime Converts a binary timestamp to a text string that represents a local time.

utc_ascreltime Converts a binary timestamp that expresses a relative time to its text string
representation.

utc_binreltime Converts a relative binary timestamp into two timespec structures that express
relative time and inaccuracy.

utc_bintime Converts a binary timestamp into a timespec structure.

utc_boundtime Given two UTC times, one before and one after an event, returns a single UTC
time whose inaccuracy includes the event.

utc_cmpintervaltime Compares two binary timestamps or two relative binary timestamps.

utc_cmpmidtime Compares two binary timestamps or two relative binary timestamps, ignoring
inaccuracies.

utc_gettime Returns the current system time and inaccuracy as an opaque binary timestamp.

utc_getusertime Returns the time and process-specific TDF, rather than the system-specific TDF.

utc_gmtime Converts a binary timestamp into a tm structure that expresses GMT or the
equivalent UTC.

utc_gmtzone Gets the time zone label, given utc.

utc_localtime Converts a binary timestamp into a tm structure that expresses local time.

utc_localzone Gets the time zone label and offset from GMT, given utc.

utc_mkanytime Converts a tm structure and TDF (expressing the time in an arbitrary time zone)
into a binary timestamp.

utc_mkascreltime Converts a null-terminated character string, which represents a relative
timestamp, to a binary timestamp.

utc_mkasctime Converts a null-terminated character string, which represents an absolute
timestamp, to a binary timestamp.

utc_mkbinreltime Converts a timespec structure expressing a relative time to a binary timestamp.

utc_mkbintime Converts a timespec structure into a binary timestamp.

utc_mkgmtime Converts a tm structure that expresses GMT or UTC to a binary timestamp.

utc_mklocaltime Converts a tm structure that expresses local time to a binary timestamp.

utc_mkreltime Converts a tm structure that expresses relative time to a binary timestamp.

utc_mulftime Multiplies a relative binary timestamp by a floating-point value.

utc_multime Multiplies a relative binary timestamp by an integer factor.

utc_pointtime Converts a binary timestamp to three binary timestamps that represent the
earliest, most likely, and latest time.

utc_reltime Converts a binary timestamp that expresses a relative time into a tm structure.

utc_spantime Given two (possibly unordered) binary timestamps, returns a single UTC time
interval whose inaccuracy spans the two input timestamps.

utc_subtime Computes the difference between two binary timestamps that express either an
absolute time and a relative time, two relative times, or two absolute times.

378 Application Development Guide: Core Components

 Chapter 21. Time-Provider Interface

This chapter describes the Time-Provider Interface (TPI) for DCE Distributed Time Service software. It
provides a brief overview of the TPI, explains how to use external time-providers with DTS, and describes
the data structures and message protocols that make up the TPI.

Coordinated Universal Time (UTC) is widely used and is disseminated throughout the world by various
standards organizations. Several manufacturers supply devices that can acquire UTC time values through
radio, satellite, or telephone. These devices can then provide standardized time values to computer
systems. Normally, one device is connected to a computer system; the device runs a process that
interprets signals and translates them to time values, which can either be displayed or be provided to the
server process running on the connected system.

To synchronize its system clock with UTC using an external time-provider device, a DTS server needs a
software interface to the device to periodically obtain UTC. In effect, this interface serves as an
intermediary between the DTS server and external time-provider processes. The DTS server requires the
interface to obtain UTC time values and to determine the associated inaccuracy of each value. The
interface between the DTS server process and the time-provider process is called the Time-Provider
Interface (TPI).

The remainder of this chapter describes the TPI and its attendant processes in detail. The following
section describes the control flow between the DTS server process, the TPI, and the Time-Provider
process.

General TPI Control Flow

When you use a time-provider with a system running DTS, the external time-provider is an independent
process that communicates with a DTS server process through remote procedure calls (RPCs). A remote
procedure call is a synchronous request and response between a main calling program and a procedure
running in another process. RPC applications are based on the client/server model. In this context, the
following processes act as the client and server components in the RPC-based application:

� The DTS daemon is the client.

� The Time-Provider process (TP process) is the server.

Both the RPC-client (DTS daemon) and the server (TP process) must be running on the same system.

Applications running on RPC communicate through an interface that is well known to both the client and
the server. The RPC interface consists of a set of procedures, data types, and constants that describe
how a client can call a routine running on the server. The server offers the interface to the clients through
the Interface Definition Language (IDL) file.

The IDL file defines the syntax for an operation, including the following:

� The name of the operation

� The data type of the value that the operation returns (if any)

� The order and data types of the operation’s parameters (if any).

The TP process offers two procedures that DTS calls to obtain time values. These procedures are
ContactProvider and ServerRequestProviderTime.

 Copyright IBM Corp. 1994, 2001 379

At each system synchronization, DTS makes the initial remote procedure call (ContactProvider) to a TP
process that is assumed to be running on the same node.

If the TP process is active, the RPC call returns the following arguments:

� A successful communication status message

� A control message that DTS uses for further processing.

If the TP process is not active, the RPC call either returns a communication status failure or a time out
occurs. DTS then synchronizes with other servers instead of with the external time provider.

If the initial call (ContactProvider) is successful, DTS makes a second call
(ServerRequestProviderTime) to retrieve the timestamps from the external time provider. The control
message sent by the TP process in the first RPC call specifies the length of time DTS waits for the RPC
call to be completed. The TP process returns the following parameters in the
ServerRequestProviderTime procedure call:

� A communication status message

� A time structure that contains timestamps collected from the external time-provider. (DTS then uses
these timestamps to complete its synchronization.)

Figure 78 illustrates the RPC calling sequence between DTS and the TP process. Solid black lines
represent the path followed by input parameters; gray lines represent the path followed by output
parameters and return values.

Figure 78. DTS Time-Provider RPC Calling Sequence

The following steps describe the process shown in Figure 78:

380 Application Development Guide: Core Components

�1� At synchronization time, DTS calls the ContactProvider remote procedure. Input parameters are
passed to the TP client stub, sent to the RPC runtime library, and then passed to the TP server stub.

�2� The TP process receives the call and runs the ContactProvider procedure.

�3� The procedure ends and returns the results through the TP server stub, the RPC runtime library, and
the TP client stub.

�4� The procedure ends in the DTS call, where the returned parameters are examined.

�5� DTS then calls the ServerRequestProviderTime remote procedure. Input parameters are passed to
the TP client stub, sent to the RPC runtime library, and then passed to the TP server stub.

�6� The TP process receives the call and runs the ServerRequestProviderTime procedure.

�7� The procedure ends and returns the results through the TP server stub, the RPC runtime library, and
the TP client stub.

�8� The DTS RPC ends and the timestamps are returned as an output parameter. DTS then
synchronizes using the timestamps returned by the external time provider.

The following section describes the remote procedures that are exported by the TP process during the
previous sequence.

 ContactProvider Procedure

ContactProvider is the first routine called by DTS. The routine is called to verify that the TP process is
running and to obtain a control message that DTS uses for subsequent communication with the TP
process and for synchronization after it receives the timestamps. The parameters passed in the
ContactProvider procedure call consist of the following elements:

Binding Handle An input parameter that establishes the relationship between DTS and the TP
process. A binding handle enables the client (DTS) to recognize and find a
server (the TP process) that offers the same interface.

Control Message An output parameter that contains information used by DTS for subsequent
processing. The control message consists of the following elements:

TPstatus One of the following values:

 � K_TPI_SUCCESS

 � K_TPI_FAILURE

nextPoll A time value that tells DTS when to contact the TP process
again. For example, once a day through dial-up, radio, or
satellite.

timeout A value that tells DTS how long to wait for a response from the
TP process.

noClockSet A value that specifies whether or not DTS is allowed to alter the
system clock. If noClockSet is specified as 0x01 (True), DTS
does not adjust or set the clock during the current
synchronization. This option is useful for systems whose system
clock is known to be accurate (such as systems equipped with
special hardware) or systems that are managed by some other
time service (such as Network Time Protocol (NTP)), but which
still want to function as a DTS server.

 Chapter 21. Time-Provider Interface 381

Communication Status An output parameter that contains a status code returned by the DCE RPC
runtime library. The status rpc_s_ok is returned if the TP process is
successfully contacted.

 ServerRequestProviderTime Procedure

After the TP process is successfully contacted, DTS makes the ServerRequestProviderTime procedure
call to obtain the timestamps from the external time-provider. The parameters passed in the
ServerRequestProviderTime procedure call consist of the following elements:

Binding Handle An input parameter that establishes the relationship between DTS and the TP
process. A binding handle enables the client (DTS) to recognize and find a
server (the TP process) that offers the same interface.

Time Response Message An output parameter that contains a TP process status value
(K_TPI_SUCCESS or K_TPI_FAILURE), a count of the timestamps that are
returned, and the timestamps obtained from the external time-provider. The
timestamp count is an integer in the range K_MIN_TIMESTAMPS to
K_MAX_TIMESTAMPS. Each timestamp consists of three utc time values:

� The system clock time immediately before the TP process polls the
external time source. (The TP process normally obtains the time from the
utc_gettime() DTS API routine.)

� The time value returned to the TP process by the external time source.

� The system clock time immediately after the external time source is read.
(The TP process obtains the time from the utc_gettime() DTS API
routine.)

Communication Status An output parameter that contains a status code returned by the DCE RPC
runtime library. The status rpc_s_ok is returned if the TP process is
successfully contacted.

Time-Provider Process IDL File

An RPC can only work if an interface definition that clearly defines operation signatures exists. Operation
signatures define the syntax for an operation, including its name and parameters (input and output) that
are passed as part of the procedure call. The TP process interface exports the two operation signatures
that have been previously explained. You can find this interface in the file dce/dtsprovider.idl. When
you build the TP process application, you must compile this file using the Interface Definition Language
(IDL) compiler. The IDL compiler creates three files:

� dtsprovider.h (header file)

� dtsprovider_sstub.c (server stub file)

� dtsprovider_cstub.c (client stub file)

The Time-Provider program must be compiled along with the server stub code and then linked together.
The TP program must also include the stub-generated file, dtsprovider.h. The sample code contained in
Figure 79 on page 383 shows the structure of this interface.

382 Application Development Guide: Core Components

/$
 $ Time Service Provider Interface
 $
 $ This interface is defined through the Network Interface
 $ Definition Language (NIDL).
 $/

[uuid (bfca1238-628a-11c9-a073-08002b0dea7a),
 version(1)
]

interface time_provider
{

 import "dce/nbase.idl";
 import "dce/utctypes.idl";

/$
 $ Minimum and Maximum number of times to read time source at each
 $ synchronization
 $/

const long K_MIN_TIMESTAMPS = 1;
const long K_MAX_TIMESTAMPS = 6;

/$
 $ Message status field return values
 $/
const long K_TPI_FAILURE = 0;
const long K_TPI_SUCCESS = 1;

/$
 $ This structure contains one reading of the TP wrapped in the
 $ timestamps of the local clock.
 $/

typedef struct TimeResponseType
{

utc_t beforeTime; /$ local clk just before getting UTC $/
utc_t TPtime; /$ source UTC; inacc also supplied $/
utc_t afterTime; /$ local clk just after getting UTC $/

} TimeResponseType;

Figure 79 (Part 1 of 4). Time Service Provider Interface

 Chapter 21. Time-Provider Interface 383

/$
 $ Time-provider control message. This structure is returned in
 $ response to a time service request. The status field returns TP
 $ success or failure. The nextPoll gives the client the time at
 $ which to poll the TP next. The timeout value tells the client how
 $ long to wait for a time response from the TP. The noClockSet will
 $ tell the client whether or not it is allowed to alter the system
 $ clock after a synchronization with the TP.
 $/

typedef struct TPctlMsg
{
 unsigned long status;
 unsigned long nextPoll;
 unsigned long timeout;
 unsigned long noClockSet;
} TPctlMsg;

/$ TP timestamp message. The actual time-provider synchronization
 $ data. The status is the result of the operation (success or
 $ failure). The timeStampCount parameter returns the number of
 $ timestamps being returned in this message. The timeStampList is
 $ the set of timestamps being returned from the TP.
 $/

typedef struct TPtimeMsg
{
 unsigned long status;
 unsigned long timeStampCount;
 TimeResponseType timeStampList[K_MAX_TIMESTAMPS];

} TPtimeMsg;

Figure 79 (Part 2 of 4). Time Service Provider Interface

384 Application Development Guide: Core Components

/$
 $ The Time-Provider Interface structures are described here.
 $ There are two types of response messages from the TP:
 $ control message and data message.
 $
 $ <<<< TPI CONTROL MESSAGE >>>>
 $
 $ 31 0
 $ +--+
 $ | Time-Provider Status |
 $ +--+
 $ | Next Poll Delta |
 $ +--+
 $ | Message Time Out |
 $ +--+
 $ | NoSet Flag |
 $ +--+
 $
 $
 $ <<<< a single timestamp >>>>
 $
 $ 128 0
 $ +--+
 $ | Before Time |
 $ +--+
 $ | TP Time |
 $ +--+
 $ | After Time |
 $ +--+
 $
 $
 $ <<<< TPI DATA MESSAGE >>>>
 $
 $ 31 0
 $ +--+
 $ | Time-Provider Status |
 $ +--+
 $ | Timestamp Count |
 $ +--+
 $ | |
 $ | <timestamp one> |
 $ | |
 $ +--+
 $ | . |
 $ | . |
 $ | . |
 $ | . |
 $ | . |
 $ +--+
 $ | |
 $ | <timestamp K_MAX_TIMESTAMPS> |
 $ | |
 $ +--+
 $

Figure 79 (Part 3 of 4). Time Service Provider Interface

 Chapter 21. Time-Provider Interface 385

 $/
/$
 $ The RPC-based Time-Provider Program (TPP) interfaces are defined
 $ here. These calls are run by a Time Service daemon running as
 $ a server (in this case it makes an RPC client call to the TPP server).
 $/

/$
 $ CONTACT_PROVIDER
 $
 $ Send initial contact message to the TPP. The TPP server
 $ responds with a control message.
 $/

void ContactProvider
 (
 [in] handle_t bind_h,
 [out] TPctlMsg $ctrlRespMsg,
 [out] error_status_t $comStatus
);

/$
 $ SERVER_REQUEST_PROVIDER_TIME
 $
 $ The client sends a request to the TPP for times.
 $ The TPP server responds with an array of timestamps
 $ obtained by querying the Time-Provider hardware that it polls.
 $/

void ServerRequestProviderTime
 (
 [in] handle_t bind_h,
 [out] TPtimeMsg $timesRspMsg,
 [out] error_status_t $comStatus
);

}

Figure 79 (Part 4 of 4). Time Service Provider Interface

Initializing the Time-Provider Process

Initializing the RPC-based TP process prepares it to receive remote procedure calls from a DTS daemon
requesting the timestamps. The following steps are involved:

1. Include the header file (provider.h) that is created by compiling dce/provider.idl, which contains the
interface definition.

2. Register the interface with the DCE RPC runtime.

3. Select one or more protocol sequences that are compatible with both the interface and the runtime
library. It is recommended that the TP process application selects all protocol sequences available on
the system. Available protocol sequences are obtained by calling an RPC API routine, described in
the example that follows. This ensures that transport-independence is maintained in RPC
applications.

4. Register the TP process with the endpoint mapper service (dced) running on the system. This makes
the TP process available to the DTS daemon.

386 Application Development Guide: Core Components

5. Obtain the name of the machine’s principal and then register an authentication service to use with
authenticated RPCs coming from the DTS daemon. Note that DTS and the Time Provider program
are presumed to be running in an authenticated environment.

6. Listen for remote procedure calls.

The example in Figure 80 illustrates these steps, including the sequence of calls needed.

 /$
$ Register the TP server interface with the RPC runtime.
$ The interface specification time_provider_v1_0_ifspec
$ is obtained from the generated header file dtsprovider.h
$ The entry point vector is normally defined at the top of
$ the TP source program similar to this:

 $
$ globaldef time_provider_v1_0_epv_t time_provider_epv =

 $ {
 $ ContactProvider,
 $ ServerRequestProviderTime
 $ };
 $
 $/
 rpc_server_register_if (time_provider_v1_0_s_ifspec,
 NULL,
 (rpc_mgr_epv_t) &time_provider_epv,
 &RPCstatus);

 /$
$ This call tells the DCE RPC runtime to listen for remote
$ procedure calls using all supported protocol sequences.
$ To listen for a specific protocol sequence, use the
$ rpc_server_use_protreq call.

 $/

 rpc_server_use_all_protseqs (max_calls,
 &RPCstatus);

 /$
$ This routine is called to obtain a vector of binding handles
$ that were established with registration of protocol sequences.

 $/
 rpc_server_inq_bindings (&bind_vector,
 &RPCstatus);

 /$
$ This routine adds the address information of the binding
$ handle for the TP server to the endpoint mapper database.

 $/

 rpc_ep_register (time_provider_v1_0_s_ifspec,
 bind_vector,
 NULL,
 "Time Provider",
 &RPCstatus);

Figure 80 (Part 1 of 2). Initializing the Time-Provider Process

 Chapter 21. Time-Provider Interface 387

 /$
$ Obtain the name of the machine’s principal and register an
$ authentication service to use for authenticated remote procedure
$ calls coming from the time service daemon.

 $/

 dce_cf_prin_name_from_host (NULL,
 &machinePrincipalName,
 &status);

 rpc_server_register_auth_info (machinePrincipalName,
 rpc_c_authn_dce_private,
 NULL,
 NULL,
 &RPCstatus);

 /$
$ This routine is called to listen for remote procedure calls
$ send by the DTS client. The possible RPC calls coming from
$ the DTS client are ContactProvider and ServerRequestProviderTime.

 $/

 rpc_server_listen (max_calls,
 &RPCstatus);

Figure 80 (Part 2 of 2). Initializing the Time-Provider Process

 Time-Provider Algorithm

The time-provider algorithm assumes that the two RPCs will come in the following order: ContactProvider
followed by ServerRequestProviderTime. The algorithm to create a generic time-provider follows:

1. Initialize the TP process, as previously described. Listen for RPC calls.

2. If the ContactProvider procedure is started, perform the following steps:

a. Initialize the control message to the appropriate values (status value to K_TPI_SUCCESS;
nextPoll, timeout, and noClockSet to valid integer values).

b. Set the communication status output parameter to rpc_s_ok.

c. Return from the procedure call. (The DCE RPC runtime returns the values to DTS.)

3. If the ServerRequestProviderTime procedure is run, perform the following steps:

a. Initialize the timestamp count to the appropriate number.

b. Use the utc_gettime() DTS API routine to read the system time.

c. Poll the external time source and read a UTC value. Use the utc_gmtime() routine to convert the
UTC time value to a binary timestamp.

d. Use the utc_gettime() routine to read the system time.

e. Repeat steps b, c, and d the number of times specified by the values of K_MIN_TIMESTAMPS
and K_MAX_TIMESTAMPS.

f. If steps b, c, or d return erroneous data, initialize the TP process status field (TPstatus) of the data
message to K_TPI_FAILURE; otherwise, initialize the data message timestamps.

g. Set the communication status output parameter to rpc_s_ok.

h. Return from the procedure call. (The DCE RPC runtime sends the values back to DTS.)

388 Application Development Guide: Core Components

4. The TP process continues listening for RPC calls.

DTS Synchronization Algorithm

DTS performs the following steps to synchronize with an external time-provider:

1. At startup time, create the binding handle for the Time-Provider interface. The binding handle is
obtained from the list of available protocol sequences on the system.

2. At synchronization time, make the remote procedure call ContactProvider, assuming that a TP
process is running on the system. If the procedure call fails, examine the RPC communication status,
checking the availability of the server. If the server is unavailable, synchronize with peer servers;
otherwise continue.

3. Wait for the procedure call to return the control message in the output parameter. If it does not return
within the specified LAN time out interval, synchronize with peer servers. Otherwise go to step 4.

4. If the procedure call returned successfully (communication status is rpc_s_ok), read the data in the
control message.

5. Make the RPC ServerRequestProviderTime to obtain the timestamps from the external time-provider.
If the procedure does not return within the elapsed time specified by the control message (timeout),
synchronize with peer servers. Schedule the next synchronization based on the applicable DTS
management parameters, ignoring nextPoll.

6. If the procedure returns successfully, verify that the TP process status is K_TPI_SUCCESS.
Otherwise synchronize with peer servers and schedule the next synchronization.

7. Extract the timestamps from the data message and synchronize using the timestamps.

8. Schedule the next synchronization time by adding the value of nextPoll seconds to the current time.
At the next synchronization, go to step 2.

Note: Application developers do not have to perform these steps; DTS performs these steps internally
during synchronization with an external time-provider.

Running the Time-Provider Process

Both the TP process and the DTS daemon must run on the same system. The TP process must be
started up under the login context of the machine’s principal, which has authenticated user privileges. The
DTS daemon and the TP process are started independently. However, before starting the TP process,
ensure that the endpoint mapper daemon (dced) is running on the system. If it is not running, start it.
The TP process can always exit without affecting the DTS daemon. DTS dynamically reestablishes
communications with the TP process when it wants to synchronize.

Running a User-Written Time Provider Program

To run a time provider that you have written in the DCEKERN address space, do the following:

1. Change the name of the time provider program name in the /opt/dcelocal/etc/euvpdcf file to your
time provider program name.

2. Change the parameters to your time provider program if required.
3. Alter the DCEKERN cataloged procedure so that the your time provider program can be run.

Before running your time provider program in the DCEKERN address space, ensure that it is fully tested
and of production quality. Any problems with your time provider may impact the operation of the
DCEKERN address space. Note that you can run your time provider program outside the DCEKERN

 Chapter 21. Time-Provider Interface 389

address space the same way as any other DCE application. It must run using the authorized id to
machine principal.

Note: The status of user built time provider programs will be reported as unknown when using the TSO
MODIFY command to check the status.

Sources of Additional Information

Refer to the following for additional information:

� Look in the examples/dts file for examples of time-provider programs that you can use with several
different types of external time-provider devices.

� See z/OS DCE Administration Guide for commercial sources of external time providers.

� See z/OS DCE Application Development Reference for detailed information about the RPC API and
DTS API routines.

390 Application Development Guide: Core Components

Chapter 22. DTS API Routines Programming Example

This chapter contains a C programming example showing a practical application of the DTS API
programming routines. The program performs the following actions:

� Prompts the user to enter two sets of time coordinates corresponding to the timestamps of two events.

� Stores those coordinates in a tm structure.

� Converts the tm structure to a utc structure.

� Prints out the utc structure in ISO text format.

� Determines which event occurred first.

� Determines if Event 1 may have caused Event 2 by comparing the intervals.

 Copyright IBM Corp. 1994, 2001 391

#include <time.h> /$ time data structures $/
#include <dce/utc.h> /$ utc structure definitions $/

void ReadTime();
void PrintTime();

/$
 $ This program requests user input about events, then prints out
 $ information about those events.
 $/

main()
{

struct utc event1,event2;
enum utc_cmptype relation;

 /$
$ Read in the two events.

 $/

 ReadTime(&event1);
 ReadTime(&event2);

 /$
$ Print out the two events.

 $/

printf("The first event is : ");
 PrintTime(&event1);

printf("\nThe second event is : ");
 PrintTime(&event2);
 printf("\n");

 /$
$ Determine which event occurred first.

 $/

 if (utc_cmpmidtime(&relation,&event1,&event2))
 exit(1);

switch(relation)
 {
 case utc_lessThan:

printf("comparing midpoints: Event1 < Event2\n");
 break;
 case utc_greaterThan:

printf("comparing midpoints: Event1 > Event2\n");
 break;
 case utc_equalTo:

printf("comparing midpoints: Event1 == Event2\n");
 break;
 default:
 exit(1);
 break;
 }

Figure 81 (Part 1 of 3). An Example of a DTS Program

392 Application Development Guide: Core Components

 /$
$ Could Event 1 have caused Event 2? Compare the intervals.

 $/

 if (utc_cmpintervaltime(&relation,&event1,&event2))
 exit(1);

switch(relation)
 {
 case utc_lessThan:

printf("comparing intervals: Event1 < Event2\n");
 break;
 case utc_greaterThan:

printf("comparing intervals: Event1 > Event2\n");
 break;
 case utc_equalTo:

printf("comparing intervals: Event1 == Event2\n");
 break;
 case utc_indeterminate:

printf("comparing intervals: Event1 ? Event2\n");
 default:
 exit(1);
 break;
 }

}

/$
 $ Print out a utc structure in ISO text format.
 $/

void PrintTime(utcTime)
struct utc $utcTime;
{

 char string[50];

 /$
$ Break up the time string.

 $/

if (utc_ascgmtime(string, /$ Out: Converted time $/
 50, /$ In: String length $/

utcTime)) /$ In: Time to convert $/
 exit(1);
 printf("%s\n",string);

}

/$
 $ Prompt the user to enter time coordinates. Store the coordinates
 $ in a tm structure and then convert the tm structure to a utc structure.
 $/

Figure 81 (Part 2 of 3). An Example of a DTS Program

 Chapter 22. DTS API Routines Programming Example 393

void ReadTime(utcTime)
struct utc $utcTime;
{
struct tm tmTime,tmInacc;

 (void)memset((void $)&tmTime, 0, sizeof(tmTime));
(void)memset((void $)&tmInacc, 0, sizeof(tmInacc));

 (void)printf("Year? ");
 (void)scanf("%d",&tmTime.tm_year);

tmTime.tm_year -= 1900;
 (void)printf("Month? ");
 (void)scanf("%d",&tmTime.tm_mon);

tmTime.tm_mon -= 1;
 (void)printf("Day? ");
 (void)scanf("%d",&tmTime.tm_mday);
 (void)printf("Hour? ");
 (void)scanf("%d",&tmTime.tm_hour);
 (void)printf("Minute? ");
 (void)scanf("%d",&tmTime.tm_min);

(void)printf("Inacc Secs? ");
 (void)scanf("%d",&tmInacc.tm_sec);

 if (utc_mkanytime(utcTime,
 &tmTime,
 (long)0,
 &tmInacc,
 (long)0,
 (long)0))
 exit(1);

}

Figure 81 (Part 3 of 3). An Example of a DTS Program

394 Application Development Guide: Core Components

Part 5. Using the DCE Security APIs

This part of the book provides details on the DCE Security services and facilities, and describes the main
Security interfaces. Walkthroughs of Authentication and Authorization are presented to enhance your
understanding of the DCE security concepts. You are shown how to use the DCE Security APIs, GSSAPI
credentials, and the DCE Audit Service and Audit API functions.

Chapter 23. Overview of Security 399
Purpose and Organization of Security

Section . 399
About Authenticated RPC 400
About the Generic Security Service API . . . 400
What Authentication and Authorization Mean . 400
RACF Authorization using RACF-DCE

Interoperability 401
Authentication, Authorization, and Data

Protection in Brief 401
Summary of DCE Security Services and

Facilities . 403
Security Services 403
Security Facilities 404
Interfaces to the Login Facility 405
Interfaces to the Extended Registry

Attribute Facility 405
Interfaces to the Extended Privilege

Attribute Facility 405
Interfaces to the Key Management Facility 405
Interfaces to the ID Map Facility 405
Interfaces to the Access Control List

Facility . 406
Interfaces to the Password Management

Facility . 406
Interfaces to RACF-DCE Interoperability . 406

Relationships Between the Security Service
and DCE Applications 407

DTS, the Cell Namespace, and Security . . . 407
Time and Security 407
The Cell Namespace and the Security

Namespace 408
Using DCE Three Different Ways 408

Using the DCE Security Services DLL . . 409

Chapter 24. Authentication 413
Background Concepts 413

Principals 413
Cells and Realms 414
The Shared-Secret Authentication Protocol 414
Protection Levels 414
Data Encryption Mechanisms 415

A Walkthrough of the Shared Secret
Authentication Protocol 415

A Walkthrough of User Authentication . . . 416

A Walkthrough of DCE Application
Authentication 425

A Walkthrough of DCE Application
Authentication Using GSSAPI 430

Intercell Authentication 433
Authentication Service Surrogates 433
Intercell Authentication by Trust Peers . . 434

Chapter 25. Authorization 435
DCE Authorization 435

Object Types and ACL Types 435
ACL Manager Types 436
ACLs . 437
ACL Entries 437
Access Checking 440
Examples of ACL Checking 444

Name-Based Authorization 446

Chapter 26. GSSAPI Credentials 447
Using Default Credentials 447

Initiate a Security Context 448
Accept a Security Context 448

Creating New Credential Handles 448
Initiating a Security Context with New

Credential Handles 448
Accepting a Security Context Using New

Credential Handles 448
Delegating Credentials 449

Initiating a Security Context to Delegate
Credentials 449

Accepting a Security Context with
Delegated Credentials 449

Chapter 27. The Extended Privilege
Attribute Application Program Interface 451

Identities of Principals in Delegation 451
ACL Entry Types for Delegation 452
ACL Checking for Delegation 453

Calls to Establish Delegation Chains 453
Types of Delegation 453
Target and Delegate Restrictions 454
Optional and Required Restrictions 455
Compatibility between z/OS and

Pre-OS/390 Servers and Clients 455
Calls to Extract Privilege Attribute Information 456

 Copyright IBM Corp. 1994, 2001 395

Opaque Handles for sec_cred Calls 456
Disabling Delegation 457
Setting Extended Attributes 457

Chapter 28. The Registry Application
Program Interface 459

Binding to a Registry Site 459
The Registry Database 460

Creating and Maintaining PGO Items . . . 460
Creating and Maintaining Accounts 461
Registry Properties and Policies 462
Routines to Return UNIX Structures 463
Miscellaneous Registry Routines 463

Chapter 29. The Extended Attribute
Application Program Interfaces 465

Extended Registry Attribute API 465
Attribute Schema 466
Attribute Types and Instances 466
Attribute Type Components 466

Calls to Manipulate Schema Entries 471
The sec_attr_schema_entry_t Data Type . 471
Creating and Managing Schema Entries . 472
Reading Schema Entries 474
Reading the ACL Manager Types 475

Calls to Manipulate Attribute Instances 475
The sec_attr_t Data Type 476
Creating and Managing Attribute Instances 476
Reading Attribute Instances 477
Searching for Attribute Instances 479

The Attribute Trigger Facility 481
Defining an Attribute Trigger/Attribute

Association 481
Trigger Binding 482
Access Control on Attributes with Triggers 483

Calls that Access Attribute Triggers 484
Using sec_attr_trig_cursor_t with

sec_attr_trig_query() 484
sec_rgy_attr_trig_query() and

sec_rgy_attr_trig_update() 484
priv_attr_triq_query() 484

The DCE Attribute API 485
Macros to Aid Extended Attribute

Programming 486
Macros to Access Binding Fields 486
Macros to Access Schema Entry Fields . . 487
Macros to Access Attribute Instance Fields 488
Binding Data Structure Size Calculation

Macros 490
Schema Entry Data Structure Size

Calculation Macros 490
Attribute Instance Data Structure Size

Calculation Macros 490
Binding Semantic Check Macros 491

Schema Entry Semantic Check Macros . . 492
Attribute Instance Semantic Check Macros 492
Schema Entry Flag Set and Unset Macros 492
Schema Trigger Entry Flag Check Macros 493

Utilities to Use with Extended Attribute Calls . 493

Chapter 30. The Login Application
Program Interface 495

Establishing Login Contexts 495
Validating the Login Context and Certifying

the Security Server 496
Validating the Login Context Without

Certifying the Security Server 496
Example of a System Login Program . . . 497
Establishing the Initial Context 497

Handling Expired Certificates of Identity . . . 497
Importing and Exporting Contexts 498
Changing a Groupset 499
Miscellaneous Login API Functions 499

Getting the Current Context 500
Getting Information from a Login Context . 500
Getting Group Information for Local

Process Identities 500
Releasing and Deleting a Context 500

Chapter 31. The Key Management
Application Program Interface 501

Retrieving a Key 501
Changing a Key 502
Automatic Key Management 502
Deleting Expired Keys 503
Deleting a Compromised Key 503

Chapter 32. The Access Control List
Application Program Interfaces 505

The Client-Side API 506
Binding to an ACL 506
ACL Editors and Browsers 506
Testing Access 507
Errors . 507

Guidelines for Constructing ACL Managers . 507
Extended Naming of Protected Objects . . . 508

The ACL Network Interface 509
The ACL Library 509

Chapter 33. The ID Map Application
Program Interface 515

Chapter 34. DCE Audit Service 517
Features of the DCE Audit Service 517
Components of DCE Audit Service 517
DCE Audit Service Concepts 517

Audit Clients 518
Code Point 518

396 Application Development Guide: Core Components

Events . 518
Event Class 520
Event Class Number 520
Filters . 520
Audit Records 521
Audit Trail File 521

Administration and Programming in DCE
Audit . 521

Programmer Tasks 522
Administrator Tasks 523

Chapter 35. Using the Audit API Routines 525
Adding Audit Capability to Distributed

Applications 525
Opening the Audit Trail 525
Initializing the Audit Records 526
Adding Event-Specific Information 527
Committing an Audit Record 527
Closing an Audit Trail File 528

Writing Audit Trail Analysis and Examination
Tools . 528

Opening an Audit Trail File for Reading . . 528
Reading the Desired Audit Records into a

Buffer . 528
Transforming the Audit Record into

Readable Text 529
Discarding the Audit Record 530
Closing the Audit Trail File 530

Chapter 36. The Password Management
Application Programming Interfaces . . 531

The Client-Side API 532
Example of a Password Change Program . 532

The Password Management Network
Interface . 533

Chapter 37. RACF-DCE Interoperability
Application Programming Interfaces . . 535

DCE APIs . 535
z/OS APIs . 535

 Part 5. Using the DCE Security APIs 397

398 Application Development Guide: Core Components

Chapter 23. Overview of Security

This chapter provides a brief overview of the two security services available in DCE:

� DCE Security Service

� Generic Security Service (GSS)

Refer to z/OS DCE Application Development Reference for detailed information on the application program
interfaces (APIs) discussed in this section.

Support for Kerberos V5R1 is provided. This support is in the form of an API to allow for cross-platform
interoperability with non-DCE systems. This support assumes that you are already familiar with Kerberos
and that you are porting an existing application that uses Kerberos to z/OS. For new applications, use the
DCE API instead.

All details of the Kerberos support are found in other DCE books. For more information, see:

� z/OS DCE Configuring and Getting Started for Kerberos configuration files
� z/OS DCE Administration Guide for Kerberos environment variables
� z/OS DCE Application Development Reference for Kerberos-related APIs

Purpose and Organization of Security Section

The discussions in the Security section explain the major features of DCE Security, so you can decide
what you require to ensure that your DCE application is sufficiently secure. Many security features are
built into DCE, so in many cases you need to do little or nothing to secure your DCE application.
Furthermore, you do not need to understand all the details of DCE Security to use it effectively.

Following the overview of DCE Security in this chapter are two chapters that contain conceptual
discussions of authentication and authorization. The remaining chapters in this part discuss:

 � GSSAPI Credentials

� Extended Privilege Attribute API

 � Registry API

� Extended Attribute API

 � Login API

� Key Management API

� Access Control List API

� ID Map API

� DCE Audit Service

� Using the Audit API functions

� Password Management API

 � RACF-DCE Interoperability

 Copyright IBM Corp. 1994, 2001 399

About Authenticated RPC

Perhaps the most important API for ensuring secure DCE applications is the Authenticated RPC facility. It
enables distributed applications to participate in authenticated network communications. Applications
using the Authenticated RPC routines may use the authentication protocol and the authorization
protocol, and set various protocol-independent protection levels for communicating with remote
principals. Principals may refer to users, servers and computers.

Using Authenticated RPC is explained in “Authenticated RPC Routines” on page 94. This section
contains conceptual information that assists in understanding the authentication and authorization
protocols that Authenticated RPC routines use. For a greater understanding of Authenticated RPC, read
Chapter 24, “Authentication” on page 413 and Chapter 25, “Authorization” on page 435.

About the Generic Security Service API

The Generic Security Service (GSS) provides an alternate way of providing DCE security to distributed
applications that handle network communications by themselves. With GSSAPI, you can include
established applications in DCE, and ensure the security and integrity of the applications and their data.
In peer-to-peer communications, the application that establishes the secure connection is the context
initiator or simply initiator. The context initiator is like a DCE RPC client. The application that accepts the
secure connection is the context acceptor or simply acceptor. The context acceptor is like a DCE RPC
server.

The GSS available with DCE includes two sets of routines:

� Standard GSSAPI routines. These routines have the prefix gss_.

� OSF DCE extensions to the GSSAPI routines. These are additional routines that enable an
application to use DCE security services. These routines have the prefix gssdce_.

The chapters that follow provide information about how the GSSAPI routines use the authentication and
authorization protocols. Chapter 26, “GSSAPI Credentials” on page 447 provides information about GSS
credentials, which are used to establish an application's identity in DCE.

What Authentication and Authorization Mean

There are two questions that DCE Security can answer for a principal about another principal with which it
may want to communicate:

� Is this principal really what it says it is?

� Does it have the right to do what it wants to do?

Depending on the answers to these questions, a security-sensitive principal takes different courses of
action with respect to a principal with which it communicates.

To authenticate a principal means to verify that the principal represents its true identity. To authorize a
principal means to grant permission for the principal to perform an operation. The concepts of
authentication and authorization are intertwined. A principal’s authorization is explicitly linked to its
identity. Additionally, there is the possibility that authorization data concerning an authenticated principal
can be falsified. This raises the question:

Should the authorization data concerning this principal be believed?

400 Application Development Guide: Core Components

DCE Security can answer this question for a concerned principal whether the principal acts as the identity
of an application server or a client.

The specific mechanisms by which authentication and authorization are performed are called
authentication and authorization protocols. DCE Security supports at least one of each. However, RPC
documentation (see “Authenticated RPC Routines” on page 94) refers to authentication and authorization
protocols as services.

The GSSAPI combines authentication and authorization under a single security mechanism type. The
security mechanism provides applications a choice of either authenticated Kerberos security or
authenticated PAC authorization under DCE Security.

RACF Authorization using RACF-DCE Interoperability

A DCE application server can use DCE security services for controlling access to resources owned by the
application server. As an alternative to this method, when developing applications you may want to use
the authorization and auditing capabilities provided by Resource Access Control Facility (RACF) for the
server portion of a client-server application that resides on z/OS. With z/OS DCE, this is possible using
the information created when z/OS users are enrolled in the RACF-DCE interoperability feature. For
information on enrolling in and using RACF-DCE interoperability, see z/OS DCE Administration Guide.
For more information on using RACF-DCE interoperability, see Chapter 37, “RACF-DCE Interoperability
Application Programming Interfaces” on page 535.

Authentication, Authorization, and Data Protection in Brief

When one principal talks to another in a distributed computing environment, there is a risk that
communications between the two will provide a means for compromising the security of one or the other.
For example, a client may attack a server, or a server may set a trap for clients. An attack is most likely
to succeed if the malevolent principal can convince its victim that it is something other than what it really is
(an attacker), and/or that it possesses authorization that it does not really have. A counterfeit identity
and/or authorization data grants an attacker access that it presumably would not otherwise have, and so
provides an opportunity for the attacker to do damage.

One way an attacker might obtain counterfeit credentials is to intercept network transmissions between a
client and a server, and then attempt to decipher (and perhaps modify) the transmitted data. If the
attacker is able to intercept and decipher a principal's authentication or authorization information, it can
later use this data to masquerade as an authentic principal with proper authorization.

DCE Security protects against these kinds of attacks. It contains features that enable principals to

� Detect whether data they receive has been modified in transit

� Be reasonably certain that an attacker will be unable to decipher any authentication and authorization
data it may succeed in intercepting.

DCE Security gives DCE principals confidence that the identity and authorization of principals they
communicate with are authentic.

Figure 82 on page 403 is an extremely condensed and highly stylized representation of the essentials of
DCE Security in terms of the DCE Shared-Secret authentication protocol and the DCE Authorization
protocol. Unless we note otherwise, assume that discussions in this Part of this guide refer to these two
protocols, used in conjunction with one another.

Following is a description of the events depicted in the illustration:

 Chapter 23. Overview of Security 401

1. Principal A (which could be an attacker masquerading as Principal A) requests authentication of its
identity from the Authentication Service. This request is encrypted using several keys, one of which is
a key derived from the password supplied by Principal A. A copy of Principal A's key also exists in
the Registry database, having been stored there when the principal's account was created (or when
the password was changed.) It is thus available to the Authentication Service.

The Authentication Service then obtains the Registry's copy of Principal A's key and uses it to decrypt
Principal A's authentication request. If the decryption succeeds, the keys are the same; Principal A is
therefore authenticated and the Authentication Service replies with information that enables Principal A
to ask the Privilege Service to authenticate its privilege attributes. (Privilege attributes are data used
in making authorization decisions; they consist of the principal's name and group memberships.) If
Principal A fails to get authenticated privilege attributes (sometimes referred to as credentials), it may
simply assert its privilege attributes to Principal B.

2. Principal A now makes a request to Principal B to perform some operation that requires the c
permission to object d, and presents its certified privilege attributes. Principal B may grant or deny c
access to d after examining the Access Control List (ACL) that protects object d (an ACL associates
the privilege attributes of principals with permissions to an object). If c is one of the permissions listed
in the ACL entry that specifies the permission set that may be granted to Principal A, then Principal A
is allowed to perform the operation; if the c permission is not listed in that entry, A is denied access.

Had the Authentication Service been unable to decrypt the principal's authentication request, the
principal would have been unauthenticated, and as a consequence, unable to acquire certified
privilege attributes from the Privilege Service. In that case, Principal A might have simply asserted its
privilege attributes to B; that is, claimed them for itself, without the benefit of having the Privilege
Service certify this data as being genuine. Had Principal A then presented asserted privilege
attributes to Principal B, then B might have denied the requested permission or granted it, depending
on whether B grants permissions to unauthenticated principals, and whether c is among the
permissions that B grants to such principals.

402 Application Development Guide: Core Components

Principal A

Authentication
Service

Privilege
Service

Principal B
RPC

RPC

RPC

RPC

RPC

RPC Response to request

Certified privilege attributes

Certified privilege attributes

Request for privilege
attributes

"How to contact
Privilege Service"

Request for authentication
encrypted in several keys, one
of which is principal A's key

"Do c to d"

Figure 82. Shared-Secret Authentication and DCE Authorization in Brief

If Principals A and B are especially sensitive to security concerns, they may request that RPC data be
checked for integrity to establish whether it has been changed in transit. They can also request encryption
to ensure that the data is unintelligible to any party other than Principals A and B.

Summary of DCE Security Services and Facilities

The DCE Security component consists of services and facilities.

 Security Services

The services are:

� The Registry Service, which maintains a database of principals, groups, organizations, accounts, and
administrative policies.

� The Authentication Service, which verifies the identity of a principal and issues tickets used by the
principal to access remote services (a ticket is data about a principal that is presented to the principal
providing the service).

� The Privilege Service, which certifies a principal’s privilege attributes (that is, its name and group
memberships, which are represented as UUIDs). Permissions, as embodied by ACLs, are enforced

 Chapter 23. Overview of Security 403

by the Privilege Service, but are defined and maintained by the Access Control List facility, described
below.

The three security services are available from a single daemon, the Security server.

 Security Facilities

The security facilities are:

� The Login facility, which enables a principal to establish its network identity.

� The Extended Registry Attribute (ERA) facility, which extends the Registry database to maintain
attribute types and instances.

� The Extended Privilege Attribute (EPA) facility, which provides access to the information in
extended privilege attribute certificates (EPACs).

� The Access Control List (ACL) facility, which enables a principal’s access to an object to be
determined by a comparison of the principal’s privilege attributes to the object’s permissions.

� The Key Management facility, which enables noninteractive principals (most frequently, servers) to
manage their secret keys.

� The ID Map facility, which maps cell-relative principal names to global principal names, and global
principal names to cell-relative principal names. This facility is used in connection with the
transmission of information about principals that are members of different DCE cells.

� The Password Management facility, which enables principals' passwords to be generated, and to be
subjected to strength checks beyond those defined in DCE standard policy.

Registry Service Interfaces: Command line interfaces to the Registry Service are described in the
z/OS DCE administration documentation. Following is a summary:

dcecp or rgy_edit Edits Registry database entries.

The API to the Registry Service consists of calls with the sec_rgy prefix. Because this is the same
interface that the Registry Service user and administration tools call, few applications use it, unless they
replace some or all of the functionality of the default Registry tools.

Authentication Service Interfaces: Following is a summary of the command line interfaces to
the Authentication Service when the default authentication protocol is in effect (the default protocol is DCE
Shared-Secret, which is based on the Kerberos Version 5 network authentication system). These
interfaces are described in the z/OS DCE administration documentation:

kinit Obtains a login session’s ticket(s) to remote services.

klist Lists a login session’s tickets to remote services.

kdestroy Destroys a login session’s tickets to remote services.

There are two sets of security APIs that distributed applications are most likely to call to use the
Authentication Service:

� Authenticated RPC facility

 � GSSAPI

Although an application that uses GSSAPI may not make explicit calls to RPC routines, the GSSAPI
implementation itself uses DCE RPC to communicate with the DCE registry.

404 Application Development Guide: Core Components

Privilege Service Interfaces: There are neither command line interfaces nor application program
interfaces to the Privilege Service. The Login facility and authenticated RPC or GSSAPI encapsulate
interactions between a principal and the Privilege Service.

Interfaces to the Login Facility

Command line interfaces to the Login facility consists of the following tool (described in the z/OS DCE
administration documentation):

dce_login Enables an interactive principal to log into DCE, but does not change the principal’s local
identity.

The API to the Login facility consists of calls with the sec_login prefix. This API enables application
processes to assume their network identities.

Interfaces to the Extended Registry Attribute Facility

The user interface to the ERA facility consists of dcecp subcommands that allow users to modify the
registry schema to create and maintain attribute types and to create and maintain instances of those
types.

The API to the ERA facility consists of calls that are prefixed with sec_rgy_attr.

Interfaces to the Extended Privilege Attribute Facility

There are no user interfaces to the Extended Privilege Attribute facility. The API to this facility consists of
calls that are prefixed with sec_cred. These routines extract data from EPACs.

Interfaces to the Key Management Facility

It can be important for a DCE server application to have a network identity that is distinct from the user
principal identity that runs it, or the host on which it runs. As the server is a noninteractive principal, it
requires a way in which to pass its key to the Authentication Service, other than by typing in a password
as interactive principals do. The recommended method is to store server keys in a locally protected key
table. With the Key Management facility, noninteractive principals such as servers can manage their
secret keys.

The command line interface to the Key Management facility consists of a few dcecp or rgy_edit
subcommands. These subcommands enable an administrator to change or delete the secret key of a
noninteractive principal if such a key is compromised. These subcommands call the Key Management
API, which consists of several calls with the prefix sec_key.

Interfaces to the ID Map Facility

There are no command line interfaces to the ID Map facility. The API to this facility consists of calls with
the prefix sec_id. These routines map a global principal or group name into a cell name and a
cell-relative principal or group name, and generate a global principal or group name from a cell name and
a cell-relative principal or group name. This API also converts the internal (UUID) representation of a
name to a human-readable string and back again.

 Chapter 23. Overview of Security 405

Interfaces to the Access Control List Facility

The command line interface to the Access Control List facility is the dcecp tool. This tool edits an
object’s ACL whose entries specify the permissions to the object that may be granted to principals
possessing specified privilege attributes. (The dcecp tool is described in z/OS DCE Administration
Guide.)

The ACL API consists of routines that are prefixed sec_acl. This is the same API that dcecp calls, so an
ACL editor or browser that replaces dcecp calls this API. A different case is an application server that
needs to store and retrieve application-specific access-control information for its clients. Such an
application must put into effect its own ACL manager using the subset of the ACL routines that are
prefixed dce_acl_mgr as a guide. The ACL manager must also export the ACL manager interface.
(Refer to Chapter 32, “The Access Control List Application Program Interfaces” on page 505 for more
information on ACL managers.) The dcecp command is the client-side user interface to an ACL Manager.
You write the ACL Manager as part of your DCE server application.

Interfaces to the Password Management Facility

The user interface to the Password Management facility is provided by subcommands to the rgy_edit and
dcecp commands. These subcommands enforce password management policy for principals, and enable
them to request generated passwords. See the z/OS DCE Administration Guide for information on the
rgy_edit and dcecp commands and instructions on how to create and change principal passwords.

The API to the Password Management facility consists of routines that are prefixed with sec_pwd_mgmt.
See Chapter 36, “The Password Management Application Programming Interfaces” on page 531 and the
z/OS DCE Application Development Reference for information on these routines.

Interfaces to RACF-DCE Interoperability

The administrator interface to enroll z/OS users in RACF-DCE interoperability is provided by the z/OS
DCE mvsexpt and mvsimpt utilities. See z/OS DCE Administration Guide for information on these
utilities. It is strongly recommended that you use these utilities to establish and maintain the association
between DCE principals and RACF user IDs. The utilities manage DCE information contained in the
RACF user profile and in the RACF DCEUUIDS class, which provides the cross linking between a user's
DCE identity and the corresponding RACF identity.

RACF also provides extensions to RACF administrative commands for the RACF-DCE interoperability, as
well as ISPF panel support that provides a subset of this administrative capability. See z/OS SecureWay
Security Server RACF Security Administrator's Guide, SA22-7683, for more information on the RACF
support.

The APIs to this information are a combination of DCE APIs, z/OS UNIX System Services callable
services, and C library function calls. The DCE APIs whose names start with rpc_binding and sec_cred
are used to obtain the DCE principal's identity from DCE security credentials. The z/OS UNIX System
Services callable services are:

� auth_check_resource_np(), which is used to check access to a RACF-protected resource

� convert_id_np(), which is used to obtain a z/OS user ID for a corresponding DCE UUID.

The IBM C/C++ library provides function calls for these z/OS DCE callable services. The C function call
names that provide C language bindings for these callable services are:

 � __check_resource_auth_np()
 � __convert_id_np()

406 Application Development Guide: Core Components

See z/OS C/C++ Run-Time Library Reference, SA22-7821, for a discussion of these C function library
calls. Information on the z/OS UNIX System Services callable services can be found in z/OS UNIX
System Services Programming: Assembler Callable Services Reference, SA22-7803.

z/OS users enrolled in RACF-DCE interoperability and single sign-on to DCE can store their DCE
passwords in RACF by using the storepw command. The password is also stored in the DCE registry if
the -r option is specified on the command. See z/OS DCE Command Reference and z/OS DCE User's
Guide for more information on the storepw command.

Relationships Between the Security Service and DCE Applications

Figure 83 is a schematic illustration of the relationships among the interfaces to the DCE Security Service
and the relationship of Security interfaces to DCE applications.

Figure 83. DCE Security and the DCE Application Environment

DTS, the Cell Namespace, and Security

This section discusses the dependencies of DCE Security on the Distributed Time Service (DTS) and the
relationship between the Security namespace and the Cell Directory Service (CDS) namespace. For
information on how DCE components (such as CDS) use features of DCE Security, refer to the
documentation on the component of interest. For example, refer to z/OS DCE Administration Guide
section about CDS.

Time and Security

The Security Service depends on the DTS to maintain a relatively close synchronization of network clocks.
When network clocks become skewed — that is, different machines have clocks that differ by seconds or
minutes — you may regard unexpired tickets to services as not valid or expired tickets as valid.
Excessive skewing probably inconveniences users rather than introducing opportunities for security
breaches. Administrative intervention is required. See z/OS DCE Administration Guide for information on
how to monitor and manage timer skew.

 Chapter 23. Overview of Security 407

The Cell Namespace and the Security Namespace

The Registry database maintains three Security namespaces: the principal, group, and organization (PGO)
namespaces. These namespaces are distinct from the cell namespace maintained by the Cell Directory
Service. Security names take the following form:

/.../cell_name/pgo_name

Whereas CDS names take the following form:

/.../cell_name/mount_point/object_name

Because the Security namespace is rooted in the CDS namespace, Security names have equivalent CDS
names. Thus, for example, an entry for a principal in the Registry database has the following form in the
Security namespace:

/.../cell_name/principal_name

It has the following form in the CDS namespace:

/.../cell_name/sec/principal/principal_name

The Security mount-point name (sec as shown in the preceding syntax) is determined when the DCE is
configured. Therefore, the name may differ at individual sites.

There is no ambiguity about the Security namespace to which a name refers because Security names are
always supplied in contexts that identify the namespace in question. For example, logging into DCE
requires a principal name to be supplied.

However, an ACL is an object that is indirectly referred to by the name of the object it protects. Protected
objects are not always Security objects, and therefore may be registered only in the CDS namespace.
ACL management interfaces always take CDS names rather than Security names as input, whether it is
the ACL of a Security object (such as a Registry database entry) that is being read or changed.

Using DCE Three Different Ways

There are three mutually exclusive ways to use DCE on z/OS, with three different Dynamic Load Libraries
(DLLs) :

� You can use the full range of DCE services by specifying -DMVS when compiling your application.
You then link your application with libdce.a and specify the EUVPDLL.x side file. If you want to also
use the DCE thread model, you must specify -D_DCE_THREADS when compiling your application
modules. Your application is then bound to the EUVPDLL DLL.

� You can use just the DCE security services by specifying -DMVS -D_DLL_LIBDCE when compiling
your application. You then link your application with libsdce.a and specify the EUVSDLL.x side file.
Your application is then bound to the EUVSDLL DLL. If you use this method, you cannot use the
DCE thread model nor can you use RPC, Time, or Directory services. In order to use the EUVSDLL
DLL, you must run the DCE Security Server on the same system as the application program. More
information on this method of using DCE is provided in “Using the DCE Security Services DLL” on
page 409.

� You can use the Kerberos services by specifying -DMVS when compiling your application modules.
You then link your application with libkrb5.a and specify the EUVFDLL.x side file. Your application is
then bound to the EUVFDLL.

408 Application Development Guide: Core Components

Using the DCE Security Services DLL

DCE on z/OS provides a subset of the DCE application programming interfaces in a stand-alone DLL.
This DLL does not use any of the DCE platform, RPC, Directory, or Time services. Program execution is
considerably faster because the DCE security server is accessed using z/OS cross-memory services
instead of using RPC and TCP/IP. In order to use the DCE Security Services DLL, you must run the DCE
security server on the same system as the application program. In a parallel sysplex environment, this
means you need to run the security server on each system in the sysplex.

An uninitialized replica security server is unable to provide any services until it has been initialized. As a
result, local DCE security services are not available until the replica has been initialized. Applications
attempting to use local DCE security services receive an error status of sec_rgy_server_unavailable until
this process has been completed.

Applications receive an error status of sec_rgy_server_unavailable if an attempt is made to access a
remote DCE security server in a context which does not support remote access. For example, the
sec_login_setup_identity() routine only supports principals in the local cell and the
sec_login_import_context() routine only imports contexts created for principals in the local cell.
However, service tickets and privilege ticket-granting tickets can be obtained for remote cells. This means
that an application using the DCE Security Services DLL can access services in a remote cell (but the
application must provide its own network transport mechanism since RPC is not available).

Only the following environment variables are supported by the DCE Security Services DLL:

 � _EUV_ENVAR_FILE
 � _EUV_EXC_ABEND_DUMPS
 � _EUV_HOME
 � _EUV_SEC_KRB5CCNAME_FILE

For more information on these environment variables, see the z/OS DCE Administration Guide.

These DCE APIs are supported by the DCE Security Services DLL:

 � dce_error_inq_text
 � gss_accept_sec_context
� gss_acquire_cred - Only credentials for the local cell may be acquired
� gss_add_cred - Only credentials for the local cell may be added

 � gss_add_oid_set_member
 � gss_canonicalize_name
 � gss_compare_name
 � gss_context_time
 � gss_create_empty_oid_set
 � gss_delete_sec_context
 � gss_display_name
 � gss_display_status
 � gss_duplicate_name
 � gss_krb5_get_ccache
 � gss_krb5_get_tkt_flags
 � gss_get_mic
 � gss_import_name
 � gss_indicate_mechs
 � gss_init_sec_context
 � gss_inquire_context
 � gss_inquire_cred
 � gss_inquire_cred_by_mech

 Chapter 23. Overview of Security 409

 � gss_inquire_mechs_for_name
 � gss_inquire_names_for_mech
 � gss_oid_to_str
 � gss_process_context_token
 � gss_release_buffer
 � gss_release_cred
 � gss_release_name
 � gss_release_oid
 � gss_release_oid_set
 � gss_str_to_oid
 � gss_test_oid_set_member
 � gss_unwrap
 � gss_verify_mic
 � gss_wrap
 � gss_wrap_size_limit
 � gssdce_cred_to_login_context
 � gssdce_export_cred
 � gssdce_extract_creds_from_sec_context
 � gssdce_extract_PAC_from_sec_context
 � gssdce_extract_PAC_from_cred
 � gssdce_import_cred
 � gssdce_login_context_to_cred
 � gssdce_register_acceptor_identity
 � gssdce_set_cred_context_ownership
 � rpc_string_free
 � sec_cred_free_cursor
 � sec_cred_get_authz_session_info
 � sec_cred_get_delegate
 � sec_cred_get_delegation_type
 � sec_cred_get_initiator
 � sec_cred_get_pa_data
 � sec_cred_initialize_cursor
 � sec_cred_is_authenticated
 � sec_id_gen_group

– Specify NULL for the registry handle
– The group permissions must allow unauthenticated read access

 � sec_id_gen_name
– Specify NULL for the registry handle
– The principal permissions must allow unauthenticated read access

 � sec_id_parse_group
– Specify NULL for the registry handle
– The group permissions must allow unauthenticated read access

 � sec_id_parse_name
– Specify NULL for the registry handle
– The principal permissions must allow unauthenticated read access

 � sec_login_become_delegate
 � sec_login_become_impersonator
 � sec_login_become_initiator
 � sec_login_context_token_owner
 � sec_login_create_context_token
 � sec_login_cred_get_delegate
 � sec_login_cred_get_expiration
 � sec_login_cred_get_initiator
 � sec_login_cred_init_cursor

410 Application Development Guide: Core Components

 � sec_login_delete_context_token
 � sec_login_disable_delegation
 � sec_login_expand_context_token
 � sec_login_export_context
 � sec_login_export_context_data
 � sec_login_free_net_info
 � sec_login_get_current_context
 � sec_login_get_expiration
� sec_login_import_context – The imported context must be for a principal in the local cell
� sec_login_import_context_data – The imported context must be for a principal in the local cell

 � sec_login_inquire_net_info
 � sec_login_purge_context
 � sec_login_release_context
 � sec_login_refresh_identity
 � sec_login_set_context
� sec_login_setup_identity – The principal must be in the local cell

 � sec_login_valid_from_keytable
 � sec_login_valid_from_system
 � sec_login_validate_identity
 � uuid_compare
 � uuid_create
 � uuid_create_nil
 � uuid_equal
 � uuid_from_string
 � uuid_hash
 � uuid_is_nil
 � uuid_to_string

For more information on these APIs, see the z/OS DCE Application Development Reference.

 Chapter 23. Overview of Security 411

412 Application Development Guide: Core Components

 Chapter 24. Authentication

This chapter explains DCE Shared-Secret authentication concepts. The DCE Shared-Secret
authentication protocol is the only authentication protocol supported by the Authenticated RPC facility and
the GSSAPI. This protocol is the chief subject of this chapter.

For specific information about using the Authenticated RPC routines, refer to “Authenticated RPC
Routines” on page 94.

 Background Concepts

This section presents a few background concepts that are useful for understanding the discussions of
authentication in this chapter:

� Principals, which are the subjects of authentication.

� The cell, which is the environment where authentication occurs.

� The Shared-Secret Authentication protocol, which is the mechanism used for authentication when
specified by applications through the Authenticated RPC facility.

� Protection levels, which are the various degrees that RPC data may be protected.

� Data encryption algorithms, which are the mechanisms that the Security Server and client runtimes
use to encrypt and decrypt data exchanged between principals.

 Principals

The term principal was defined in Chapter 23, “Overview of Security” on page 399. A more precise
definition of principal is: an entity that assumes it can communicate securely with another entity.

In DCE Security, principals are represented as entries in the Registry database. DCE principals include:

� Users, who are also referred to as interactive principals

� Instances of DCE servers

� Instances of application servers

� Computers in a DCE cell

� Authentication Service surrogates.

Each Registry database entry representing a principal contains the name of the principal and a secret key
that the principal shares with the Authentication Service. (It is the secret key that enables a principal to
solve the puzzle from the Authentication Service.) For a user, the secret key is derived from the user’s
password. To establish its identity as a principal, a noninteractive principal, such as a server or computer,
must store its secret key in a data file or hardware device, or rely on a system administrator to enter it.

The Security Server itself comprises three principals that correspond to the three services it provides:
Registry, Privilege, and Authentication.

Note: The Authentication Service principal is an exception because it does not share its key with any
other principal. Authentication Service surrogates are also exceptions as they are not autonomous
participants in authenticated communications, like other kinds of principals. Authentication
surrogates resemble aliases for the Authentication Services of cells. Refer to “Intercell
Authentication” on page 433 for more information on these subjects.

 Copyright IBM Corp. 1994, 2001 413

In the theory of Shared-Secret Authentication (and some other authentication protocols), all principals are
untrusted, except for the Authentication Service itself. Therefore, a security-sensitive application
authenticates all principals with which it communicates. However, because the Security Service integrates
the Registry Service, the Privilege Service, and the Authentication Service (including its surrogates) as a
single server process, any DCE application does not have to authenticate these principals.

Cells and Realms

The cell is the basic unit of configuration and administration in DCE. In terms of Security, the set of
principals that share a secret key with an instance of the Authentication Service is called a realm. In DCE,
the cell and the realm correspond to the same entity. Therefore, each instance of a Security Server (not
counting its replicas) defines a separate realm. The term realm may be more familiar to some readers
than the term cell. A security realm is always configured to coincide with a corresponding CDS cell. z/OS
DCE documentation refers to such a collective configuration of services as a cell.

The Shared-Secret Authentication Protocol

With Authenticated RPC, you can specify the authentication protocol to use to authenticate principals.
z/OS DCE does not support the Authentication protocols other than DCE Shared-Secret Authentication.

DCE Shared-Secret Authentication uses an extended version of the Kerberos Version 5 system as its
authentication protocol. “A Walkthrough of the Shared Secret Authentication Protocol” on page 415
describes the protocol in general terms.

 Protection Levels

The protection level that an application sets using Authenticated RPC determines the level of encryption of
network messages exchanged by principals. An application can set a protection level using either
Authenticated RPC or GSSAPI.

Authenticated RPC and Protection Levels: The Authenticated RPC facility provides several
levels of protection so that applications can control trade-offs between security and performance.
Following is a summary of some of the protection levels that an application using Authenticated RPC can
specify:

� Connect Level. Performs authentication only when a client and server establish a relationship.

� Call Level. Attaches a verifier to each client call and server response.

� Packet-integrity Level. Ensures that none of the data transferred between two principals has been
changed in transit.

� Packet-privacy Level. Incorporates lesser protection levels and in addition encrypts all RPC argument
values.

Refer to “Authenticated RPC Routines” on page 94 for complete information about protection levels.

414 Application Development Guide: Core Components

GSSAPI and Protection Levels: Unlike secure RPC, where the client chooses a protection level
that is then applied automatically to all data transferred in either direction, applications that use GSSAPI
must protect data on a message-by-message basis. This allows an application the option of protecting
only particularly sensitive messages, and avoids the overhead of security processing for other messages.

GSSAPI offers two distinct types of protection through the gss_sign() and gss_verify() routines and the
gss_seal() and gss_unseal() routines, as follows:

� The gss_sign() routine creates a token containing a signature to protect the integrity of the message
data. The token contains only the signature. The application must send both the token and the
message to which it applies to the peer application for verification. The receiving application calls the
gss_verify() routine to check the signature.

� The gss_seal() routine creates a token containing both a signature and the message data, and may
optionally encrypt the data. Only the token need be sent to the peer application, which processes it
using the gss_unseal() routine to verify the signature and extract the message data.

Three distinct signature algorithms are supported by the per-message protection routines. An algorithm
may be requested by providing one of several constants to the qop_request parameter of either the
gss_sign() or the gss_seal() routine. The constants are as follows:

GSSDCE_C_QOP_DES_MAC Conventional DES MAC. Slow but well understood.

GSSDCE_C_QOP_DES_MD5 DES MAC of an MD5 signature. Faster than QOP_DES_MAC.

GSSDCE_C_QOP_MD5 MD5 signature. Fastest supported signature algorithm. The default.

Data Encryption Mechanisms

The DCE security component of z/OS DCE uses the Data Encryption Standard (DES). and Common
Data Masking Facility (CDMF) mechanisms for data privacy, and DES for principal authentication and
data-integrity checking.

GSSAPI supports only DES encryption.

A Walkthrough of the Shared Secret Authentication Protocol

This section presents a three-part walkthrough of the Shared-Secret authentication protocol:

� “A Walkthrough of User Authentication” on page 416 explains what happens when a user logs in
using the default DCE login tool.

� “A Walkthrough of DCE Application Authentication” on page 425 explains what happens when the
logged-in user runs an authenticated application.

� “A Walkthrough of DCE Application Authentication Using GSSAPI” on page 430 explains what
happens when the logged-in user runs an application that uses GSSAPI.

Note that it is unnecessary to understand the Shared-Secret protocol in order to use it. It is described
here for you to determine if it meets your security requirements. If you require more information read the
next sections, otherwise, proceed to the next chapter.

The walkthrough is viewed primarily from the user and the associated application-client side. Schematic
representations of events related to the protocol accompany the discussions. These illustrations do not
show what literally happens when a user logs in and runs an authenticated application. They only provide
a general understanding of the protocol.

 Chapter 24. Authentication 415

In these illustrations, fill patterns represent encryption key values and encrypted data. When the key
symbol appears in a box, it indicates a key is being passed as data. When the key symbol appears on a
line, it indicates that encryption or decryption is taking place.

Various
encryption
keys

Data encrypted
with various
encryption keys

An encryption
key being passed
as data

Data being
encrypted

Data being
decrypted

Figure 84. Representational Conventions Used in Authentication Walkthrough Illustrations

A Walkthrough of User Authentication

This section explains how DCE Security authenticates a user. DCE User authentication can be thought of
as consisting of two successive procedures:

1. Acquisition by the Security Client of a Ticket-Granting Ticket (TGT) for the user

2. Acquisition by the Security Client of a Privilege-Ticket-Granting Ticket (PTGT) for the user

These procedures are described in the following two sections.

Note that this feature of DCE Security neither requires modification of DCE, nor the applications that run
on it.

How the Security Client Obtains a Ticket-Granting Ticket: This section describes the
acquisition, by the Security Client, of the user's Ticket-Granting Ticket. Acquisition of the user's TGT is
the first of the two parts of DCE user authentication.

There are three protocols used by DCE Security clients and servers to perform this first part of the
user-authentication process:

� The third-party protocol, which provides the highest level of security.

� The timestamps protocol, which is less secure .

� The OSF DCE 1.0 protocol, which is the least secure, and is provided solely to enable OSF DCE 1.1
security servers to process requests from pre-OSF DCE 1.1 clients.

The protocol used by the security client when it makes a login request to the Authentication Service is
determined by:

� Pre-OSF DCE 1.1 clients always use the OSF DCE 1.0 protocol.

416 Application Development Guide: Core Components

� OSF DCE 1.1 clients always use the third-party protocol, unless the host machine's session key,
which the client uses to construct the request, is unavailable. It then uses the timestamps protocol.

The protocol used by the Authentication Service to respond to the client in is determined by:

� The protocol used by the client making the login request

� The value of a pre_auth_req ERA attached to the requesting principal

The Authentication Service always attempts to reply using the same protocol used by the client making the
request, unless the value of the ERA forbids it to do so. (See the z/OS DCE Administration Guide for
more detailed information on how security clients and the Authentication Service determine which protocol
to use.)

For a general discussion of the security aspects of these protocols, and of security administration and
security ERAs, see the z/OS DCE Administration Guide.

The Third-Party Authentication Protocol: This section describes how the DCE Authentication Service
uses the third-party authentication protocol to provide a user with a TGT. Refer to Figure 85 on page 418
as you read the following steps.

 Chapter 24. Authentication 417

Figure 85. Client Acquires Ticket-Granting Ticket Using Third-Party Protocol

1. The user logs in, entering the correct user name. For examples of logging into DCE in batch or
foreground mode, see the z/OS DCE Administration Guide. The login program calls
sec_login_setup_identity(), which takes the user’s principal name as one of its arguments, and
sec_login_valid_and_cert_ident(), which has as one of its arguments the user's password. The

418 Application Development Guide: Core Components

sec_login_valid_and_cert_ident() causes the Security runtime to request a Ticket-Granting Ticket
(TGT) from the Authentication Service. A TGT enables a principal to be granted a ticket to a service
of interest. In this case, it is the Privilege Service. The Security runtime performs the following steps
to construct the TGT request:

a. Requests, from the secval process, a string consisting of a random key (conversation key 1)
encrypted using the machine session key (a copy of which also resides in the registry); then
appends this string to the Machine Ticket-Granting Ticket (MTGT).

b. Generates another random key (conversation key 2, which the Authentication Service will later use
to encrypt the Ticket-Granting Ticket it returns to the client) and appends it to a timestamp string.

c. Derives, from the password input by the user, the user's secret key, a copy of which also exists in
the registry. Then encrypts the timestamp/conversation key 2 string twice: first using the user's
secret key, and again using conversation key 1.

d. Completes the authentication request by concatenating the string containing conversation key 1
(obtained from secval in Step 1a) with the doubly encrypted string containing the timestamp and
conversation key 1.

2. The Security Runtime then forwards the TGT request to the Authentication Service.

3. The Authentication Service receives the request, and performs the following steps to verify the user
and prepare the user's TGT:

a. Identifies the machine principal by means of the machine Ticket-Granting Ticket, and obtains the
machine session key for that machine from the Registry.

b. Using the machine session key, decrypts the package containing conversation key 1.

(Note that the ability of the authentication server to obtain the machine session key from the
Registry and decrypt conversation key 1 verifies that it is the true Authentication Service server,
and not an attacker.)

c. Obtains, from the Registry, the user's secret key, and decrypts, using the user's secret key and
conversation key 1, the package containing the timestamp and conversation key 2.

If this decryption fails, the user's secret key that was used by the login program to encrypt the
package differs from the one stored in the Registry, and therefore the password supplied to the
login program by the user was incorrect. In this case, the user is not authenticated, and an error
message is returned to the login program.

If the decryption succeeds, and if the decrypted timestamp is within 5 minutes of the current time,
the user has been verified (that is, the user knows the correct principal password), and the
Authentication Service proceeds with preparation of the user's Ticket-Granting Ticket.

4. The Authentication Service then prepares the user's Ticket-Granting Ticket, encrypts it using
conversation key 2 (which it received from the client Security Runtime) and returns the encrypted TGT
to the client.

5. The client Security Runtime decrypts the reply from the Authentication Service using conversation key
2, obtains the user's Ticket-Granting Ticket, and it becomes part of the login context.

Note the following security safeguards inherent in the structure of this protocol:

� All network transmissions between Security client and Authentication Service are encrypted using
strong random keys. All plaintext transmissions (which are vulnerable to off-line attacks) are
double-encrypted, placing even off-line decryption attempts at the outer limits of practical possibility.

� The timestamp and conversation key 2 are encrypted using the user's secret key, which is derived
from the user's password. This enables the Authentication Service to verify that the requesting client
knows the user's password. (It does this by decrypting the package using the Registry's copy of the

 Chapter 24. Authentication 419

user's secret key. If the decryption succeeds, the keys are the same. That is, they were derived from
the same password.)

� The Authentication Service itself verifies whether the requesting client knows the user's password. It
is therefore aware of, and can manage, persistent login failures for a given user, eliminating passive
password-guessing attacks.

� The Authentication Service's reply is encrypted using conversation key 2, which was provided by the
client. This verifies to the client that the Authentication Service is authentic, since, if it were not, it
would not have been able to obtain from the Registry the machine session key and user's secret key it
needed to decrypt conversation key 2.

These safeguards provide assurance to both server and client that the entity with which it is
communicating is, in fact, what it claims to be.

Having acquired the user's Ticket-Granting Ticket, the login program then proceeds with Part 2 of the
authentication procedure (described in “How the Client Obtains a Privilege-Ticket-Granting Ticket” on
page 422).

The Timestamps Authentication Protocol: This section describes how the DCE Authentication Service
uses the timestamps authentication protocol to provide a user with a Ticket-Granting Ticket.

(Since the timestamps protocol is largely identical to the OSF DCE 1.0 protocol, which is fully explained in
the next section, this section describes only the differences between the two.)

The timestamps protocol proceeds exactly as the OSF DCE 1.0 protocol described in the following
section, with these additions:

� In Step 1, the client Security runtime sends to the Authentication Service, in addition to the user's
name (UUID), a timestamp encrypted in the user's secret key.

� In Step 2, the Authentication Service, before preparing the user's TGT, verifies the user as follows:

1. It decrypts the timestamp using the copy of the user's key it obtained from the Registry.

2. If the decryption succeeds, and the timestamp is within 5 minutes of the current time, the user is
verified, and the Authentication Service proceeds to prepare the TGT. If the decryption fails, or if
the timestamp is not within 5 minutes of the current time, the Authentication Service rejects the
login request.

With this protocol, the Authentication Service can verify:

� That the client login request is timely.

� That the requesting client knows the user's password.

It is therefore aware of, and can manage, persistent login failures for a given user, eliminating passive
password-guessing attacks.

From this point, the timestamps protocol continues as the OSF DCE 1.0 protocol described in the next
section, and then proceeds with Part 2 of the authentication procedure (described in “How the Client
Obtains a Privilege-Ticket-Granting Ticket” on page 422).

420 Application Development Guide: Core Components

The OSF DCE 1.0 Authentication Protocol: This section explains how the DCE Authentication Service
uses the OSF DCE 1.0 protocol to authenticate a user. This protocol exists in OSF DCE 1.1 solely to
provide interoperability between OSF DCE 1.1 servers and pre-DCE1.1 clients; only pre-OSF DCE 1.1
clients transmit OSF DCE 1.0 login requests, and the Authentication Service returns OSF DCE 1.0
responses only to pre-DCE1.1 clients.

The OSF DCE 1.0 protocol lacks the security features described above for the third-party and timestamps
protocols, and network transmissions using it are more susceptible to attacks on the user's TGT. You
should keep this in mind when you are considering the inclusion of pre-OSF DCE 1.1 clients in your
DCE1.1 cell.

Figure 86. Client Acquires Ticket-Granting Ticket Using the OSF DCE 1.0 Protocol

The OSF DCE 1.0 protocol proceeds as follows (refer to Figure 86 as you read following steps):

 Chapter 24. Authentication 421

1. The user logs in, entering the correct user name. The dce_login program invokes
sec_login_setup_identity(), which takes the user's principal name as one of its arguments. This call
causes the client Security runtime to request a Ticket-Granting Ticket (TGT) and passes the user's
name (represented as a UUID) to the Authentication Service. A TGT enables a principal to be granted
a ticket to a service of interest; in this case, it is the Privilege Service.

2. Upon receiving the request for a TGT, the Authentication Service obtains the user's secret key from
the Registry database (where the secret keys of all principals in the cell are stored). Using its own
secret key, the Authentication Service encrypts the user's identity, along with a conversation key, in a
TGT. The Authentication Service seals the TGT in an “envelope” that is encrypted using the user's
secret key. The envelope also contains the same conversation key that is encrypted in the TGT, and
is returned to the client.

3. When the TGT envelope arrives, the dce_login program prompts the user for the password and
invokes sec_login_valid_and_cert_ident(). This call passes the password to the local Security
runtime library. The Security runtime derives the user's secret key from the password, and uses it to
decrypt the envelope. (If the user enters the wrong password, the envelope is undecryptable.) The
envelope reveals the conversation key, but the Security runtime cannot decrypt the TGT, since it does
not know the Authentication Service's secret key. (A validated TGT is the principal's certificate of
identity.)

Note: One of the functions of sec_login_valid_and_cert_ident() is to demonstrate that the
Authentication Service knows the key of the host computer at which the principal is logging in (a
server pretending to be the Security server is unlikely to know the host's key). How this is
accomplished is not illustrated here, but is explained in Chapter 30, “The Login Application
Program Interface” on page 495.

Having acquired the user's Ticket-Granting Ticket, the login program then proceeds with Part 2 of the
authentication procedure (described in “How the Client Obtains a Privilege-Ticket-Granting Ticket”).

How the Client Obtains a Privilege-Ticket-Granting Ticket: This section describes the
acquisition, by the Security Client, of the user's Privilege-Ticket-Granting Ticket. Acquisition of the user's
PTGT is the second of the two parts of DCE user authentication.

From this point on, the client principal uses four different conversation keys to talk with other principals.
Use of multiple short-lived keys makes an attacker's task far more difficult: there are more encryption keys
to discover and less time in which to “crack” them.

Note: Refer to Figure 87 on page 423 as you read the following steps.

1. When the Security client runtime has succeeded in decrypting the envelope, the API calls a network
layer interface that requests a Privilege-Ticket Granting Ticket (PTGT) from the Privilege Service. For
a PTGT to be granted, however, the user must first acquire a ticket to talk to the Privilege Service,
which is a principal distinct from the Registry and Authentication Service. The Security runtime
therefore requests such a ticket from the Authentication Service. The Security runtime encrypts this
request using the conversation key it learned when it decrypted the TGT envelope.

2. Since the request for a ticket to the Privilege Service is encrypted under the conversation key
associated with the TGT, the Authentication Service believes that the identity of the user is authentic;
that is, no other principal could have sent a message so encrypted because no other principal knows
the secret key under which the Authentication Service encrypted that conversation key. Since the
user has proved to the Authentication Service knowledge of the key, the Authentication Service allows
the user to talk to the Privilege Service, and so prepares a ticket to that service. This ticket contains
the identity of the user (and a second conversation key) encrypted under the secret key of the
Privilege Service. Like the TGT envelope, the envelope containing the ticket to the Privilege Service
also contains the second conversation key, for use in conversing with the Privilege Service, and is
encrypted with the first conversation key.

422 Application Development Guide: Core Components

Note: Beginning with Figure 87 on page 423 the illustrations do not show the Authentication Service
decrypting and reencrypting requests for tickets, since it knows all of the keys.

3. Upon receipt of the envelope containing the ticket to the Privilege Service, the Security client runtime
decrypts the envelope using the first conversation key and, in the process, learns the second
conversation key. The client RPC runtime sends the Privilege Service ticket to the Privilege Service.

Figure 87. Client Acquires Privilege-Ticket-Granting Ticket

 Chapter 24. Authentication 423

4. The Privilege Service decrypts the ticket sent to it, learning both the identity of the user and the
conversation key it will use to encrypt its response. The Privilege Service believes the identity is
authentic because the ID information was encrypted under its own secret key, and no principal other
than the Authentication Service could have encrypted the information using this secret key. Because
the Privilege Service trusts the authenticity of the user's identity, it prepares a Extended Privilege
Attribute Certificate (EPAC).

The EPAC describes the user's privilege attributes and any extended attributes that are associated
with the user. The EPAC (or EPACs in case of a delegated operation) is sealed with an MD5
checksum. (Delegation is described in Chapter 27, “The Extended Privilege Attribute Application
Program Interface” on page 451.) The Privilege Service produces a PTGT that contains the EPAC
seal, a third conversation key, and in the case of a delegate operation, the EPAC seal encrypted in
the key of the Privilege Server. This encrypted seal is called a delegation token. (The Authentication
Service and Privilege Service cooperate to prepare the PTGT, although the illustration only shows the
Privilege Service preparing it). The EPAC itself is carried outside the PTGT. The EPAC seal is used
to verify the integrity of the EPAC data for authenticated RPC calls.

The PTGT envelope is encrypted using the second conversation key and also includes the third
conversation key. (The Authentication Service supplies the third conversation key, although the
illustration does not show this detail.)

5. The Security client runtime decrypts the PTGT envelope using the second conversation key, and
learns the third conversation key. It cannot decrypt the PTGT itself, since the PTGT is encrypted
under the secret key of the Authentication Service.

The Login Context: At this point, the Security Server has authenticated the user's identity, and as a
result, the user has been able to acquire information about its privilege attributes that the Privilege Service
has certified. The client now calls sec_login_set_context() to set the login context (a handle to this
user's network identity and privilege attributes) to the identity that has been established. Henceforth,
processes invoked by this user assume the user's login context, and among these processes is the client
side of an application that is the subject of the rest of the walkthrough.

Identities in a Delegation Chain: When a user who has initiated delegation (with
sec_login_become_initiator), makes an authenticated RPC call to the next member in a delegation chain
(the intermediary), the initiator passes its EPAC and its PTGT, which contains the seal and delegation
token. The intermediary then invokes sec_login_become_delegate or
sec_login_become_impersonator, passes to the Privilege Service the authorization information (EPAC
and delegation token) it received from the initiator, and requests the addition of its identity to the
delegation chain. The Privilege Service uses the delegation token, which is a seal over the EPAC
encrypted in the Privilege Service's key, to determine whether or not to certify the initiator's credentials. If
the initiator's credentials are valid, the Privilege Service generates a new seal and delegation token to seal
the initiator's and the intermediary's EPACs. Again, the delegation token is encrypted in the Privilege
Service's key. The intermediary's authorization information now includes both EPACs in the delegation
chain and a PTGT that contains the EPACs seal and delegation token. The subsequent additions of
identities to the delegation chain are handled in the same manner, with each intermediary's identity being
added to the chain.

424 Application Development Guide: Core Components

A Walkthrough of DCE Application Authentication

This section explains how DCE Security authenticates an application to which the application developer
has added Authenticated RPC calls. It is a continuation of the walkthrough in the previous section and is
illustrated in Figure 88 on page 426.

1. Having been authenticated and having acquired a PTGT, the user now runs an application. The client
side of the application calls rpc_binding_import_begin(), rpc_binding_import_next(), and the like.
These calls specify the remote interfaces required by the client for the application.

2. The Cell Directory Service returns the client binding handles to the specified interfaces. This example
shows the binding model in which the client consults the CDS for the server principal name.

3. The client next sets authorization information for the binding handles by calling
rpc_binding_set_auth_info(). Among other parameters that it sets, rpc_binding_set_auth_info()
sets the authentication protocol, the protection level, and authorization protocol for the binding handle
corresponding to the remote interface. In this case, assume the following:

� Authentication protocol (authn_svc parameter) is DCE Shared-Secret Authentication.

� Protection level (protect_level) is Packet Privacy. (All RPC argument values are encrypted.)

� Authorization protocol (authz_svc) is DCE Authorization (an EPAC contains UUIDs representing
the client’s privilege attributes, and the server is most likely to compare this information with the
ACLs protecting the objects of interest to determine the principal’s authorization).

The next steps are shown in Figure 89 on page 427.

 Chapter 24. Authentication 425

Figure 88. Client Sets Authentication and Authorization Information

4. The client now requests an operation to be performed by the server. The client RPC runtime
determines the binding handle that corresponds to the remote interface that can perform the operation,
and requests a ticket to the principal that supports that interface. To acquire the ticket, the Security
runtime encloses the PTGT, along with the principal name of the application server, in an envelope
encrypted under the third conversation key. The client sends the envelope to the Authentication
Service.

5. The Authentication Service uses the application server’s secret key to reencrypt the EPAC and a
fourth conversation key. The ticket to the application server is in turn encrypted with the third
conversation key in an envelope that also includes the fourth conversation key. The Authentication
Service returns the envelope to the client’s Security runtime.

6. The Security runtime decrypts the envelope using the third conversation key, in the process learning
the fourth conversation key. The Security runtime then uses the fourth conversation key to encrypt the
application request to the server, and the client RPC runtime sends the application request to the
server.

7. The application server’s security runtime receives the client’s request, and learns from the header that
the request is authenticated.

426 Application Development Guide: Core Components

Figure 89. Client Principal Makes Application Request

Steps continue in Figure 90 on page 428.

8. Before fulfilling the client’s request, there are two things a server needs to do. Namely, it has to learn
the conversation key for communicating with the client and authenticate the identity of the client. In
order to do this, it sends a challenge to the client. To begin the challenge to the client’s identity and
authorization, the runtime generates a random number and sends it (in plain text) to the client.

9. The Security runtime encrypts the random number using the fourth conversation key, which it received
(from the Authentication Service) for the purpose of talking to the application server. The RPC runtime
sends the encrypted random number and the server ticket to the application server.

 Chapter 24. Authentication 427

10. The Security runtime decrypts the ticket using its secret key, in the process learning the conversation
key and the client’s authorization. It uses the conversation key to decrypt the number sent by the
client. Because the number is the same random number that the server sent previously, the runtime
concludes that the client knows the conversation key, and therefore that the client’s identity is
authentic.

Figure 90. Application Server Challenges Client

Steps continue in Figure 91 on page 429.

11. The Security runtime for the application server uses the fourth conversation key to decrypt the client’s
request. If it determines from the information in the EPAC that the client is authorized, it performs the
server operation and prepares a response. The server runtime encrypts the response using the
conversation key and sends it to the client.

428 Application Development Guide: Core Components

12. The client runtime receives and decrypts the response, and returns data to the application interface
through the API.

Figure 91. Application Server Responds to Client’s Request

The application server and client can continue to use the fourth conversation key indefinitely for
subsequent conversations. If the server receives an application request after discarding the conversation
key, which it may do if it has not heard from client for some time, then the server challenges the client to
learn the key, as shown in Figure 90 on page 428. If the client’s ticket to the application server expires, it
must acquire a new one, as shown in Figure 89 on page 427. If the client wants to talk to a new service,
it must acquire a ticket to that service, as shown in Figure 89 on page 427.

 Chapter 24. Authentication 429

Note: The illustrations in the walkthrough show the authentication protocol in the context of a
datagram-based network communications protocol. In the case of a connection-oriented protocol,
the client sends both the application request and the ticket to the server at connection setup, rather
than separately (as illustrated in Figure 89 on page 427 and Figure 90 on page 428).

A Walkthrough of DCE Application Authentication Using GSSAPI

This section describes the process by which applications that manage network communications without
RPC can use GSSAPI and DCE Security to authenticate the applications with which they communicate. It
continues from the end of “A Walkthrough of User Authentication” on page 416.

In peer-to-peer communications, the application that establishes the secure connection is the context
initiator or simply initiator. The context initiator is like a DCE RPC client. The application that accepts the
secure connection is the context acceptor or simply acceptor. The context acceptor is like a DCE RPC
server.

The peer applications establish a secure connection in the following way. The numbers of the stages
described correspond to callouts in Figure 92 on page 431.

430 Application Development Guide: Core Components

Figure 92. Peer Applications Establish a Security Context

1. The context initiator uses the gss_init_sec_context routine to request a ticket from the DCE Security
Server that will allow the initiator to talk to the context acceptor.

The initiator's Security Runtime creates an envelope that contains:

� The initiator's PTGT

� The acceptor's principal name

� A time stamp encrypted under the third conversation key

The Security Runtime sends the envelope to the Authentication Service. The Authentication Service
does the following:

 Chapter 24. Authentication 431

� Decrypts the PTGT to get the third conversation key (see “How the Client Obtains a
Privilege-Ticket-Granting Ticket” on page 422).

� Checks the time encrypted under the third conversation key:

– If the time does not match, the authentication fails, and the Authentication Service returns a
failure message to the Security Runtime, which in turn sends a message to the GSSAPI.

– If the time matches, the initiator's identity is authenticated, and the Authentication Service
creates a ticket to allow the initiator to authenticate itself to the acceptor.

The ticket consists of the following:

� A seal of an EPAC(s) which accompanies (that is, not contained within) the ticket.

� A fourth conversation key, generated by the Authentication Service

The Authentication Service then encrypts the ticket under the acceptor's secret key. It sends the ticket
(encrypted under the acceptor's secret key) and the fourth conversation key (encrypted under the third
conversation key) to the initiator's Security Runtime.

2. The initiator's Security runtime:

� Decrypts the fourth conversation key

� Encrypts the current time under the fourth conversation key

� Sends the following to GSSAPI:

 – The ticket

 – The EPAC(s)

– The encrypted time stamp

– The fourth conversation key

3. GSSAPI holds onto the fourth conversation key and creates a GSSAPI token containing:

 � Ticket

 � EPAC(s)

� Encrypted time stamp

It sends the GSSAPI token to the initiator, which forwards it to the acceptor.

4. The acceptor calls the gss_accept_sec_context() routine which separates the ticket, the EPAC(s),
and the encrypted time stamp, and send them to the acceptor's Security Runtime.

5. The acceptor's Security runtime:

� Decrypts the ticket to get the fourth conversation key

� Checks the time encrypted under the fourth conversation key

� If the time matches, the Security Runtime:

– Verifies the seal of the initiator's EPAC(s)

– Creates a success message and encrypts the message under the fourth conversation key

– Sends the EPAC(s), the message, and the fourth conversation key to the acceptor's GSSAPI

� If the time does not match, it sends a failure message to the acceptor's GSSAPI.

6. The acceptor's GSSAPI holds onto the fourth conversation key and the EPAC(s), and creates a
GSSAPI token containing the success message. It passes the token to the acceptor.

7. The acceptor forwards the GSSAPI token to the initiator.

432 Application Development Guide: Core Components

8. The initiator passes the token to its GSSAPI to send to the Security Runtime by calling the
gss_init_sec_context() routine again.

9. The Security Runtime tries to decrypt the message. If it can, it returns a success status to the
GSSAPI that the acceptor's identity is authenticated. If not, it returns a failure status to the GSSAPI.

The context acceptor and context initiator can use the fourth conversation key in future communications
calling the gss_sign and gss_seal routines. The context acceptor can get the initiator's EPAC(s) in the
form of an rpc_authz_cred_handle_t object so it can perform a DCE ACL check by calling the
gssdce_extract_creds_from_sec_context routine. If the context initiator wants to talk to a new context
acceptor, it must acquire a ticket to that context acceptor.

 Intercell Authentication

While the intercell authentication model is an extension of intracell authentication, there are certain
concepts that are particular to intercell authentication. This section discusses those concepts.

Authentication Service Surrogates

A principal trusts another principal in its cell because it trusts the Authentication Service to authenticate all
principals that are members of the cell, except for the Authentication Service itself, which its member
principals trust a priori. The Authentication Service can authenticate all principals in its cell because it
shares a secret key with each of them. A principal that wants to talk to a foreign principal (that is, a
principal in another cell) must acquire a ticket to that principal. Furthermore, the ticket must be encrypted
in the secret key of the foreign principal, or else the foreign principal may disregard the initiator of the
conversation. The local principal cannot get such a ticket from its own Authentication Service because the
local Authentication Service does not know the secret keys of any foreign principals. Therefore, there
must be some other means by which the two instances of the Authentication Service can securely convey
information about their respective principals to one another.

The Problem: Besides the fact that it is trusted a priori, a cell’s Authentication Service principal is an
exception in another respect. Other kinds of principals share their secret keys with the local
Authentication Service, whereas the Authentication Service’s key is private (that is, not known to another
principal). Thus one problem of intercell authentication to be overcome is how the Authentication Service
in one cell communicates securely with that in another, without either of them having to share their private
keys. Sharing the keys would introduce an unacceptable security risk.

Note: The Kerberos network authentication specification makes a distinction between the terms secret
and private. Secret refers to data that is known to two principals, and private refers to data that is
known to only one principal. The same distinction is made in this book.

The Solution: The solution to this problem is an extension of the Shared-Secret Authentication model
previously discussed in this chapter. An entry in the Registry database of one cell specifies the same
secret key as that in an entry in the other cell’s Registry database. The two Registry database entries are
known as mutual authentication surrogates, and the two cells that maintain mutual authentication
surrogates are called trust peers. It is through their surrogates that two instances of the Authentication
Service convey information about their respective principals to one another, enabling a principal from one
cell to acquire a ticket to a principal in another cell.

An authentication surrogate is a principal in the sense that it is represented by an entry in a Registry
database, but it is not an autonomous participant in authenticated communications in the same sense as a
user or a server. Rather, it is like an alias that is assumed by a cell’s Authentication Service when it
communicates with a trust peer. A trust peer relationship established between two cells is an implicit

 Chapter 24. Authentication 433

expression of mutual trust between the two Authentication Services on the part of the cell administrators
who establish the relationship. (Administrators use the rgyedit program to establish the relationship.)

Intercell Authentication by Trust Peers

This section explains how a client principal in one cell is authenticated by an Authentication Service in a
peer cell so the client principal may communicate with another principal that is a member of the foreign
cell.

1. A client principal, having already been authenticated by its Authentication Service and acquired its
EPAC, requests a service from a foreign cell. The client specifies the server principal that provides
the service by its fully qualified name (which identifies the foreign cell as well as the cell-relative server
principal name).

2. Recognizing by its name that the server principal is foreign, the client’s Security runtime makes a
request to the local Authentication service for a TGT to the Authentication service of the foreign cell of
which the server principal is a member. The request for the foreign TGT (FTGT) proceeds like a
ticket-granting request for any other target principal. The local Authentication Service constructs the
ticket, preserving EPAC data from client’s existing PTGT, and encrypts it using the secret key that the
two Authentication surrogates share.

3. On receiving the request for the FTGT, the foreign Authentication Service decrypts it using the
surrogates’ secret key, and returns a ticket to the foreign Privilege Service to the client’s Security
runtime.

4. The client’s Security runtime uses the ticket to the foreign Privilege Service to obtain a Foreign
Privilege-Ticket-Granting Ticket (FPTGT). The FPTGT is simply the client’s original EPAC encrypted
with the key of the foreign Privilege Service.

5. After the client principal receives the FPTGT, it requests a ticket to the foreign server principal from
the foreign Authentication Service, exactly as it would request a ticket to a local principal from its own
Authentication Service. The client principal may also reuse the FPTGT to the foreign cell to acquire
tickets to any other principals in that cell.

434 Application Development Guide: Core Components

 Chapter 25. Authorization

This chapter explains concepts related to authorization. With the Authenticated RPC facility, you select
the authorization protocol your application uses. Among the authorization protocols supported by z/OS
DCE Security for use by Authenticated RPC are DCE Authorization (the default), and Name-Based
Authorization.

This chapter first discusses DCE Authorization, and more particularly, DCE Access Control Lists (ACLs).
Later it discusses the Name-Based Authorization protocol.

 DCE Authorization

The DCE Authorization protocol is based in part on the UNIX system file-protection model, but is extended
with ACLs. An ACL is a list of access control entries that protects an object. Each entry in the ACL
specifies a set of permissions. Usually, most of the entries in the ACL specify a privilege attribute (such
as membership in a group) and the set of permissions that can be granted to the principals possessing
that privilege attribute. Other entries specify a set of permissions that can mask the permission set in a
privilege attribute entry.

Every ACL is managed by an ACL manager type. It determines a principal’s authorization to perform an
operation on an object by reading the object’s ACL to find the appropriate entry (or entries) that matches
some privilege attribute possessed by the principal. If the type of access requested by the principal is one
of the permissions listed in the matching entry (and assuming no applicable mask entry denies that
permission), then the ACL manager type allows the principal to perform the requested operation. If the
requested permission is not listed in the matching ACL entry, or is denied by a mask, permission to
perform the operation is denied. Permission is also denied if the ACL contains no matching privilege
attribute entry.

Unlike UNIX system file permissions, DCE ACLs are not limited to the protection of file system objects
(that is, files, directories, and devices). ACLs can also control access to nonfile-system objects, such as
the individual entries in a database.

Note: The implementation of DCE ACLs is aligned with POSIX P1003.6 Draft 12.

In this chapter, the general term name refers to a principal, group, or cell identifier. These names have
two representations:

� As UUIDs in ACL program interfaces

� As print strings in user interfaces.

Object Types and ACL Types

The ACL facility distinguishes between two types of objects: container objects and simple objects.
Container objects contain other objects, which can be simple or other container objects. Simple objects
do not contain other objects. Examples of container objects include a filesystem directory or a database;
examples of simple objects include a file or a database entry.

To protect both object types and to enable newly created objects to inherit default ACLs from their parent
container objects, the ACL facility supports two basic kinds of ACLs:

� An Object ACL is associated with either a container or a simple object, and controls access to it.

 Copyright IBM Corp. 1994, 2001 435

� A Creation ACL is associated with a container object only. Its function is not to control access to the
container, but to supply default values for the ACLs of objects created in the container. There are two
types of Creation ACLs:

– An Initial Object Creation ACL supplies default values for a simple object’s Object ACL and for a
container object’s Initial Object Creation ACL.

– An Initial Container Creation ACL supplies default values for both a container object’s Object ACL
and its Initial Container Creation ACL.

Figure 93 illustrates how ACL defaults are derived from Creation ACLs.

Object ACL Defaults

Initial Container Creation ACL Defaults

Initial Object Creation ACL DefaultsObject ACL Defaults

Container Object Created in Container A

Container Object A

Simple Object Created in Container A

Object ACL

Initial Container Creation ACL

Initial Object Creation ACL

Figure 93. Derivation of ACL Defaults

Aside from the distinctions described previously, there are no differences between Object ACLs and
Creation ACLs. Therefore, the information about ACLs in the rest of this chapter does not differentiate
between them.

ACL Manager Types

A separate ACL manager type manages the ACLs for each class of objects for which permissions are
uniquely defined. In this context, class refers to a category into which objects are placed on the basis of
both their purpose and their internal structure. The manager type defines the permissions for those
objects whose ACLs it manages:

� The number of permissions

� The meanings of the permissions

� The tokens that represent the permissions in user interfaces to ACL manipulation tools (the default
DCE tool is dccp).

For example, for access control, five classes of objects are defined in the Registry database, and five ACL
manager types manage the ACLs for Registry database objects. (The five Registry manager types run in
a single Security Server process.) Other DCE components have their own manager types, and
applications layered on DCE can also use manager types for the objects the applications protect.

Refer to z/OS DCE administration documentation for information about standard DCE ACL manager types
and the permissions they put into effect. In this book, refer to Chapter 32, “The Access Control List
Application Program Interfaces” on page 505 for information about using ACL manager types for
distributed applications.

436 Application Development Guide: Core Components

 ACLs

An ACL consists of:

� An ACL manager type identifier, which identifies the manager type of the ACL.

� A default cell identifier, which specifies the cell where a principal or group identified as local is
assumed to be a member. A DCE global path name is necessary to specify a principal or a group
from a nondefault cell; this consists of a pair of UUIDs representing the principal or group, and the cell
of which it is a member. It is necessary to use the ID Map API to convert the global print string
names of foreign principals and groups to the UUID representations that DCE ACL managers
recognize. (Refer to Chapter 33, “The ID Map Application Program Interface” on page 515 for more
information on this subject.)

� At least one ACL entry.

The rest of this chapter discusses ACLs primarily from a user-interface point of view. This perspective
provides an orientation to the discussion of the ACL API in this section.

 ACL Entries

DCE Authorization defines the following two basic kinds of ACL entries:

1. Those that associate a specified privilege attribute with a permission set: these are privilege attribute
entries.

2. Those that specify a permission set that masks a permission set specified in a privilege attribute entry:
these are mask entries.

The following sections describe the two kinds of ACL entries in detail.

Privilege Attribute Entry Types: Following are descriptions of the ACL entry types that specify
privilege attributes. The privilege attributes of a principal are based on identity and include the principal’s
name, its group memberships, and local cell. Not all ACL manager types use all privilege attribute entry
types. For example, the ACL manager type of a database object probably would not support the user_obj
and group_obj entry types.

Note: The term local cell means the cell specified in the ACL entry, this is not necessarily the cell in
which the protected object resides.

The following are descriptions of the ACL entry types (an ACL entry type is a field in the ACL entry where
you can define entries for principals, groups and masks) that specify privilege attributes:

user_obj Establishes the permissions for the object’s user; that is, the user that created the
object. An ACL can contain only one entry of this type. The identity of the principal to
which this ACL entry refers is assumed to be local and is specified somewhere other
than in this entry. In the case of a file, for example, the identity is attached to the file’s
inode.

user Establishes the permissions for the local principal named in this entry. An ACL can
contain a number of entries of this type, but each entry must be unique with respect to
the principal it specifies.

foreign_user Establishes the permissions for the foreign principal named in this entry. An ACL can
contain a number of entries of this type, but each entry must be unique with respect to
the foreign principal it specifies. This entry type is exactly like the user entry type
except that this entry explicitly names a cell (for the entry type user, the principal
inherits the cell specified by the default cell identifier in the ACL header).

 Chapter 25. Authorization 437

group_obj Establishes the permissions for the object’s group, that is, the group that created the
object. An ACL can contain only one entry of this type. As with the user_obj entry, the
identity of the group is assumed to be local and is specified elsewhere than in the
group_obj entry itself.

group Establishes the permissions for the local group named in this entry. An ACL can
contain a number of entries of this type, but each entry must be unique with respect to
the group it specifies.

foreign_group Establishes the permissions for the foreign group named in this entry. An ACL can
contain a number of entries of this type, but each entry must be unique with respect to
the foreign group it specifies. This entry type is exactly like the group entry type except
that this entry explicitly names a cell. (For the entry type group, the principals inherit
the default cell identifier.)

other_obj Establishes the permissions for local principals whose identities do not correspond to
any entry type that explicitly names a principal or group; an ACL can contain only one
entry of this type.

foreign_other Establishes the permissions for all principals that are members of a specified foreign cell
and whose identities do not correspond to any foreign_user or foreign_group entry.
An ACL can contain a number of entries of this type, but each entry must specify a
different foreign cell.

any_other Establishes the permissions for principals whose privilege attributes do not match those
specified in any other entry type. An ACL can contain only one entry of this type.

The following additional ACL entry types are supplied for delegated identities:

 � user_obj_delegate

 � user_delegate

 � foreign_user_delegate

 � group_obj_delegate

 � group_delegate

 � foreign_group_delegate

 � foreign_other_delegate

 � other_obj_delegate

 � foreign_other_delegate

 � any_other_delegate

These ACL entry types are described in detail in Chapter 27, “The Extended Privilege Attribute Application
Program Interface” on page 451 along with the extensions to the ACL checking algorithm for delegation.

ACL entries for privilege attributes consist of three fields in the following form:

entry_type[:key]:permissions

Following are descriptions of the fields:

� The ACL entry type specifies an ACL entry type as described in “Privilege Attribute Entry Types” on
page 437.

� The key field specifies the privilege attribute to which the permissions listed in the entry apply. The
key field for the ACL entry types user, group, foreign_user, foreign_group, and foreign_other

438 Application Development Guide: Core Components

explicitly names a principal, group,or cell. For the entry types foreign_user, foreign_group, and
foreign_other, the key field must contain a global DCE pathname of the following forms:

 – /.../cellname/principalname,

 – /.../cellname/groupname,

 – /.../cellname,

respectively. The entry types user_obj, group_obj, other_obj, and any_other do not use the key
field.

� The permissions field lists the permissions that can be granted to the principal possessing the privilege
attribute specified in the entry, unless a mask (or masks) further restricts the permissions that can be
granted to the principal. The number and meaning of the permissions that can protect an object are
defined by the object’s ACL manager type. Therefore, the permissions that an ACL entry can specify
must be the set, or a subset, of the permissions defined by the manager type of the ACL in which the
entry appears. An ACL manager type implements a specific set of permissions that a principal can
perform; a different ACL manager type implements a different permission set.

A principal is denied access when a user or foreign_user entry that names the principal contains an
empty permission set.

Mask Entry Types:

mask_obj Establishes the permission set that masks all privilege attribute entry types except the
user_obj and other_obj types.

unauthenticated Establishes the permission set that masks the permission set in a privilege attribute
entry that corresponds to a principal whose privilege attributes have not been certified
by an authority such as the Privilege Service.

The two masks are similar in this respect: the permission set specified in the mask entry is intersected
with the permission set in a privilege attribute entry (using a logical AND). This masking operation
produces the effective permission set — that is, the permissions that can be granted to the principal—for
the principal possessing the privilege attribute. For example, if a privilege attribute entry specifies the
permissions ab and a mask entry that specifies the permissions bc masks that privilege attribute entry, the
effective permission set is b. Similarly, a mask entry that specifies the empty permission set means that
none of the permissions in any privilege attribute entry that mask entry masks is granted to the principal
possessing the privilege attribute.

The two masks are dissimilar in one notable respect. Adding an unauthenticated mask entry with an
empty permission set to an ACL is equivalent to omitting the unauthenticated mask entry from the ACL.
In both cases, the set of effective permissions for principals possessing unauthenticated privilege attributes
is empty. However, adding a mask_obj entry with an empty permission set to an ACL is different from
having no mask_obj entry in the ACL. In the first case, the effective permission set is empty; in the
second, the effective permission set is identical to the permission set in the privilege attribute entry.

ACL entries for masks consist of two fields in the following form:

entry_type:permissions

� The entry_type field specifies one of the two masks entry types: mask_obj or unauthenticated.

� The permissions field specifies the permission set that masks the permission set in any privilege
attribute entry masked by the mask entry.

 Chapter 25. Authorization 439

The Extended ACL Entry Type: The ACL entry type extended is a special entry type for
ensuring the compatibility of ACL data created by different software revisions. It enables old application
clients to copy ACLs from one newer revision object store to another without losing data. It also enables
obsolete clients to manipulate ACL data that they understand without corrupting the extended entries that
they do not understand.

 Access Checking

Standard DCE ACL manager types use a common access-check algorithm to determine the permissions
they grant to a principal. Access checking is performed in up to six stages, in the following order:

1. The user_obj entry check

2. The check for a matching user or foreign_user entry

3. The group_obj entry check and the check for matching group or foreign_group entries

 4. The other_obj entry check

5. The check for a matching foreign_other entry

6. The any_other check

If, during any stage of access checking, an ACL manager type finds a privilege attribute entry matching a
privilege attribute possessed by a principal, the manager type does not proceed with any subsequent
stages. This occurs even though the principal can possess other privilege attributes for which there are
other matching entries. The following subsections describe the algorithms used at each stage of access
checking.

The user_obj Entry Check: The pseudocode in Figure 94 illustrates the user_obj check
algorithm. If the principal seeking access is the identity to which the user_obj entry refers, the remaining
checks are not performed.

IF (no USER_OBJ principal name is available)
THEN
the requested permission is denied

ELSE IF (the principal name matches the user name associated
with the USER_OBJ entry) AND (the cell name matches
the cell name for that entry)

THEN
IF (the requested permission is listed in the USER_OBJ entry)

 THEN
IF (the principal’s privilege attributes are certified)

 THEN
the requested permission is granted

 ELSE
IF (the requested permission is listed in the
 unauthenticated mask entry)

 THEN
the permission is granted

 ELSE
the permission is denied

 ENDIF
 ENDIF
 ENDIF
ELSE
the permission is denied

ENDIF

Figure 94. Pseudocode to Illustrate the user_obj Entry Check

440 Application Development Guide: Core Components

The User Entries Check: The pseudocode in Figure 95 illustrates the algorithm for checking user
or foreign_user entries. If the principal’s identity matches one of these entries, the remaining checks are
not performed.

IF (the principal name matches the user name of any USER
or FOREIGN_USER entry) AND (the principal’s cell name
matches the cell name for that entry)

THEN
IF (the requested permission is listed in the USER or

FOREIGN_USER entry) AND ((the requested permission
is listed in the mask_obj entry) OR (there is no

 mask_obj entry))
 THEN

IF (the principal’s privilege attributes are certified)
 THEN

the requested permission is granted
 ELSE

IF (the requested permission is listed in the
unauthenticated mask entry)

 THEN
the permission is granted

 ELSE
the permission is denied

 ENDIF
 ENDIF
 ELSE

the permission is denied
 ENDIF
ENDIF

Figure 95. Pseudocode for the foreign_user check

The Group Entries Check: The pseudocode in Figure 96 on page 442 illustrates the algorithm
for checking group entries. If a principal is associated with a concurrent group set, more than one search
of the ACL entries for groups is performed: one for the primary group (the one specified in the principal’s
account information) and one for each group in the concurrent group set.

The permissions granted are the union (the logical OR operation) of the permissions produced by each
search of the group entries. For example, if two groups where an authenticated principal is a member
specify the permission sets abc and cde, the principal is granted the permission set abcde.

If one or more matching group entries are found, the remaining checks are not performed.

 Chapter 25. Authorization 441

IF (a group name among the principal’s privilege
attributes matches the group ID of any GROUP_OBJ, GROUP,
or FOREIGN_GROUP entry) AND (the principal’s cell name
matches the cell name for that entry)

THEN
IF (the requested permission is listed in the group entry)

AND ((the requested permission is listed in the
mask_obj entry) OR (there is no mask_obj entry))

 THEN
IF (the principal’s privilege attributes are certified)

 THEN
the permission is granted

 ELSE
IF (the requested permission is listed in the

unauthenticated mask entry)
 THEN

the permission is granted
 ELSE

the permission is denied
 ENDIF
 ENDIF
 ELSE

the permission is denied
 ENDIF
ENDIF

Figure 96. Pseudocode for Checking Group Entries

The other_obj Entry Check: The pseudocode in Figure 97 illustrates the algorithm for checking
the other_obj entry.

IF (the requested permission is listed in the OTHER_OBJ entry
AND (the principal’s cell name matches the cell name for

 that entry)
THEN
IF (the principal’s privilege attributes are certified)

 THEN
the permission is granted

 ELSE
IF (the requested permission is listed in the

unauthenticated mask entry)
 THEN

the permission is granted
 ELSE

the permission is denied
 ENDIF
 ENDIF
ELSE
the permission is denied

ENDIF

Figure 97. Pseudocode to Check the other_object Entry

442 Application Development Guide: Core Components

The foreign_other Entries Check: The pseudocode in Figure 98 illustrates the algorithm for
checking the foreign_other entries.

IF (the requested permission is listed in a FOREIGN_OTHER
entry) AND (the principal’s cell name matches the cell name
for that entry) AND ((the requested permission is listed
in the mask_obj entry) OR (there is no mask_obj entry))

THEN
IF (the principal’s privileges are certified)

 THEN
the permission is granted

 ELSE
IF (the requested permission is listed in the

unauthenticated mask entry)
 THEN

the permission is granted
 ELSE

the permission is denied
 ENDIF
 ENDIF
ELSE
the permission is denied

ENDIF

Figure 98. Pseudocode to Check the foreign_other Entries

The any_other Entry Check: The pseudocode in Figure 99 illustrates the any_other check
algorithm. If no privilege attribute possessed by a principal matches any entry checked in any preceding
stage of access checking, the principal can be granted the effective permissions produced by this check.

Note: If an ACL listing this entry also lists the other_obj entry, only undistinguished foreign identities can
match this entry. However, if the ACL does not list the other_obj entry, all undistinguished identities,
whether foreign or local, match this entry.

IF (the requested permission is listed in the any_other entry
AND ((the requested permission is listed in the mask_obj
entry) OR (there is no mask_obj entry))

THEN
IF (the principal’s privilege attributes are certified)

 THEN
the permission is granted

 ELSE
IF (the requested permission is listed in the

unauthenticated mask entry)
 THEN

the permission is granted
 ELSE

the permission is denied
 ENDIF
 ENDIF
ELSE
the permission is denied

ENDIF

Figure 99. Pseudocode to Check the any_other Entry

 Chapter 25. Authorization 443

Examples of ACL Checking

This section discusses some examples that illustrate ACLs and the access-check algorithms. The
examples use the arbitrary convention of ordering entries as follows: masks, principals, groups, other
entries. However, the access check algorithm disregards the order in which entries appear in an ACL.
The permissions in these examples do not refer to any particular permissions defined by any ACL
manager type.

Example 1: Following is an ACL that protects an object to which three principals, janea,
/.../cella/fritzb, and mariac, seek access:

mask_obj:ab
user_obj:abc
user:janea:abdef
foreign_user:/.../cella/fritzb:abc
group:projectx:abcf
group:projecty:bcg

Note: The numbered lists in the discussions that follow correspond to stages 1, 2, 3, 4, 5 and 6 of the
access-check algorithm described in “Access Checking” on page 440.

The principal janea requests permission c to the object protected by the ACL. Assume that the principal
janea has the privilege attributes of being a member of the groups projectx and projecty (as well as
having a user entry that names her) and that janea is the principal to which the user_obj entry refers.
Assume also that this principal’s privilege attributes are certified:

� The user_obj check produces the permissions abc.

The result of this check is that the effective permission set for janea is abc. Because a matching entry is
found during the first stage of access checking, none of the remaining stages of access checking is
performed even though there are three other matching entries. The mask_obj entry does not mask the
user_obj entry, so janea’s effective permissions are the permissions in the user_obj entry. Because
janea requested a permission that is a member of the effective permission set, her request is granted.

The second principal seeking access to the protected object is /.../cella/fritzb. This principal requests
permission b. Assume that user_obj resolves to some identity other than /.../cella/fritzb, and that this
principal’s privilege attributes are uncertified:

1. The user_obj check produces no permissions because /.../cella/fritzb’s identity does not match that of
the user_obj (no foreign principal can ever match this entry).

2. The foreign_user entry for /.../cella/fritzb specifies the permissions abc. The application of the
mask_obj, which specifies the permissions ab to this permission set, produces the permissions ab.
Because the unauthenticated mask entry is missing from the ACL, all permissions for
unauthenticated identities are masked, producing an empty effective permission set.

The result of these checks is that /.../cella/fritzb’s request is denied (and would be denied, regardless of
the permission requested). Only the first two stages of access checking are performed.

The third principal seeking access is mariac, who requests permission a. Assume that the privilege
attributes of mariac are certified, that mariac is not the principal that corresponds to the user_obj entry,
and that mariac is a member of the groups projectx and projecty:

1. The user_obj check produces no permissions.

2. There is no matching user entry.

3. The group check finds two matching entries. The permissions associated with projectx (abcf) when
masked by the mask_obj entry (ab) produce the permissions ab. The permissions associated with

444 Application Development Guide: Core Components

projecty (bcg) when masked by the mask_obj entry produce the permission b. The union of the
permission sets ab and b is the set ab.

The effective permission set for mariac is ab, and because the requested permission (a) is a member of
that set, mariac’s request is granted. The remaining stages of access checking are not performed.

Example 2: Following is the ACL for an object to which two principals, ugob and /.../cellb/lolad, seek
access:

mask_obj:bcde
unauthenticated:ab
user_obj:abcdef
user:ugob:abcdefg
group:projectz:abh
foreign_other:/.../cellb/:abc

Note: The numbered lists in the discussions that follow correspond to stages 1, 2, 3, 4, 5 and 6 of the
access check algorithm described in “Access Checking” on page 440.

The principal ugob requests permission b. Assume that ugob is not the principal the user_obj entry
refers to. Assume also that the privilege attributes of ugob include membership in the group projectz, in
addition to the user entry that names him. The principal has failed to acquire certified privilege attributes:

1. The user_obj check produces no permissions.

2. The matching entry among the user entries specifies the permissions abcdefg. Applying mask_obj
(bcde) produces the permission set bcde. Applying the unauthenticated mask (ab) to the permission
set bcde produces the effective permission set b.

Because the principal ugob requests a permission (b) that is a member of the effective permissions set,
this principal’s request is granted.

A case that illustrates how access is determined for otherwise undifferentiated members of a specified
foreign cell is that of the principal /.../cellb/lolad, who requests permission e. Assume that the privilege
attributes of this principal are certified:

1. The principal is foreign, so the user_obj check cannot be a match.

2. There are no foreign_user entries.

3. There are no foreign_group entries.

4. lolad is a member of cellb, meaning that the privilege attributes match those in the foreign_other
entry for cellb. The permissions specified by the foreign_other entry for cellb (abc) as masked by
mask_obj (bcde) produces the effective permission set bc.

The permission requested (e) is not a member of the effective permission set (bc), so the request is
denied.

Example 3: Following is the ACL for an object to which one principal, silviob seeks access.

unauthenticated:a
user:jeand:abcde
user:denisf:-
group:projectx:abcd
foreign_other:/.../cella:-
foreign_other:/.../cellc:abc
any_other:ab

Note: The user entry for denisf and the foreign_other entry for cella both specify an empty permission
set with notation - (dash), meaning that identities corresponding to these entries are explicitly

 Chapter 25. Authorization 445

denied all permissions. Also, the numbered lists in the discussions that follow correspond to
stages 1, 2, 3, 4, 5 and 6 of the access-check algorithm described in “Access Checking” on
page 440.

The principal silviob requests permission a. Assume that this principal’s privileges include membership in
the group projecty and that they are not certified:

1. There is no user_obj entry, so this check can produce no permissions.

2. There is no user entry for this principal, so this check produces no permissions.

3. There is no entry for the group projecty, so this check yields no permissions.

4. There is no other_obj entry, so this check can produce no permissions.

5. The principal is local, so no foreign_other entry can be a match; this check produces no permissions.

6. Having failed to match any entry examined in the preceding checks, the principal matches the
any_other entry, which produces the permission set ab. There is no mask_obj entry, but there is the
unauthenticated mask entry, which specifies the permission set a. Applying the unauthenticated
mask to this privilege attribute entry produces the effective permission a.

The permission requested (a) is a member of the effective permission set (a), so this principal’s request is
granted.

 Name-Based Authorization

The Kerberos authentication service, on which the DCE Shared-Secret Authentication protocol is based,
authenticates the string name representation of a principal. DCE Security converts these string
representations to UUIDs. An ACL manager uses these UUIDs to make authorization decisions.
However, because some existing (non-DCE) applications use Kerberos authentication, DCE Security
supports an authorization protocol based on principal string names: Name-Based Authorization.

It is assumed that applications using Name-Based Authorization have a means to associate string names
with permissions, because DCE Security offers no such facility. In Name-Based Authorization, there is no
UUID representation of privilege attribute data, and DCE ACL managers recognize only UUIDs. Thus, if
an application uses Name-Based Authorization, a principal’s privilege attributes are represented as an
anonymous PAC. Such PAC data can only match the ACL entry types other_obj, foreign_other, or
any_other, and are masked by the unauthenticated mask.

There is essentially no intercell security for an application that uses the Name-Based Authorization
protocol. Such applications never communicate with the Privilege Service, that evaluates intercell trust.

446 Application Development Guide: Core Components

 Chapter 26. GSSAPI Credentials

A GSSAPI credential is a data structure that provides proof of an application's claim to a principal name.
An application uses a credential to establish its global identity. The global identity can be, but is not
necessarily, related to the local user name under which the application (either the initiator or the acceptor)
is running.

A credential can consist of either of the following:

� DCE Login context

 � Principal name

There are three types of credentials, as shown in Table 22.

Table 22. Credential Types

Credential Content

INITIATE A login context only. This credential identifies applications that only initiate security contexts.

ACCEPT Principal name and an associated entry key table. This credential identifies applications that only
accept security contexts.

BOTH A login context and principal name with a key table entry. This credential identifies applications that
can either initiate or accept security contexts.

Credentials are maintained internally to GSSAPI. When they establish a security context, applications use
credential handles to point to the credentials they need.

When an application initiates or accepts a security context, it can use GSSAPI routines with either a
default credential or a specific credential handle. This chapter discusses how applications:

� Use default credentials

� Create credential handles to refer to specific credentials

 � Delegate credentials

For detailed information on the GSSAPI routines, refer to the “DCE Generic Security Service API” chapter
in the z/OS DCE Application Development Reference.

Using Default Credentials

A default credential is a credential that is:

� Generated by either of the following routines:

 – gss_init_sec_context()

 – gss_accept_sec_context()

� Based on the following information:

– The DCE default login context for the application (for INITIATE type credentials)

– The registered principal name in the token (for ACCEPT or BOTH type credentials)

When an application calls the GSSAPI routine to either initiate (gss_init_sec_context()) or accept
(gss_accept_sec_context())a security context, it can specify the use of its default credential.

 Copyright IBM Corp. 1994, 2001 447

Use default credentials to help ensure the portability of your applications.

Initiate a Security Context

To use a default credential when initiating a security context, an application calls the
gss_init_sec_context() routine and specifies GSS_C_NO_CREDENTIAL as the input claimant credential
handle to the routine. The routine uses the initiator's DCE default login context to generate the default
credential. The credential is an INITIATE type credential.

You can change the default login context by calling the DCE sec_login routines. For information on the
sec_login routines, see the z/OS DCE Application Development Reference.

Accept a Security Context

To use a default credential when accepting a security context, an application calls the
gss_accept_security_context() routine and specifies GSS_C_NO_CREDENTIAL as the verifier
credential handle to the routine. The GSSAPI uses a principal name registered for the context acceptor to
generate the default credential handle. The credential is an ACCEPT credential type.

Creating New Credential Handles

An application can create a new credential handle to pass to the gss_init_sec_context() or
gss_accept_sec_context() routines. An application might create a credential handle rather than use the
default credential for the following reasons:

� Limit the identities the application can use

� Provide an additional identity for the application

Initiating a Security Context with New Credential Handles

To create a credential handle for an INITIATE credential type, the application calls the
gssdce_login_context_to_cred() routine and specifies its login context as input to the routine. The
routine creates a credential handle that points to the credential consisting of that login context.

An application can also use a BOTH type credential to initiate a security context. Use the
gss_acquire_cred() routine to create a BOTH type credential, as explained in the next section.

When the application uses a BOTH credential, the gss_acquire_cred() routine creates a login context
from the key table information. Then, it uses the login context to create the a credential. For more
details, see z/OS DCE Application Development Reference.

Accepting a Security Context Using New Credential Handles

To create new credential handle for an ACCEPT or BOTH type credential, an application calls the
gss_acquire_cred() routine.

The gss_acquire_cred() routine uses a principal name and its entry in the key table to generate the
credential handle. If the principal name has not yet been registered (using
gssdce_register_acceptor_identity() or the rpc_server_register_auth_info() routines), the
gss_acquire_cred() routine automatically registers it.

448 Application Development Guide: Core Components

 Delegating Credentials

In delegation, an initiator forwards its identity to an acceptor, so the acceptor can use the identity to act as
an agent for the initiator. There are two forms of delegation:

 � Impersonation delegation

 � Traced delegation

Initiating a Security Context to Delegate Credentials

An application indicates that it wants to delegate credentials when it calls gss_init_sec_context() routine
and sets the GSS_C_DELEG_FLAG flag to true. Notes added to the initiator's login context can indicate
the type of delegation used and any restrictions in effect (for traced delegation only). If no delegation
notes are included with the login context and the GSS_C_DELEG_FLAG flag is set, impersonation
delegation is used.

Accepting a Security Context with Delegated Credentials

If the GSS_C_DELEG_FLAG flag has been set when the security context was initiated, the
gss_accept_sec_context() routine will pass a credential to the acceptor. The routine:

1. Uses information from the input token to create the appropriate delegated credential

2. Creates an impersonation or traced delegation credential with an INITIATE credential type

3. Passes the delegated INITIATE credential to the acceptor

The principal named in the delegated INITIATE credential is the name of the initiator (for impersonation
delegation) or the acceptor acting for the initiator (for traced delegation). The acceptor uses the credential
to act for the initiator, initiating security contexts as appropriate.

 Chapter 26. GSSAPI Credentials 449

450 Application Development Guide: Core Components

Chapter 27. The Extended Privilege Attribute Application
Program Interface

This chapter describes the Extended Privilege Attribute (EPA) API. The EPA facility addresses the
requirements of complex distributed systems by allowing clients and servers to invoke secure operations
through one or more intermediate servers.

In a simple client/server distributed environment, most operations involve two principals: the initiator of the
operation and the target of the operation. The target of the operation makes authorization decisions
based on the identity of the initiator. However, in distributed object oriented environments, there is
frequently a need for server principals to perform operations on behalf of a client principal. In these
cases, it may not be enough for authorization decisions to be based simply on the identity of the initiator,
since the initiator of the operation may not be the principal that requests the operation.

To handle these cases, the EPA API provides routines that allow principals to operate on objects on
behalf of (as delegates of) an initiating principal. The collection of the delegation initiator and the
intermediaries is referred to as a delegation chain. Using the EPA and related sec_login calls, an
application may be written that allows client principal A to invoke an operation on server principal C via
server principal B. The Security service will know the true initiator of the operation (principal A) and can
distinguish the delegated operation from the same operation invoked directly by principal A.

The EPA interface consists of the Security credential calls (sec_cred) that extract privilege attributes and
authorization data from an opaque binding handle to authenticated credentials. In addition, the following
sec_login calls of the Login API are used to establish delegation chains and to perform other delegation
related functions.

 � sec_login_become_initiator

 � sec_login_become_delegate

 � sec_login_become_impersonator

 � sec_login_cred_get_delegate

 � sec_login_cred_get_initiator

 � sec_login_cred_initialize_cursor

 � sec_login_disable_delegation

 � sec_login_set_extended_attrs

Identities of Principals in Delegation

The identity of principals in a delegation chain is maintained in Extended Privilege Attribute Certificates
(EPACs), as are the identities for all DCE principals. Each EPAC contains the name and group
memberships of a principal in the delegation chain and any extended attributes that apply to the principal.
The delegation chain includes an EPAC for each member of the delegation chain.

When delegation is in use, the target server receives the delegation chain, and thus knows the privilege
attributes of the delegation chain initiator and each intermediary (delegate) in the chain. Authorization
decisions can then be made based on the identities of all principals involved in the operation.

 Copyright IBM Corp. 1994, 2001 451

ACL Entry Types for Delegation

When a server's ACL manager is presented with credentials to use as a base of an authorization decision,
the manager evaluates the privilege attributes of each principal involved in the delegation chain. The ACL
manager grants access for the requested operation only if all principals in the delegation chain have the
necessary permissions on the object that is the eventual target of the operation.

For the initiator of the delegation chain, permission on the target object must be granted directly using any
of the following standard ACL entry types:

 � user_obj

 � user

 � foreign_user

 � group_obj

 � group

 � foreign_group

 � foreign_other

 � other_obj

 � foreign_other

 � any_other

 � extended

For intermediaries in a delegation chain, permissions to a target object can be granted directly to the
intermediary with the standard ACL entry type described above or permissions can be granted by delegate
ACL entries. Delegate ACL entries grant permissions to principals only if they are acting as delegates.
The following delegate ACL entry types are available:

 � user_obj_delegate

 � user_delegate

 � foreign_user_delegate

 � group_obj_delegate

 � group_delegate

 � foreign_group_delegate

 � foreign_other_delegate

 � other_obj_delegate

 � foreign_other_delegate

 � any_other_delegate

Note that to perform an operation, all delegates in the chain must have the appropriate permissions. For
example, assume a delegation chain consists of Principal A (the initiator) and Principal's B and C (the
intermediaries). To perform the operation, the delegation chain requires Mrw permissions on Server X.
One way of granting these permission is to grant them directly to each member of the delegation chain, as
shown below:

user:Principal A:Mrw
user:Principal B:Mrw
user:Principal C:Mrw

452 Application Development Guide: Core Components

Providing access directly also allows each intermediary in the chain to perform the operation of their own
initiative, a consequence that may or may not be desired. To specify that Principals B and C may only be
intermediaries operating on behalf of an authorized initiating principal without granting them the ability to
perform the operation on their own, use delegation entries. In this case the Server X's ACL would contain
the following entries:

user:Principal A:Mrw
user_delegate:Principal B:Mrw
user_delegate:Principal C:Mrw

ACL Checking for Delegation

To determine permissions, the ACL manager first uses the standard access-check algorithm (described in
Chapter 25, “Authorization” on page 435) to determine the permissions to grant to the delegation initiator.
If the requested permission is not granted, access is denied.

If the requested permission is granted, the ACL manager then checks the permissions granted to the
delegates in the chain. This checking is similar to the standard access-check algorithm, but it takes into
account any additional delegate permissions granted to the delegates. If the requested permission is not
granted to all delegates, access is denied. If the requested permission is granted to all delegates, access
is granted.

Calls to Establish Delegation Chains

The following sec_login API calls set up a delegation chain:

 � sec_login_become_initiator

Enables delegation for a client. The principal that executes this call is known as the delegation
initiator.

� sec_login_become_delegate and sec_login_become_impersonator

Causes an intermediate server to become a delegate in delegation chain. The principals that execute
these calls are known as intermediaries in the delegation chain.

The sec_login_become_delegate call should be used if the traced delegation has been enabled. The
sec_login_become_impersonator should be used if simple delegation has been enabled. See “Types of
Delegation” for more information.

The following sections describe the information supplied to the calls that establish delegation chains.

Types of Delegation

When a client application calls sec_login_become_initiator to enable delegation, that application
specifies the type of delegation that should be enabled. The delegation type can be:

 � Traced Delegation

Includes the identities of all members of the delegation chain in the credentials used for authorization.
To become an intermediary in a traced delegation chain, server principals use the
sec_login_become_delegate call.

Note that ACLs on objects that are targets of traced delegation, must grant the requested permission
(or delegate permission) to each member of the delegation chain.

 � Impersonation

 Chapter 27. The Extended Privilege Attribute Application Program Interface 453

Includes only the identity of the initiator of the delegation chain used for authorization. All
intermediaries impersonate the delegation initiator. To become an impersonator principals use the
sec_login_become_impersonator call.

Note that ACLs on objects that are targets of impersonation, need list only the delegation initiator, not
each delegate in the chain.

Generally, traced delegation is the preferred method. The high degree of location transparency inherent in
simple delegation greatly increases the risk of a client being compromised by a Trojan horse application.

When server principals run the sec_login_become_delegate or sec_login_become_impersonator call
to become an intermediary in a delegation chain, they must also specify the delegation type as input to the
call. The type they specify must be the same type as the delegation type specified by the initiator of the
chain (unless they specify no delegation).

Target and Delegate Restrictions

When a principal enables delegation or becomes an intermediary in a delegation chain, the principal may
specify target and delegate restrictions. Target restrictions identify the server principals (by UUID) to
which the identities in a delegation chain can be projected. Delegate restrictions identify the server
principals that can further project the delegation chain.

If a target restriction prohibits a server from seeing an identity in a delegation chain, the Security runtime
replaces that identity with the identity of the anonymous principal. If a delegate restriction prohibits a
principal from being an intermediary in a chain, then the Security runtime replaces that principal's identity
with the identity of the anonymous principal. This replacement with the anonymous identity allows the
authenticated RPC call to complete. Whether the operation requested by the delegation chain is
performed can be controlled by ACL entries that grant permission to the anonymous principal on the
objects that are the targets of the delegated operation.

If no delegate restrictions are supplied, any principal can be an intermediary in the delegation chain. If
any delegate restrictions are supplied, then only those supplied can further transmit the delegation chain.

The Anonymous Principal: The Security service replaces those identities in the delegation chain
that are not allowed to be seen by target or delegate restrictions with the UUIDs associated with the
anonymous principal's identity. These UUIDs are:

� Anonymous principal UUID: fad18d52-ac83-11cc-b72d-0800092784e9

� Anonymous group UUID: fc6ed07a-ac83-11cc-97af-0800092784e9

The other_obj, any_other,other_obj_deleg, and any_other_deleg ACL entries define the anonymous
principal's access to objects. The entries must be set up just as for any other principal. The appropriate
direct or delegate permissions must be granted to the anonymous principal or the delegated operation will
fail.

Target and Delegate Restriction Syntax: Target and delegate restrictions are expressed as a
list of values of type sec_id_restriction_t. This data type consists of a UUID and an entry type. The
entry type specifies whether the UUID identifies a principal, a group, or any other principals (in a manner
similar to the any_other ACL entry type). As in ACL entry types, the target restriction entry types can
refer to principals and groups from the local cell or from foreign cells.

The possible delegation entry types are:

sec_rstr_e_type_user The target or delegate is a local principal identified by UUID.

454 Application Development Guide: Core Components

sec_rstr_e_type_group The target or delegate is any member of a local group identified by
UUID.

sec_rstr_e_type_foreign_user The target or delegate is a foreign principal identified by principal and
cell UUID.

sec_rstr_e_type_foreign_group The target or delegate is any member of a foreign group identified by
group and cell UUID.

sec_rstr_e_type_foreign_other The target or delegate is any principal that can authenticate to the
foreign cell identified by UUID.

sec_rstr_e_type_any_other The target or delegate is any principal that can authenticate to any
cell.

sec_rstr_e_type_no_other No principal can act as a target or delegate.

Optional and Required Restrictions

When a principal calls the sec_login_become_initiator to enable delegation or the
sec_login_become_delegate or sec_login_become_impersonator to become an intermediary, the
principal can specify optional and required restrictions. Optional and required restrictions are provided for
use by applications that have specific authorization requirements. These restrictions, which are defined by
the application, can be set by initiators or intermediaries, and are interpreted and enforced by application
target servers. Servers can ignore optional restrictions that they cannot interpret, but they must reject
requests associated with a required restriction that they cannot interpret. Both optional and required
restrictions are supplied as values of type sec_id_opt_req_t. They are inserted in an EPAC by the
Privilege Server and evaluated by the target server application.

Compatibility between z/OS and Pre-OS/390 Servers and Clients

Prior to OS/390 DCE a principal's privilege attributes were stored in a Privilege Attribute Certificate (PAC).
In z/OS the PAC is replaced by an Extended Attribute Certificate (EPAC), which includes the PAC and:

� Target, delegate, optional, and required restrictions.

� Extended registry attributes described in “Extended Registry Attribute API” on page 465.

Additionally, authorization credentials can consist of multiple EPACs, as in delegation chains, instead of a
single PAC.

When a pre-OS/390 client interacts with a z/OS server or vice versa, the z/OS server requires an EPAC
and the pre-OS/390 server requires a PAC.

For z/OS servers, the Security runtime automatically converts the PAC supplied by a pre-OS/390 client to
an EPAC. For pre-OS/390 servers, the Security runtime automatically extracts PAC data from the
credentials supplied by the z/OS client. However, because an EPAC for a delegation chain contains the
privilege attributes of multiple principals and a PAC contains only one set of privilege attributes, the
principals engaged in delegation must specify how to handle this issue of multiple versus. single identities.

When a principal initiates delegation or becomes an intermediary in a delegation chain, that principal can
specify whether to use the privilege attributes of the chain initiator or the last intermediary in the chain to
construct the PAC required by a pre-OS/390 server. This compatibility decision is specified as a value of
type sec_id_compatibility_mode_t, which is set to one of the following three values:

sec_id_compat_mode_none Compatibility mode is off. The Security runtime supplies the
application server with an unauthenticated PAC.

 Chapter 27. The Extended Privilege Attribute Application Program Interface 455

sec_id_compat_mode_initiator Compatibility mode is on. The pre-OS/390 PAC data is extracted from
the EPAC of the delegation initiator.

sec_id_compat_mode_caller Compatibility mode is on. The pre-OS/390 PAC data extracted from
the EPAC of the last intermediary in the delegation chain.

Calls to Extract Privilege Attribute Information

The EPA API sec_cred and and Login API sec_login_cred calls extract privilege attribute information.
These calls return information associated with an opaque handle to an authenticated identity.

The sec_cred calls are used by servers that have been called by a client with authenticated credentials.
Following are the calls and the information they return:

sec_cred_get_authz_session_info Returns a client's authorization information

sec_cred_get_client_princ_name Returns the principal name of the client

sec_cred_get_deleg_restrictions Returns delegate restrictions

sec_cred_get_delegate Returns a credential handle to the privilege attributes of a delegate
in a delegation chain

sec_cred_get_delegation_type Returns the delegation type

sec_cred_get_extended_attrs Returns extended attributes

sec_cred_get_initiator Returns a credential handle to the privilege attributes of the initiator
of a delegation chain

sec_cred_get_opt_restrictions Returns optional restrictions

sec_cred_get_pa_data Returns privilege attributes from a credential handle

sec_cred_get_req_restrictions Returns required restrictions

sec_cred_get_tgt_restrictions Returns target restrictions

sec_cred_get_v1_pac Returns pre-OS/390 privilege attributes

sec_cred_is_authenticated Returns true if the caller's privilege attributes are authenticated or a
false otherwise

The sec_login_cred calls are used by clients that are part of a delegation chain. Following are the calls
and the information they return:

sec_login_cred_get_delegate Returns the privilege attributes of a delegate in a delegation chain.

sec_login_cred_get_initiator Returns the privilege attributes of the initiator of a delegation chain.

Opaque Handles for sec_cred Calls

The sec_cred and sec_login calls discussed in this chapter return information about authenticated
principals associated with an opaque credential handle supplied to the call. Two credential handles are
used:

� sec_login_handle_t (returned by a client-side sec_login_get_current_context call).

� rpc_authz_cred_handle_t (returned by a server-side rpc_inq_auth_caller call).

These are handles to all the credentials in a delegation chain. The sec_login_cred_get_initiator,
sec_login_cred_get_delegate, sec_cred_get_initiator, and sec_cred_get_delegate return a handle of
type sec_cred_pa_handle_t, which is a handle to the extended privilege attributes of a particular identity

456 Application Development Guide: Core Components

in a delegation chain. The other sec_cred and sec_login calls discussed in this chapter take the
sec_cred_pa_handle_t handle and return the requested information for the particular identity.

 Disabling Delegation
The Login API sec_login_disable_delegation call disables delegation for a specified login context. It
returns a new login context of type sec_login_handle_t without any delegation information and prevents
any further delegation.

Setting Extended Attributes
The Login API, sec_login_set_extended_attrs call adds extended registry attributes to a login context.
The extended registry attributes must have been established and attached to the object using the
Extended Registry Attribute API. (For more information see “Extended Registry Attribute API” on
page 465.)

 Chapter 27. The Extended Privilege Attribute Application Program Interface 457

458 Application Development Guide: Core Components

Chapter 28. The Registry Application Program Interface

This chapter describes the Registry API. Like the other Security APIs, this one provides a simpler binding
mechanism than the standard RPC handle structure. It includes facilities for creating and maintaining the
Registry database. Applications that run in the z/OS DCE DCE Registry environment (that is, those that
assume the presence of the z/OS DCE Registry tools and servers) usually do not need to call this API.

Binding to a Registry Site

Although it is often convenient to speak of the Registry database in a way that implies that it is a single
physical database, the Registry database is replicated in all but the very smallest cells. Replication
reduces network traffic and increases the availability of Registry data to clients. A cell’s Registry database
usually consists of an update site (also known as the master site) and a number of query sites (also
known as read-only sites.). Changes to data at the master site are distributed to its query sites by
messages sent by the master. Query sites can only satisfy requests for data (for example,
sec_rgy_acct_lookup(), which returns account information). Requests for database changes (for
example, sec_rgy_acct_passwd(), which changes the password for an account) must be directed to the
master site; a query site that receives such a request returns an error.

To submit requests to the Registry Server, a client must first select a site and bind to it. The client can
select a site by name, ask the Directory Service to bind to the master site, or select an arbitrary site. In
addition, a client can select a cell and bind to a registry site in that cell.

The Registry API enables a client to communicate with the Registry Server using a specified
authentication protocol at a specified protection level, using a specified authorization protocol. For
instance, a developer can decide that the protection level for communicating with an update site should be
higher (that is, more secure) than that for a query site. The developer can decide the relatively infrequent
changes to Registry data should be done in a highly secure manner, and the authentication overhead
should be reduced for the more frequent requests for Registry data. The Registry API accommodates
these varying needs.

The following calls bind a client to a Registry Server in preparation for Registry operations. The argument
list of these calls enables an application to specify the authentication protocol, the protection level, and the
authorization protocol used.

sec_rgy_site_bind() Binds to a specified site.

sec_rgy_site_bind_update() Binds to any update site.

sec_rgy_site_bind_query() Binds to any query site.

sec_rgy_cell_bind() Binds to any registry site in a specified cell.

sec_rgy_site_binding_get_info() Extracts the Registry site name and security information from the
binding handle.

The following calls are similar to the binding calls described previously, except that an application cannot
specify security information. However, by default, the following calls use DCE Shared-Secret
Authentication, the packet-integrity level of protection, and DCE Authorization:

sec_rgy_site_open() Binds to the specified site.

sec_rgy_site_open_update() Binds to any update site.

sec_rgy_site_open_query() Binds to any query site.

sec_rgy_site_get() Gets the Registry site name from the binding handle.

 Copyright IBM Corp. 1994, 2001 459

The following calls provide miscellaneous binding management functionality:

sec_rgy_site_close() Ends binding to a Registry site and frees resources associated with this
binding

sec_rgy_site_is_readonly() Tests whether a bound site is an update or query site.

The Registry Database

The Registry database comprises three container objects:

principal Contains principal names; each name is associated with account information that is also
specified here (for example, the name of the primary group).

group Contains groups and the names of their member principals.

organization Contains organizations and the names of their member principals.

These three objects are referred to as name domains, and each member of a domain is referred to as a
PGO item. Principal items are contained in the principal domain, groups in the group domain, and
organizations in the organization domain. A principal might have a name such as /rd/writers/tom, from
which you might infer that tom is a member of the group writers and the organization rd. However, this
is not the case because the name /rd/writers/tom only indicates that tom and the data corresponding to
the account of this principal (if any) reside in /rd/writers in the principal domain. There can also be a
group named /rd/writers in the group domain, but the principal tom is not a member unless he is explicitly
named in the group /rd/writers in the group domain.

Each PGO item consists of a printstring name, a UUID, and a UNIX number (for compatibility with UNIX
system security interfaces). For various administrative reasons, it is frequently convenient to be able to
refer to a PGO item by more than one name. Consequently, some PGO items are aliases for other items.
An alias uses the same UUID and UNIX number as the PGO item to which it refers, but contains only a
pointer to that item.

The Registry also contains the rgy object, which describes Registry properties and policies, and
organization policies.

Creating and Maintaining PGO Items

The PGO items in the Registry database are created and maintained with routines that are prefixed
sec_rgy_pgo. The contents of a PGO item vary with the domain. If the domain is group or
organization, the contents are the membership list of principal names. If the domain is principal, the
contents are the data corresponding to the Registry account using that name.

The sec_rgy_pgo() interface contains the following calls for maintaining the PGO trees:

sec_rgy_pgo_add() Adds a PGO item.

sec_rgy_pgo_delete() Deletes a PGO item.

sec_rgy_pgo_rename() Changes the name of a PGO item.

sec_rgy_pgo_replace() Replaces information corresponding to the specified PGO item.

The sec_rgy_pgo() interface contains the following calls for maintaining PGO membership lists:

sec_rgy_pgo_add_member() Adds a member to a group or organization membership list.

sec_rgy_pgo_delete_member() Deletes a member from a group or organization membership list.

460 Application Development Guide: Core Components

sec_rgy_pgo_get_members() Returns a list of members of a group or organization.

sec_rgy_pgo_is_member() Tests whether a principal is a member of a specified group or
organization.

The sec_rgy_pgo() interface contains the following calls for retrieving PGO item data:

sec_rgy_pgo_get_by_id() Returns the PGO item with the specified UUID.

sec_rgy_pgo_get_by_name() Returns the PGO item with the specified name.

sec_rgy_pgo_get_by_unix_num() Returns the PGO item with the specified UNIX number.

sec_rgy_pgo_get_next() Returns the PGO item that follows the last PGO item returned.

The sec_rgy_pgo() interface also contains routines that convert PGO item specifiers, as follows:

sec_rgy_pgo_id_to_name() Returns the name for a PGO item identified by its UUID.

sec_rgy_pgo_id_to_unix_num() Returns the UNIX number for a PGO item identified by its UUID

sec_rgy_pgo_name_to_id() Returns the UUID for a named PGO item.

sec_rgy_pgo_unix_num_to_id() Returns the UUID or a PGO item identified by its UNIX number.

sec_rgy_pgo_name_to_unix_num() Returns the UNIX number for a PGO item identified by its name.

sec_rgy_pgo_unix_num_to_name() Returns the name for a PGO item identified by its UNIX number.

Creating and Maintaining Accounts

The login-name field of a DCE account contains a principal name, a primary group name, and an
organization name. The account can also contain a project list (also known as a concurrent group set)
that specifies all the groups to which the principal corresponding to the account belongs. However, the
login name field itself specifies only one group name.

An account can be added to the Registry database only when all of its constituent PGO items are
established. For instance, to create an account with the principal name tom, the group name writers, and
the organization name rd, all three names must exist as individual PGO items in the database. If the user
principal, in this case tom, has the appropriate ACL permissions, its membership will be added
automatically when it is created. Otherwise, the writers group and the rd organization must specify that
tom is a member.

When an account is created with sec_rgy_acct_add() (and if a project list is enabled for the new
account), the call scans the groups in the Registry and creates a project list containing all the groups in
which the principal name appears. Subsequently, the project list can be changed with the
sec_rgy_pgo_add_member() and sec_rgy_pgo_delete_member() calls.

The following calls create and maintain accounts:

sec_rgy_acct_add() Adds an account to an existing principal item.

sec_rgy_acct_delete() Deletes an account, leaving the principal item.

sec_rgy_acct_rename() Changes an account login name.

The following calls return the information in an account:

sec_rgy_acct_get_projlist() Returns the project list for an account.

sec_rgy_acct_lookup() Returns all the account data.

The following calls change the information in an account:

 Chapter 28. The Registry Application Program Interface 461

sec_rgy_acct_passwd() Changes an account password.

sec_rgy_acct_replace_all() Replaces all of an account’s data.

sec_rgy_acct_admin_replace() Replaces only the administrative account data.

sec_rgy_acct_user_replace() Replaces only the account data that is accessible to the user of the
account.

Registry Properties and Policies

This section outlines some Registry API parameters that affect the cell as a whole, and the routines that
enable an application to retrieve and set the parameter values.

Registry Properties: Several Registry parameters and flags affect all accounts in the Registry.
They include the following:

� The version number of the Registry software used to create and read the Registry.

� The name and UUID of the cell associated with the Registry, and whether the current Registry site is
an update site or a query site.

� Minimum and default lifetimes for certificates of identity issued to principals.

� Bounds on the UNIX numbers used for principals, and whether the UUIDs of principals also contain
embedded UNIX numbers.

The routines associated with this parameter set are:

sec_rgy_properties_get_info() Returns registry properties.

sec_rgy_properties_set_info() Sets registry properties.

The Registry Authentication Policy: Another set of parameters affecting all principals is the
Registry authentication policy. This set only controls the maximum lifetime of certificates of identity, on
first issue and renewal. Accounts also have authentication policies and the policy in effect for any
principal is the most restrictive combination of the Registry policy and the policy for a principal’s account.
The associated routines are:

sec_rgy_auth_plcy_get_info() Returns the authentication policy for an account.

sec_rgy_auth_plcy_get_effective() Returns the effective authentication policy for an account.

sec_rgy_auth_plcy_set_info() Sets the authentication policy for an account.

Organization Policies: Another parameter set controls the set of accounts of principals that are
members of an organization. These parameters control the lifetime and length of passwords, as well as
the set of characters from which passwords may be composed. This parameter set also specifies the
default life span of accounts associated with the organization. The routines associated with this parameter
set are:

sec_rgy_plcy_get_info() Returns the policy for an organization.

sec_rgy_plcy_get_effective() Returns the effective policy for an organization.

sec_rgy_plcy_set_info() Sets the policy for an organization.

462 Application Development Guide: Core Components

Routines to Return UNIX Structures

The Registry API provides calls to obtain registry entries in a UNIX style structure. These APIs return
account and group entries similar to the getpwnam, getgrnam, getpwuid, and getgrid UNIX library
routines. These APIs, which can be called by corresponding UNIX library routines to ensure compatibility
with UNIX programs, are:

sec_rgy_unix_getpwnam() Returns a UNIX style password entry for an account specified by
name.

sec_rgy_unix_getgrpnam() Returns a UNIX style group entry for an account associated with a
specified group name.

sec_rgy_unix_getpwuid() Returns a UNIX style password entry for an account specified by UNIX
ID.

sec_rgy_unix_getgrgid() Returns a UNIX style group entry for an account associated with a
specified group ID.

Miscellaneous Registry Routines

The Registry API includes a few miscellaneous routines:

sec_rgy_login_get_info() Returns login information for the specified account.

sec_rgy_login_get_effective() Applies local overrides (if such data is available) to Registry account
information and returns information about which account information
fields have been overridden.

Note: Override capability is not supported in z/OS DCE.

sec_rgy_wait_until_consistent() Blocks until all previous database updates have been distributed to all
sites. This is useful for applications that first bind and write to an
update site, and then bind to an arbitrary query site and depend on
up-to-date information.

sec_rgy_cursor_reset() Resets the database cursor to return the first suitable entry.

 Chapter 28. The Registry Application Program Interface 463

464 Application Development Guide: Core Components

Chapter 29. The Extended Attribute Application Program
Interfaces

This chapter describes the Extended Attribute APIs. There are two Extended Attribute APIs: the Extended
Registry Attribute (ERA) interface to create attributes in the registry database and the DCE Attribute
interface to create attributes in a database of your choice.

The Extended Registry Attribute interface (consisting of sec_attr() calls) provides facilities for extending
the Registry database by creating, maintaining, and viewing attribute types and instances, and providing
information to and receiving it from outside attribute servers known as attribute triggers. It is the preferred
API for Security schema and attribute manipulations. Application servers that manage legacy Security
attributes or provide third-party processing of attributes stored in the registry database can export and
implement the sec_attr() interface. Trigger servers are accessed through the sec_attr_trig() interface by
the Security client agent during certain sec_rgy_attr() calls. The Extended Registry Attribute interface
uses the same binding mechanism as the Registry API, described in Chapter 28, “The Registry
Application Program Interface” on page 459.

The DCE Attribute interface (consisting of dce_attr_sch() calls) is provided for schema and attribute
manipulation of data repositories other than the registry. Although similar to the ERA interface, the
functionality of the DCE Attribute interface is limited to creating schema entries (attribute types). The
interface does not provide calls to create and manipulate attribute instances or to access trigger servers.

The chapter first describes the Extended Registry Attribute interface and then the DCE Attribute interface.
Finally is describes macros and utilities provided for developers who use either Attribute API.

Extended Registry Attribute API

The Registry is a repository for principal, group, organization, and account data. It stores the network
privilege attributes used by the DCE and account data used by local operating systems. This local
account data, however, is appropriate only for UNIX operating systems. The Extended Registry Attribute
Facility provides a mechanism for extending the Registry schema to include data (attributes) required by or
useful to operating systems other than UNIX.

The ERA API provides the ability to define attribute types and to attach attribute instances to registry
objects. Registry objects are nodes in the Registry database, to which access is controlled by an ACL
Manager type. The Registry objects are:

 � Principal

 � Group

 � Organization

 � Policy

 � Directory

 � Replist

 � Attr_schema

All registry objects and their accompanying ACL Manager Type are described in the z/OS DCE
Administration Guide.

 Copyright IBM Corp. 1994, 2001 465

The ERA API also provides a trigger interface that application servers use to integrate their attribute
services with the Extended Registry Attribute services.

 Attribute Schema
The schema extensions are implemented in a single attribute schema that is essentially a catalog of
schema entries, each of which defines the format and function of an attribute type. The schema can be
dynamically updated to create, modify, or delete schema entries.

The attribute schema is identified by the name xattrschema under the security junction point (usually
/.:/sec) in the CDS namespace. Access to the attribute schema (also called schema) is controlled by an
ACL on the schema object. The schema is propagated from the master security server to replicas, like
other Registry data. Since the attribute schema is local to a cell, it defines the types that can be used
within the cell, but not outside the cell (unless the type is also defined in another cell).

Attribute Types and Instances

Each attribute type definition in the schema consists of attribute type identifiers (UUID and name) and
semantics that control the instances of attributes of this type. In this book, schema entry refers to the
registry entry that defines an attribute type.

An attribute instance is an attribute that:

� Is attached to an object

� Has a value (as opposed to an attribute type, which has no values but simply defines the semantics to
which attribute instances of that attribute type must adhere).

Attribute instances contain the UUID of their attribute type.

Attribute Type Components

The sec_attr_schema_entry_t data type defines an attribute type. This data type contains attribute type
identifiers and characteristics.

The identifiers of attribute types are a name and a UUID. Generally the name is used for interactive
access and the UUID for programmatic access.

Attribute type characteristics describe the format and function of the attribute type and thus control the
format and function of instances of that type. These characteristics, all specified in the
sec_attr_schema_entry_t data type, are described in the following sections.

Attribute Encoding: Attribute encoding defines the legal encoding for instances of the attribute type.
The encoding controls the format of the attribute instance values, such as whether the attribute value is an
integer, string, a UUID, or a vector of UUIDs that define an attribute set.

Attribute encodings are specified in the sec_attr_encoding_t data type (fully described in the z/OS DCE
Application Development Reference).

The possible encodings for attribute types are:

any The attribute instance value can be of any legal encoding type.

void The attribute instance has no value. It is simply a marker that is either present or
absent.

466 Application Development Guide: Core Components

printstring The attribute value is a printable IDL character string using the DCE Portable
Character Set (PCS).

printstring_array The attribute value is an array of printstrings.

integer The attribute value is a signed 32 bit integer.

bytes The attribute value is a string of bytes. The byte string is assumed to be a pickle or
is otherwise a self describing type.

confidential_bytes The attribute value is a string of encrypted bytes. This encrypted data can be
passed over the network and is available to user-developed applications.

i18n_data An internationalized string of bytes with a tag identifying the OSF registered codeset
used to encode the data.

uuid A DCE UUID.

attr_set The value is an attribute set, a vector of attribute type UUIDs used to associate
multiple related attribute instances (members of the set). The vector contains the
UUIDs of each member of the set. Attribute sets provide a flexible way to group
related attributes on an object for easier search and retrieval.

The attribute type UUIDs referenced in an attribute set instance must correspond to
existing attribute schema entries. Although the members specified in a set are
generally expected to be attached to the object to which the set instance is
attached, no checking is done to confirm that they are. Thus, it is possible to create
an attribute set instance on an object before creating member attribute instances on
that object. A query on such an attribute set returns all instances of member
attributes that exist on the object along with a warning that some attribute types
were missing.

Note that attribute sets cannot be nested: a member UUID of an attribute set can
not itself identify an attribute set.

A query on an attribute set expands to a query per the set's members. In other
words, an attribute lookup operation on an attribute set returns all attribute
instances that are members of the set, not the set instance itself. (Certain
operations, sec_rgy_attr_set_lookup_by_id and sec_rgy_attr_lookup_by_name,
can retrieve attribute set instances.)

Updates to an attribute set (sec_rgy_attr_update) do not expand the update to its
members, but apply only to the attribute set. Since the value carried by a set
instance is a vector containing the UUIDs of the member attribute types, an update
makes changes only to the set's members, not the values carried by those member
attributes. Deletions of attribute sets delete only the set instance, not the member
instances.

Since the attributes that are set members exist independently of the attribute set,
they can be manipulated directly like any other attribute.

binding The attribute value is a sec_attr_binding_info_t containing authentication,
authorization and binding information suitable for communicating with a DCE server.

 Chapter 29. The Extended Attribute Application Program Interfaces 467

ACL Manager Set: An attribute type's ACL manager set specifies the ACL Manager type or types
(by UUID) that control access to the object types to which attribute instances of this type can be attached.
Attribute instances can be attached only to objects protected by the ACL Manager types in the schema
entry. For example, suppose an ACL manager set for an attribute type named MVSname lists only the
ACL Manager type for principals. Then, instances of the attribute type named MVSname can be attached
only to principals and not any other registry objects.

Access to an attribute instance is controlled by the ACL on the object to which the attribute instance is
attached and access control is implemented by the object's ACL Manager type. For example, access to
an attribute named MVSname on the principal object named delores is controlled by the ACL on the
delores object.

Do not confuse access to an attribute type definition (a schema entry) with access to an attribute instance.
As described previously, access to a schema entry is controlled by the ACL on the xattrschema object.
Access to an attribute instance is controlled by the ACL on the object to which the attribute instance is
attached.

In addition to the ACL Manager types, the ACL manager set defines the permission bits need to query,
update, test, and delete instances of the attribute type. These bits are used by the object's ACL Manager
to determine rights to the object's attributes.

The ACL Manager types and permissions defined for the attribute type apply to all instances of the
attribute type.

Note that the ACL Manager facility supports additional generic attribute type permissions (O through Z
inclusive). Administrators can assign these permissions to attribute types of their choice. All uses of
these additional permission bits are controlled by the cell's administrator. See the z/OS DCE
Administration Guide for more information.

Attribute Flags: Following is a description of the attribute type flags set in a schema entry:

Unique Flag: The unique flag specifies whether or not the value of each instance of an attribute type
must be unique within the cell. For example, assume that an instance of attribute type A is attached to 25
principals in the cell. If the unique flag is set on, the value of the A attribute for each of those 25
principals must be different. If it is set off, then all 25 principals can share the same value for attribute A.

Multi-Valued Flag: The multi-valued flag specifies whether or not instances of the attribute can be
multi-valued. If an attribute is multi-valued, multiple instances of the same attribute type can be attached
to a single Registry object. For example, if the multi-valued flag is set on, a single principal can have
multiple instances of attribute type A. If the flag is set off, a single principal can have only one instance of
attribute type A.

All instances of multi-valued attributes share the UUID (the UUID of their attribute type), but the values
carried by the instances differ. Generally, to access all instances of a multi-valued attribute, you supply
the attribute UUID. To access a specific instance of a multi-valued attribute, you supply the UUID and the
value carried by that instance.

468 Application Development Guide: Core Components

Reserved Flag: The reserved flag indicates whether or not the attribute type can be deleted from the
schema. Note that when an attribute type is deleted, all instances of the attribute type are deleted. If the
reserved flag is set on, the entry cannot be deleted. If the reserved flag is set off, authorized principals
can delete the schema entry.

Apply_Defaults Flag: The use_defaults flag indicates whether or not default attributes should be
returned when objects are queried by a client with the sec_rgy_attr_get_effective call. If apply-defaults
flag is set on, defaults are applied. If it is set off, defaults are not supplied.

Defaults are determined in the following manner:

1. If the requested attribute exists on the principal, that attribute is returned. If it does not, the search
continues.

2. The next step in the search depends on the type of object:

For principals with accounts:

a. The organization named in the principal's account is examined to see if an attribute of the
requested type exists. If it does, it is returned and the search ends. If it does not, the search
continues to the policy object as described in step 2b.

b. The registry policy object is examined to see if an attribute of the requested type exits. If it does,
it is returned. If it does not, a message indicating the no attribute of the type exists for the object
is returned.

For principals without accounts, for groups, and for organizations: the registry policy object is
examined to see if an attribute of the requested type exits. If it does, it is returned. If it does not, a
message indicating the no attribute of the type exists for the object is returned.

Intercell Action Field: The intercell_action field of the schema entry specifies the action that should
be taken by the Privilege server when reading attributes from a foreign cell. This field can contain one of
three values:

sec_attr_intercell_act_accept To accept the foreign attribute instance.

sec_attr_intercell_act_reject To reject the foreign attribute instance.

sec_attr_intercell_act_evaluate To call a remote trigger server to determine how the attribute instance
should be handled.

When the Privilege server generates a PTGT for a foreign principal, it retrieves the list of attributes from
the foreign principal's EPAC.

These attributes instances may be attached to the principal object itself or attached to the group or
organization object associated with the principal object.

The Privilege server then checks the local attribute schema for attribute types with UUIDs that match the
UUIDs of the attribute instances from the foreign cell that are contained in the EPAC. At this point the
Privilege Server takes one of two actions:

1. If the Privilege server cannot find a matching attribute type in the local attribute schema, it checks the
unknown_intercell_action attribute on the policy object. If the unknown_intercell_action attribute
is set to:

� sec_attr_intercell_act_accept, the foreign attribute instance is retained and included in the EPAC
generated for the object by the Privilege server.

� sec_attr_intercell_act_reject, the foreign attribute is discarded

 Chapter 29. The Extended Attribute Application Program Interfaces 469

Note: The unknown_intercell_action attribute must be created by the system administrator and
attached to the policy object. The attribute type, which takes the same values as the
intercell_action field, has the following characteristics:

 � Name: unknown_intercell_action

� Attribute UUID: 71e0ef2c-d12e-11cc-bb7b-080009353559

 � Encoding: sec_attr_encoding_integer

� ACL Manager set: policy_acl_mgr

 � Unique: false

 � Multi-valued: false

 � Reserved: true

� Comment text: Flag indicating whether to accept or reject foreign attributes for which no
schema entry exists

2. If the Privilege server finds a matching attribute type in the local attribute schema, it retrieves the
attribute. The action it takes depends on the setting of the attribute type's intercell action field and
unique flag as follows:

� If the intercell action field is set to sec_attr_intercell_act_accept and:

– The unique flag is not set on, the Privilege server includes the foreign attribute instance in the
principal's EPAC

– The unique flag is set on, the Privilege server includes the foreign attribute instance in the
principal's EPAC only if the attribute instance value is unique among all instances of the
attribute type within the local cell

Note: If unique attribute type flag is set on and a query trigger exists for a given attribute type,
the intercell action field cannot be set to sec_attr_intercell_act_accept because, in this
case, only the query trigger server can reasonably perform a uniqueness check.

� If the intercell action field is set to sec_attr_intercell_act_reject, the Privilege server
unconditionally discards the foreign attribute instance

� If the intercell action field is set to sec_attr_intercell_act_evaluate, the Privilege server makes a
remote sec_attr_trig_intercell_avail call to an attribute trigger using the binding information in the
local attribute type schema entry. The remote attribute trigger decides whether to retain, discard,
or map the attribute instance to another value(s). The Privilege server includes the values
returned by the attribute trigger in the sec_attr_trig_query call output array in the principals
EPAC.

Attribute Scope: The scope field controls the objects to which the attribute can be attached. If
scope is defined, the attribute can be attached only to objects defined by the scope. For example, if the
scope for a given attribute type is defined as the directory name /principal/krbgt, instances of that
attribute type can be attached only to objects in the /principal/krbgt directory (a directory that by
convention contains only cell principals). If the scope is narrowed by fully specifying an object in the
/principal/krbgt directory. for example /principal/krbgt/dresden.com, then the attribute can be attached
only to the dresden.com principal.

470 Application Development Guide: Core Components

Trigger Type Flag: The schema entry trigger type flag specifies whether the trigger server
associated with the attribute type is invoked for update or query operations. See “The Attribute Trigger
Facility” on page 481 for more information on attribute triggers.

Trigger Binding: The schema entry trigger binding field contains a binding handle to a remote trigger
that will perform processing for the attribute instances. See “The Attribute Trigger Facility” on page 481
for more information on attribute triggers.

Calls to Manipulate Schema Entries

This section first introduces the sec_attr_schema_entry_t data type used by the calls that create and
update schema entries that define attribute types. It then describes the calls that create, modify, delete,
and read schema entries.

The sec_attr_schema_entry_t Data Type

The sec_attr_schema_entry_t data type is used in the calls that create and update schema entries. The
data type consists of four values and six other data types. The values used by the
sec_attr_schema_entry_t are the attribute type name, UUID, scope, and a text field for comments.

The data types used by the sec_attr_schema_entry_t are:

sec_attr_sch_entry_flags_t That specifies the unique, multi-valued, reserved, and use_defaults
attribute flags.

sec_attr_acl_mgr_info_set_t That specifies the attribute type's ACL manager(s). This data type
defines the attribute type ACL manager set. This data type contains an
array of pointers of type sec_attr_mgr_info_p_t, which reference
sec_attr_acl_mgr_info_t data types. There is one
sec_attr_acl_mgr_info_t data type for each ACL manager associated
with the attribute type. Each sec_attr_acl_mgr_info_t defines ACL
manager UUID and the permission bits.

sec_attr_encoding_t That specifies the schema entry encoding.

sec_attr_trig_type_t That specifies the type of attribute trigger associated with the attribute
type (if an attribute trigger is to be associated with the attribute type).
See “The Attribute Trigger Facility” on page 481 for more information on
attribute triggers.

sec_attr_intercell_action_t That specifies the action to be taken attribute instances of this type that
come from a foreign cell.

sec_attr_bind_info_t That specifies binding information for the trigger server associated with
the attribute type (if an attribute trigger is associated with the attribute
type).

The sec_attr_bind_info_t data type uses two other data types:
sec_attr_bind_auth_info_t and sec_attr_binding_t. The
sec_attr_bind_info_t structure for trigger binding is described fully in
“The Attribute Trigger Facility” on page 481.

Figure 100 on page 472 illustrates the structure of a sec_attr_schema_entry_t data type.

 Chapter 29. The Extended Attribute Application Program Interfaces 471

Figure 100. The sec_attr_schema_entry_t Data Type

Creating and Managing Schema Entries

This section describes the calls to create, modify, and delete the schema entries that define attribute
types.

472 Application Development Guide: Core Components

sec_rgy_attr_sch_create_entry(): The sec_rgy_attr_sch_create_entry() call creates a schema
entry that defines an attribute type in the attribute schema.

This call uses the sec_attr_schema_entry_t data type that completely defines the schema entry,
including:

� The attribute type name (generally used for interactive access) and UUID (generally used for
programmatic access). Note that attribute instances share the name and UUID of their attribute type.

� The attribute's encoding (described in “Attribute Type Components” on page 466). The encoding is
specified an enumerator of type sec_attr_encoding_t. For some kinds of encodings, additional data
types are used to further specify the encoding information. These additional data types, the kinds of
encodings that require them, and the purpose of the data types are listed in Table 23.

Table 23. Encodings and Required Data Types

Encoding Required Data Type Purpose of Data Type

sec_attr_enc_bytes sec_attr_enc_bytes_t Defines the length of attribute values

sec_attr_enc_confidential_bytes sec_attr_enc_bytes_t Defines the length of attribute values

sec_attr_enc_i18n_data sec_attr_i18n_data_t Defines the i18n codeset

sec_attr_enc_attr_set sec_attr_enc_attr_set_t Defines the total number of members
in the attribute set and the UUID of
each member

sec_attr_enc_printstring sec_attr_enc_printstring_t Defines a single printstring

sec_attr_enc_printstring_array sec_attr_enc_str_array_t Defines an array of printstrings

sec_rgy_attr_sch_update_entry(): The sec_rgy_attr_sch_update_entry() call updates a
schema entry that defines an attribute type.

The schema entry components that can be modified are controlled by the Extended Registry Attribute API
and the modify_parts parameter of the sec_rgy_attr_sch_update_entry() call.

To ensure that Registry and access control data remains consistent, the Extended Registry Attribute API
allows only the following schema entry components to be modified:

 � Attribute name

 � Reserved flag

� Apply defaults flag

� Intercell action flag

 � Trigger binding

 � Comment

Note that ACL Managers can be added to a schema entry's ACL Manager set, but they cannot be
modified or deleted.

To modify any other schema entry fields implies a drastic change to the attribute type. If this change must
be made, the schema entry must be deleted (which deletes all attribute instances of that type), and then
re-created.

The modify_parts parameter of the sec_rgy_attr_sch_update_entry() call can also be used to prohibit
modification of additional schema entry fields. This parameter, which is actually a

 Chapter 29. The Extended Attribute Application Program Interfaces 473

sec_attr_schema_entry_parts_t data type, lists the fields that can be modified by the call. Only those
fields listed in sec_attr_schema_entry_parts_t can be modified.

The new values used to update the attribute type are supplied in a sec_attr_schema_entry_t data type.

sec_rgy_attr_sch_delete_entry(): The sec_rgy_attr_sch_delete_entry() call deletes attributes
types from the attribute schema. The attribute type to be deleted is specified by UUID. When an attribute
type is deleted, all instances of that attribute type are invalidated.

Reading Schema Entries

This section describes the calls that read schema entries and the cursor used by the
sec_rgy_attr_sch_scan() call.

Using sec_attr_cursor_t with sec_rgy_attr_sch_scan(): The sec_rgy_attr_sch_scan()
call, which reads a specified number of attribute type entries from the attribute schema, uses a cursor of
type sec_attr_cursor_t. This cursor must be allocated before it can be used as input to the
sec_rgy_attr_sch_scan() call. In addition, it can also be initialized to the first attribute type entry in the
schema, although this is not required. After use, the resources allocated to the sec_attr_cursor_t must
be released.

The following calls allocate, initialize, and release a sec_attr_cursor_t for use with the
sec_rgy_attr_sch_scan() call:

 � sec_rgy_attr_sch_cursor_init()

The sec_rgy_attr_sch_cursor_init() call allocates resources to the cursor and initializes the cursor to
the first attribute type entry in the attribute schema. This call also supplies the total number of entries
in the attribute schema as part of its output. The cursor allocation is a local operation. The cursor
initialization is a remote operation and makes a remote call to the Registry.

 � sec_rgy_attr_sch_cursor_alloc()

The sec_rgy_attr_sch_cursor_alloc() call allocates resources to the cursor, but does not initialize the
cursor. However, since the sec_rgy_attr_sch_scan() call will initialize the cursor if it is passed in
uninitialized, you may prefer this call to limit the number of remote calls performed by an application.
Be aware that the sec_rgy_attr_sch_cursor_init() call provides the total number of entries in the
named schema, a piece of information not provided by the sec_rgy_attr_sch_cursor_alloc() call.

 � sec_rgy_attr_sch_cursor_release()

The sec_rgy_attr_sch_cursor_release() call releases all resources allocated to a sec_attr_cursor_t
cursor used with the sec_rgy_attr_sch_scan() call.

 � sec_rgy_attr_sch_cursor_reset()

The sec_rgy_attr_sch_cursor_reset() call initializes a sec_attr_cursor_t cursor used with the
sec_rgy_attr_sch_scan() call. The reset cursor can then be used without releasing and re-allocating.

474 Application Development Guide: Core Components

sec_rgy_attr_sch_scan(): The sec_rgy_attr_sch_scan() call reads a specified number of schema
entries from the attribute schema.

The number of entries to read is specified as an unsigned 32-bit integer. The read begins at the entry at
which the sec_attr_cursor_t cursor is positioned and continues through the number of entries specified.
The cursor must be allocated but can be initialized or uninitialized, since sec_rgy_attr_sch_scan()
initializes any uninitialized cursor it receives as input.

The call output includes an array of sec_attr_schema_entry_t values and a 32-bit integer that specifies
the number of schema entries returned.

To read through all entries in a schema, continue making sec_rgy_attr_sch_scan() calls, until the
no_more_entries message is received. When all calls are complete, release the resources allocated to
the sec_attr_cursor_t cursor by using the sec_rgy_attr_sch_cursor_release() call.

sec_rgy_attr_sch_lookup_by_id() and sec_rgy_attr_sch_lookup_by_name(): The
sec_rgy_attr_sch_lookup_by_id() call reads the attribute schema entry identified by UUID. The output
of the call is a sec_attr_schema_entry_t that contains the specified attribute type's name, UUID, and
characteristics. Generally, this call is used for programmatic access.

For interactive access, use the sec_rgy_attr_sch_lookup_by_name() call. This call returns the same
information as the sec_rgy_attr_sch_lookup_by_id() call, but specifies the schema entry to read by
name instead of UUID.

Reading the ACL Manager Types

Two calls retrieve the ACL Manager types that protect objects dominated by a named schema:

 � sec_rgy_attr_sch_get_acl_mgrs()

Retrieves the UUIDs of the ACL manager types protecting all objects in a named schema.

 � sec_rgy_attr_sch_aclmgr_strings()

Retrieves printable strings for each ACL manager type protecting objects in a named schema. The
strings contain the ACL manager type's name, associated help information, and supported permission
bits.

Calls to Manipulate Attribute Instances

This section first introduces the sec_attr_schema_t data type used by the calls that create and update
attribute instances. It then describes the calls that create, modify, delete, and read attribute instances.
For all these calls, the object whose attributes should be accessed is identified by name and by the
domain in which the object exists. (Note that the domain parameter is ignored for the Policy and the
Replist objects.) Registry domains are described in Chapter 28, “The Registry Application Program
Interface” on page 459.

 Chapter 29. The Extended Attribute Application Program Interfaces 475

The sec_attr_t Data Type

The sec_attr_t data type is used in the calls that create and update attribute instances. The data type
consists of a value of type uuid_t that identifies the attribute to be accessed by UUID and data type of
sec_attr_value_t. The sec_attr_value_t data type is a tagged union of the actual value assigned (or to
be assigned to the attribute instance) and a data type of sec_attr_encoding_t that specifies the encoding
tags that define the attribute type characteristics. Figure 101 illustrates the structure of a sec_attr_t data
type.

Figure 101. The sec_attr_t Data Type

Creating and Managing Attribute Instances

This section describes the calls to create, modify, and delete the attribute instances.

sec_rgy_attr_update(): The sec_rgy_attr_update() call creates new attribute instances and
updates existing attribute instances attached to a object specified by name and Registry domain. The
instances to be created or updated are passed as an array of sec_attr_t data types.

Because the new values are passed in as an array, if the update of any attribute instance in the array
fails, all fail. However, to help pinpoint the cause of the failure, the call identifies the first attribute whose
update failed in a failure index by array element number.

For existing attribute instances attached to object, the values passed in the array overwrite the existing
values. In other words, if the UUID passed in the input array matches the UUID of an existing instance,
the values passed in overwrite the existing values.

If the attribute instance does not exist, it is created. In other words, if the UUID passed in in the array
does not match any other attribute type UUID attached to the object, a new attribute instance is created.

For multi-valued attributes, because every instance of the multi-valued attribute is identified by the same
UUID, every instance is overwritten with the supplied value. For example, suppose object delores has
three attributes of the multivalued type security_role. If you pass in one value for security_role, the
values of all three are changed to the one you enter.

To change only one of the security_role values, you must supply the values that should be unchanged as
well as the new value. For example, suppose object delores has three security_role attributes with
values of level1, level2, and level3. To change level1 to level1.5 and retain level2 and level3, the input
array must contain level1.5, level2, and level3.

476 Application Development Guide: Core Components

To create instances of multi-valued attributes, you must create individual sec_attr_t data types to define
each multi-valued attribute instance and then pass all of them in in the sec_rgy_attr_update() input array.

If an input attribute is associated with an update attribute trigger, the attribute trigger is invoked (by the
sec_attr_trig_update() call) and the values in the sec_rgy_attr_update() input array are used as input to
the update attribute trigger. The output values from the update attribute trigger are stored in the registry
database and returned in the sec_rgy_attr_update() output array.

sec_rgy_attr_test_and_update(): The sec_rgy_attr_test_and_update() call, like the
sec_rgy_attr_update() call, creates new attribute instances and updates existing attribute instances
attached to a object specified by name and Registry domain. However, it performs the update only if a set
of specified attribute instances match the attribute instances that already exist for the object. This call is
useful to ensure that updates are made only if certain conditions exist.

The attribute instances to be matched are passed in an input array of sec_attr_t values. Other than this
conditional test, this call functions exactly the same as the sec_rgy_attr_update() call.

sec_rgy_attr_delete(): The sec_rgy_attr_delete() call deletes the specified attribute instances from
an object identified by name and Registry domain. The attribute instances to be deleted are passed in as
an array of values of sec_attr_t.

To delete attribute instances that are not multi-valued and to delete all instances of a multi-valued
attribute, an attribute UUID is all that is required. For these attribute instances, supply the attribute UUID
in the input array and set the attribute encoding (in sec_attr_encoding_t) to sec_attr_enc_void.

To delete a specific instance of a multi-valued attribute, you must supply the UUID and value that uniquely
identify the multi-valued attribute instance in the input array.

Note that if the deletion of any attribute instance in the array fails, all fail. However, to help pinpoint the
cause of the failure, the call identifies the first attribute whose deletion failed in a failure index by array
element number.

Reading Attribute Instances

This section describes the calls that read attribute instances, and it describes the cursor used by the
sec_rgy_attr_lookup_by_id() call.

Using sec_rgy_attr_cursor_t with sec_rgy_attr_lookup_by_id(): The
sec_rgy_attr_lookup_by_id() call, which reads attributes for a specified object, uses a cursor of type
sec_attr_cursor_t. This cursor must be allocated before it can be used as input to the
sec_rgy_attr_lookup_by_id() call. In addition, it can also be initialized to the first attribute in the
specified object's list of attributes, although this is not required. After use, the resources allocated to the
sec_attr_cursor_t must be released.

The following calls allocate, initialize, and release a sec_attr_cursor_t for use with the
sec_rgy_attr_lookup_by_id() call:

 � sec_rgy_attr_cursor_init()

The sec_rgy_attr_sch_cursor_init() call allocates resources to and initializes the cursor to the first
attribute in the specified object's list of attributes. This call also supplies the total number of attributes
attached to the object as part of its output. The cursor allocation is a local operation. The cursor
initialization is a remote operation and makes a remote call to the Registry.

 � sec_rgy_attr_cursor_alloc()

 Chapter 29. The Extended Attribute Application Program Interfaces 477

The sec_rgy_attr_cursor_alloc() call allocates resources to the cursor, but does not initialize the
cursor. However, since the sec_rgy_attr_lookup_by_id() call will initialize the cursor if it is passed in
uninitialized, you may prefer this call to limit the number of remote calls performed by the application.
Be aware that the sec_rgy_attr_cursor_init() call provides the total number of attributes attached to
the specified object, a piece of information not provided by this call.

 � sec_rgy_attr_cursor_release()

The sec_rgy_attr_cursor_release() call releases all resources allocated to a sec_attr_cursor_t
cursor used with the sec_rgy_attr_lookup_by_id() call.

 � sec_rgy_attr_cursor_reset()

The sec_rgy_attr_cursor_reset() call reinitializes a sec_attr_cursor_t cursor used with the
sec_rgy_attr_lookup_by_id() call. The reset cursor can then be used without releasing and
re-allocating.

sec_rgy_attr_lookup_by_id(): The sec_rgy_attr_lookup_by_id() call reads attributes specified
by UUID for an object specified by name and domain. Specifically the call returns:

� An array of sec_attr_t values.

� A count of the total number of attribute instances returned.

� A count of the total number of attribute instances that could not be returned because of size
constraints of the sec_attr_t array. (Note that the call allows the size of the array to be specified.)

For multi-valued attributes, the call returns a sec_attr_t for each value as an individual attribute instance.
For attribute sets, the call returns a sec_attr_t for each member of the set, but not the set instance. This
routine is useful for programmatic access.

If the attribute instance to be read is not associated with a query trigger or no additional information is
required by the query trigger, an attribute UUID is all that is required. For these attribute instances, supply
the attribute UUID in the input array and set the attribute encoding (in sec_attr_encoding_t) to
sec_attr_enc_void.

If the attribute instance to be read is associated with a query attribute trigger that requires additional
information before it can process the query request, use a sec_attr_value_t to supply the requested
information. To do this:

� Set the sec_attr_encoding_t to an encoding type that is compatible with the information required by
the query attribute trigger.

� Set the sec_attr_value_t to hold the required information.

You can define the number of elements in the input array of sec_attr_t values (in the num_attr_keys
parameter). If you define the number of elements as zero, the call returns all of the object's attribute
instances that the caller is authorized to see. You should be aware, however, that if you define the
number of elements as zero and the attribute is associated with a query attribute trigger, you will be
unable to pass any information to the query attribute trigger.

478 Application Development Guide: Core Components

sec_rgy_attr_set_lookup_by_id(): The sec_rgy_attr_set_lookup_by_id() call reads attribute
sets specified by set instance UUID for an object specified by name and domain. Specifically the call
returns:

� A sec_attr_t for each attribute instance in the attribute set.

� A count of the total number of attribute set instances returned.

� A count of the total number that could not be returned because of size constraints of the sec_attr_t
array. (Note that the call allows the size and length of the array to be specified.)

Note: Since attribute triggers can not be associated with an attribute set instance, this call provides no
way to supply input data to a query attribute trigger.

sec_rgy_attr_lookup_by_name(): The sec_rgy_attr_lookup_by_name() call reads a single
attribute instance specified by name for an object specified by name and domain. The call returns a
sec_attr_t for the specified attribute instance.

For multi-valued attributes, the call returns the first instance of the multi-valued attribute. (To retrieve
every instance of a multi-valued attribute, use the sec_rgy_attr_lookup_by_id call.)

For attribute sets, the call returns the attribute set instance, not the member instances. To retrieve all
members of the set, use the sec_rgy_attr_lookup_by_id call.

Note: This call provides no way to supply input data to a query attribute trigger. If the attribute to be
read is associated with a query trigger that requires input data, use the
sec_rgy_attr_lookup_by_id call.

Searching for Attribute Instances

This section describes calls that search for objects that possess specified attribute instances.

Using sec_attr_srch_cursor_t with sec_rgy_attr_srch Calls: The
sec_rgy_attr_srch_names() and sec_rgy_attr_srch_names_attrs() calls use a cursor of type
sec_attr_srch_cursor_t initialized to a list of objects that meet a specified criteria. This cursor must be
initialized before it can be used as input to the calls. After use, the resources allocated to the
sec_attr_srch_cursor_t must be released. The following calls allocate, initialize, and release a
sec_attr_srch_cursor_t.

 � sec_rgy_attr_srch_cursor_init()

The sec_rgy_attr_srch_cursor_init() call allocates resources to a sec_attr_srch_cursor_t and
initializes the cursor to a search set of objects that possess specified attribute types or instances. The
attribute types and attribute instance values searched for are identified in an array of sec_attr_t
values.

To find all attributes of a specified type, an attribute UUID is all that is required. For these attributes,
supply the UUID of the desired attribute type in the input array and set attribute encoding (in
sec_attr_encoding_t) to sec_attr_enc_void.

To find a specific attribute instance, supply that attribute instance's UUID and value in the sec_attr_t.
This method is useful for finding a single instance of a multi-valued attribute.

If you specify an attribute set in the input array, only the set instance is found, not the members of the
set.

Query triggers are not supported during evaluation of the input array. Although an attribute type
associated with a query trigger can be used in the array, if the attribute type also carries a value, a

 Chapter 29. The Extended Attribute Application Program Interfaces 479

match will not be found. The match will fail because the query trigger is not executed; therefore, a
value will not be retrieved for comparison against the search value.

You can define the number of elements in the input array (in the num_search_attrs parameter). If you
define the number as zero, the search set is a list of all attributes in the named domain that are
managed by the server to which the call is bound. The cursor is positioned at the beginning of the list.

 � sec_rgy_attr_srch_cursor_release()

The sec_rgy_attr_srch_cursor_release() call releases all resources allocated to a
sec_rgy_attr_srch_cursor cursor.

sec_rgy_attr_srch_names(): The sec_rgy_attr_srch_names() call returns the names of the
objects that possess the attributes selected in the search set selected by the
sec_rgy_attr_srch_cursor_init() call. Specifically this call returns:

� An array of names (sec_rgy_name_t) of the objects that possess the attributes specified as input to
the sec_rgy_attr_srch_cursor_init() call.

� A count of the total object names returned.

� An array of values that specify the total number of attributes attached to each object whose name is
returned in the names array.

The position of the element in the array of names and the number of attributes array connects the object
name to the object's total number of attributes. The object named in position 1 of the array of names has
the total number of attributes listed in position 1 total number of attributes array.

Before this call is executed, must execute the sec_rgy_attr_srch_cursor_init() call to select the search
set, initialize a sec_rgy_attr_srch_cursor_t cursor to the beginning of the search set, and allocate
resources to the cursor. After a sec_rgy_attr_srch_names() call is executed, you must execute a
sec_rgy_attr_srch_cursor_release() call to release resources allocated to the cursor.

sec_rgy_attr_srch_names_attrs(): The sec_rgy_attr_srch_names_attrs() call returns:

� The names of the objects that possess the attributes in the search set selected by the
sec_rgy_attr_srch_cursor_init() call.

� For those objects, the attributes specified in an array of attribute UUIDs supplied as a parameter to
this call.

Except for the fact that you can return attributes in addition to object names, the call is similar to the
sec_rgy_attr_srch_names_attrs() call. Like the sec_rgy_attr_srch_names() call, this call returns an
array of object names (sec_rgy_name_t), a count of the total object names returned, and array of values
that specify the total number of attributes attached to each object whose name is returned in the names
array. In addition, this call returns the following information that is not returned by the
sec_rgy_attr_srch_names() call:

� A array of specified attribute UUIDs and values (sec_attr_t).

� A count of the total number of attributes that are attached to the object.

� A count of the total number of attributes returned.

The attributes to be returned are specified in an array type uuid_t values.

480 Application Development Guide: Core Components

The Attribute Trigger Facility

Some attribute types require the support of an outside server either to verify input attribute values or to
supply output attribute values when those values are stored in an external database. Such a server could,
for example, connect a legacy registry system to the DCE Registry. The attribute trigger facility provides
for automatic calls to outside DCE servers, known as attribute triggers.

Trigger servers, which are written by application developers, export the sec_attr_trig interface. They are
invoked automatically when an attribute that has been associated with an attribute trigger (during schema
entry creation) is queried or updated. The attribute trigger facility consists of three components:

� The attribute schema trigger fields (trig_types and trig_binding) that associate an attribute trigger
and its binding information with an attribute type. These fields are part of the standard creation of a
schema entry that defines an attribute type. See “Attribute Schema” on page 466.

� The sec_attr_trig APIs that define the query and update trigger operations. The APIs are provided in
the sec_attr_trig calls.

� The user-written attribute trigger servers are independent from DCE servers. The trigger servers
implement the trigger operations for the attribute types that require attribute trigger processing. These
servers are not provided as part of the DCE, but must be written by application developers.

Defining an Attribute Trigger/Attribute Association

When an attribute is created with the sec_rgy_attr_update() call you define the association between the
attribute type and an attribute trigger by specifying the following:

� Trigger Type—Defines the trigger as a query server (invoked for query operations) or an update
server (invoked for updates operations). The trigger type is defined in a sec_attr_trig_type_t data
type, which is used by a sec_attr_schema_entry_t data type.

� Trigger Binding—Defines the server binding handle for the attribute trigger. The details of the trigger
binding are defined in a number of data types, which are also used by the sec_attr_schema_entry_t
data type. Trigger binding is described in detail in “Trigger Binding” on page 482.

Only if both pieces of information are provided will the association between the attribute type and the
attribute trigger be created. You can associate an attribute trigger to any attribute type of any encoding
except for attribute sets.

Query Triggers: When you execute a call that accesses an attribute associated with query trigger,
the client side attribute lookup code performs the following tasks:

� Binds to the attribute trigger (using a binding from the attribute type's schema entry)

� Makes the remote sec_attr_trig_query() call to the attribute trigger server, passing in the attribute
keys and optional information provided by the caller

� If the sec_attr_trig_query() call is successful, returns the output attribute(s) to the caller

If you execute an sec_rgy_attr update call with an attribute type that is associated with a query trigger,
not an update trigger, the input attribute values is ignored and a stub attribute instance is created on the
named object simply to mark the existence of this attribute on the object. Modifications to the real
attribute value must occur at the attribute trigger.

 Chapter 29. The Extended Attribute Application Program Interfaces 481

Update Triggers: When you execute a call that accesses an attribute associated with an update
trigger, the client side attribute update code performs the following tasks:

� Binds to the attribute trigger (using a binding from the attribute type's schema entry)

� Makes the remote sec_attr_trig_update() call to the attribute trigger server, passing in the attributes
provided by the caller

� If the sec_attr_trig_update() call is successful, stores the output attribute(s) in the Registry database
and returns the output attribute(s) to the caller.

 Trigger Binding

Two data types are used to define an attribute trigger. The sec_attr_trig_type_t defines the type of
attribute trigger. The sec_attr_bind_info_t data type, illustrated in Figure 102 and described in this
section, specifies the attribute trigger's binding.

Figure 102. The sec_attr_bind_info_t Data Type

The sec_attr_bind_info_t data type uses two data types: sec_attr_binding_t, which defines the
information used to generate binding handle and sec_attr_bind_auth_info_t, which defines the binding
authentication and authorization information.

482 Application Development Guide: Core Components

The sec_attr_binding_t Data Type: To describe the binding handle, the sec_attr_binding_t
uses a sec_attr_bind_type_t data type that specifies the format to the data used to generate the binding
handle and a tagged union that contains the binding handle. The binding handle can be generated from
any of the following:

� A server directory entry name (used with rpc_ns_binding_import calls)

If the binding information is a server name, call rpc_ns_binding_import_begin to establish a context
for importing RPC binding handles from the name service database. For the
rpc_ns_binding_import_begin call, specify the CDS server directory entry name, an entry name
syntax value of rpc_c_ns_syntax_dce, and sec_attr_trig as the interface handle of the interface to
import.

� A string binding (used with rpc_binding_from_string_binding calls)

If the binding information is a string binding, call rpc_binding_from_string_binding to generate an
RPC binding handle.

� An RPC protocol tower set (used with rpc_tower_to_binding calls)

If the binding information is a protocol tower, two additional data types are used to pass in an
unallocated array of towers, which the server must then allocate. These data types are:
sec_attr_twr_ref_t to point to the tower, and sec_attr_twr_set_t to define the array of towers.

Architectural components of the DCE can take advantage of the internal rpc_tower_to_binding
operation in rpcpvt.idl to generate a binding handle from the canonical representation of a protocol
tower.

Although the server directory entry name, with the actual server address stored in the Cell Directory
Service, is the recommended way to specify an attribute trigger binding handle, prototype applications may
want to specify a string binding or protocol tower for convenience.

The sec_attr_bind_auth_info_t Data Type: To describe whether or not RPC calls to the server
will be authenticated and for authenticated calls, to provide authentication and authorization information,
the sec_attr_bind_auth_info_t uses the sec_attr_bind_auth_info_type_t data type, and a tagged union.
The sec_attr_bind_auth_info_type_t defines whether or not the call is authenticated. The tagged union
contains the authentication and authorization parameters.

Once a binding handle is obtained, call rpc_binding_set_auth_info and supply it with the binding handle
and authorization and authentication information.

Access Control on Attributes with Triggers

When a query or update call accesses an attribute associated with an attribute trigger the call checks the
ACL of the object with which the attribute is associated to see if the client has the permissions required for
the operation. If access is granted, the operation returns binding handle authenticated with the client's
login context. This handle is then used to perform the sec_attr_trig_query or sec_attr_trig_update
operation.

Access to information maintained by an attribute trigger is controlled entirely by that attribute trigger. The
attribute trigger can choose to implement any authorization mechanism, including none. For example, the
attribute trigger can obtain the client's identity from the RPC runtime to perform name-based authentication
and perform ACL checks (or any other type of access control mechanism), and it can query the Registry
attribute schema for the attribute type's permission set to use for an ACL check. Access control on
attribute information stored outside of the Registry database is left to the application designer.

 Chapter 29. The Extended Attribute Application Program Interfaces 483

Calls that Access Attribute Triggers

This section describes the calls that send information to and receive it from attribute triggers.

Using sec_attr_trig_cursor_t with sec_attr_trig_query()

The sec_attr_trig_query() call, which reads attributes associated with a query attribute trigger, uses a
cursor of type sec_attr_trig_cursor_t. This cursor must be allocated and initialized before it can be used
as input to the sec_attr_trig_query() call. After use, the resources allocated to the
sec_attr_trig_cursor_t must be released.

The following calls allocate, initialize, and release a sec_attr_trig_cursor_t for use with the
sec_attr_trig_query() call:

 � sec_attr_trig_cursor_init()

The sec_attr_trig_cursor_init() call allocates resources to the cursor and initializes the cursor to the
first attribute in the list of attributes for the object whose binding handle is specified. This call makes a
remote call.

 � sec_attr_trig_cursor_release()

The sec_rgy_attr_cursor_release() call releases all resources allocated to a sec_attr_trig_cursor_t
by sec_attr_trig_cursor_init().

sec_rgy_attr_trig_query() and sec_rgy_attr_trig_update()

The sec_attr_trig_query() call reads instances of attributes coded with a trigger type of query for a
specified object. It passes an array of sec_attr_t values to a query attribute trigger and receives the
output parameters back from the server. The sec_attr_trig_update() routine passes attributes coded with
a trigger type of update to an update attribute trigger for evaluation before the updates are made to the
registry.

Both calls are called automatically by the DCE attribute lookup or update code for all schema entries that
specify a trigger. Although you should not call them directly, if you are implementing a trigger server, it
will receive input from these calls and the attribute trigger's output should be passed back to them. The
data received must be in a form accessible to the call and, if it is the result of an update, a form that can
be stored in the registry database.

The object whose attribute instances are to be read or updated is identified by:

� The name of the cell in which the object exists.

� The name of the object or a UUID in string format that identifies the object.

 priv_attr_triq_query()

The priv_attr_trig_query() call is used by the Privilege service to retrieve trigger attributes and add them
to a principal's EPAC. The Privilege service executes this call when it receives a request to add a
principal and its extended attribute instances to an EPAC and the attributes are associated with a trigger
server. The call passes an array sec_attr_t values to the attribute trigger and receives the attribute
values back from the trigger server in another array of sec_attr_t values. If the principal is being added to
a delegation chain, the call also passes the UUIDs of all of the current members of the delegation chain to
the trigger server. The trigger server can then evaluate all identities to determine access rights to the
requested attributes.

484 Application Development Guide: Core Components

Like the sec_rgy_attr_trig_query() and sec_rgy_attr_trig_update() calls, you will not call
priv_attr_trig_query() directly. However, if you are implementing a trigger server, it will receive input
from this calls and the attribute trigger's output should be passed back to the call. The data received must
be in a form accessible to the call.

The DCE Attribute API

This DCE attribute calls are not described in detail. This is because with the exception of the calls that
bind to a selected database (dce_attr_sch_bind and dce_attr_sch_bind_free), the dce_sec_attr calls
are the same as the sec_rgy_attr_sch calls. Refer to “Extended Registry Attribute API” on page 465 for
information on using each call.

The DCE Attribute API consists of the following calls:

dce_attr_sch_bind Returns an opaque handle of type dce_attr_sch_handle_t to a
schema object specified by name and sets authentication and
authorization parameters for the handle. This is the call used to bind
to the schema of your choice.

dce_attr_sch_bind_free Releases an opaque handle of type dce_attr_sch_handle_t.

dce_attr_sch_create_entry Creates a schema entry in a schema bound to with
dce_attr_sch_bind. This call is based on the
sec_rgy_attr_sch_create_entry and is used in the same way.

dce_attr_sch_update_entry Updates a schema entry in a schema bound to with
dce_attr_sch_bind. This call is based on the
sec_rgy_attr_sch_update_entry and is used in the same way.

dce_attr_sch_delete_entry Deletes a schema entry in a schema bound to with
dce_attr_sch_bind. This call is based on the
sec_rgy_attr_sch_delete_entry and is used in the same way.

dce_attr_sch_scan Reads a specified number of schema entries. This call is based on
the sec_rgy_attr_sch_scan and is used in the same way.

dce_attr_sch_cursor_init Allocates resources to and initializes a cursor used with
dce_attr_sch_scan. The dce_attr_sch_cursor_init routine makes a
remote call that also returns the current number of schema entries in
the schema. The dce_attr_sch_cursor_init call is based on the
sec_rgy_attr_sch_cursor_init and is used in the same way.

dce_attr_sch_cursor_alloc Allocates resources to a cursor used with dce_attr_sch_scan. The
dce_attr_sch_cursor_alloc routine is a local operation. The
dce_attr_sch_cursor_alloc call is based on the
sec_rgy_attr_sch_cursor_alloc and is used in the same way.

dce_attr_sch_cursor_release Releases states associated with a cursor created by
dce_attr_sch_cursor_alloc or dce_attr_sch_cursor_init. The
dce_attr_sch_cursor_release call is based on the
sec_rgy_attr_sch_cursor_release and is used in the same way.

dce_attr_sch_cursor_reset Reinitializes a cursor used with dce_attr_sch_scan. The reset cursor
can then be reused without releasing and re-allocating. This call is
based on the sec_rgy_attr_sch_cursor_reset and is used in the
same way.

 Chapter 29. The Extended Attribute Application Program Interfaces 485

dce_attr_sch_lookup_by_id Reads a schema entry identified by UUID. This call is based on the
sec_rgy_attr_lookup_by_id and is used in the same way.

dce_attr_sch_lookup_by_name Reads a schema entry identified by name. This call is based on the
sec_rgy_attr_sch_lookup_by_name and is used in the same way.

dce_attr_sch_get_acl_mgrs Retrieves the UUIDs of ACL manager types protecting objects
dominated by a named schema. This call is based on the
sec_rgy_attr_sch_get_acl_mgrs and is used in the same way.

dce_attr_sch_aclmgr_strings Retrieves the printstrings containing information about ACL manager
types protecting objects dominated by a named schema. The
printstrings contain the manager's name, help information, and
supported permission bits. This call is based on the
sec_rgy_attr_sch_aclmgr_strings and is used in the same way.

Macros to Aid Extended Attribute Programming

The Extended Attribute APIs includes macros to help programmers using the Extended Attribute
interfaces. The macros perform a variety of function including:

� Accessing fields in data structures

� Calculating the size of data structures

� Performing semantic and flag checks

 � Setting flags

The macros are in dce/rpcbase.h, which is derived from dce/rpcbase.idl.

The following sections list the definitions of each macro.

Macros to Access Binding Fields

In the following macro definitions, which are used by a sec_attr_schema_entry_t and its equivalent
dce_attr_sch data type, B is a pointer to a sec_attr_bind_info_t data.

#define SA_BND_AUTH_INFO(B) (B)->auth_info
#define SA_BND_AUTH_INFO_TYPE(B) (SA_BND_AUTH_INFO(B)).info_type

#define SA_BND_AUTH_SVR_PNAME_P(B) \
 (SA_BND_AUTH_DCE_INFO(B)).svr_princ_name

#define SA_BND_AUTH_PROT_LEVEL(B) \
 (SA_BND_AUTH_DCE_INFO(B)).protect_level

#define SA_BND_AUTH_AUTHN_SVC(B) \
 (SA_BND_AUTH_DCE_INFO(B)).authn_svc

#define SA_BND_AUTH_AUTHZ_SVC(B) \
 (SA_BND_AUTH_DCE_INFO(B)).authz_svc

#define SA_BND_NUM(B) (B)->num_bindings
#define SA_BND_ARRAY(B,I) (B)->bindings[I]
#define SA_BND_TYPE(B,I) (SA_BND_ARRAY(B,I)).bind_type

#define SA_BND_STRING_P(B,I) \
 (SA_BND_ARRAY(B,I)).tagged_union.string_binding

486 Application Development Guide: Core Components

#define SA_BND_SVRNAME_P(B,I) \
 (SA_BND_ARRAY(B,I)).tagged_union.svrname

#define SA_BND_SVRNAME_SYNTAX(B,I) \
 (SA_BND_SVRNAME_P(B,I))->name_syntax

#define SA_BND_SVRNAME_NAME_P(B,I) \
 (SA_BND_SVRNAME_P(B,I))->name

#define SA_BND_TWRSET_P(B,I) \
 (SA_BND_ARRAY(B,I)).tagged_union.twr_set

#define SA_BND_TWRSET_COUNT(B,I) (SA_BND_TWRSET_P(B,I))->count
#define SA_BND_TWR_P(B,I,J) (SA_BND_TWRSET_P(B,I))->towers[J]
#define SA_BND_TWR_LEN(B,I,J) (SA_BND_TWR_P(B,I,J))->tower_length

#define SA_BND_TWR_OCTETS(B,I,J) \
 (SA_BND_TWR_P(B,I,J))->tower_octet_string

Macros to Access Schema Entry Fields

In the following macro definitions, S is a pointer to a sec_attr_schema_entry_t (and its equivalent
dce_attr_sch data type) and I and J are non-negative integers for array element selection.

#define SA_ACL_MGR_SET_P(S) (S)->acl_mgr_set
#define SA_ACL_MGR_NUM(S) (SA_ACL_MGR_SET_P(S))->num_acl_mgrs
#define SA_ACL_MGR_INFO_P(S,I) (SA_ACL_MGR_SET_P(S))->mgr_info[I]
#define SA_ACL_MGR_TYPE(S,I) (SA_ACL_MGR_INFO_P(S,I))->acl_mgr_type
#define SA_ACL_MGR_PERMS_QUERY(S,I) (SA_ACL_MGR_INFO_P(S,I))->query_permset
#define SA_ACL_MGR_PERMS_UPDATE(S,I) (SA_ACL_MGR_INFO_P(S,I))->update_permset
#define SA_ACL_MGR_PERMS_TEST(S,I) (SA_ACL_MGR_INFO_P(S,I))->test_permset
#define SA_ACL_MGR_PERMS_DELETE(S,I) (SA_ACL_MGR_INFO_P(S,I))->delete_permset
#define SA_TRG_BND_INFO_P(S) (S)->trig_binding

#define SA_TRG_BND_AUTH_INFO(S) \
 (SA_BND_AUTH_INFO(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_INFO_TYPE(S) \
 (SA_BND_AUTH_INFO_TYPE(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_DCE_INFO(S) \
 (SA_BND_AUTH_DCE_INFO(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_SVR_PNAME_P(S) \
 (SA_BND_AUTH_SVR_PNAME_P(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_PROT_LEVEL(S) \
 (SA_BND_AUTH_PROT_LEVEL(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHN_SVC(S) \
 (SA_BND_AUTH_AUTHN_SVC(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHZ_SVC(S) \
 (SA_BND_AUTH_AUTHZ_SVC(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_NUM(S) \
 (SA_BND_NUM(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_ARRAY(S,I) \
 (SA_BND_ARRAY((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_TYPE(S,I) \
 (SA_BND_TYPE((SA_TRG_BND_INFO_P(S)),I))

 Chapter 29. The Extended Attribute Application Program Interfaces 487

#define SA_TRG_BND_STRING_P(S,I) \
 (SA_BND_STRING_P((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_SVRNAME_P(S,I) \
 (SA_BND_SVRNAME_P((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_SVRNAME_SYNTAX(S,I) \
 (SA_BND_SVRNAME_SYNTAX((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_SVRNAME_NAME_P(S,I) \
 (SA_BND_SVRNAME_NAME_P((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_TWRSET_P(S,I) \
 (SA_BND_TWRSET_P((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_TWRSET_COUNT(S,I) \
 (SA_BND_TWRSET_COUNT((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_TWR_P(S,I,J) \
 (SA_BND_TWR_P((SA_TRG_BND_INFO_P(S)),I,J))

#define SA_TRG_BND_TWR_LEN(S,I,J) \
 (SA_BND_TWR_LEN((SA_TRG_BND_INFO_P(S)),I,J))

#define SA_TRG_BND_TWR_OCTETS(S,I,J) \
 (SA_BND_TWR_OCTETS((SA_TRG_BND_INFO_P(S)),I,J))

Macros to Access Attribute Instance Fields

In the following macro descriptions, S is a pointer to a sec_attr_t and I and J are nonnegative integers for
array element selection.

#define SA_ATTR_ID(S) (S)->attr_id
#define SA_ATTR_VALUE(S) (S)->attr_value
#define SA_ATTR_ENCODING(S) (SA_ATTR_VALUE(S)).attr_encoding

#define SA_ATTR_INTEGER(S) \
 (SA_ATTR_VALUE(S)).tagged_union.signed_int

#define SA_ATTR_PRINTSTRING_P(S) \
 (SA_ATTR_VALUE(S)).tagged_union.printstring

#define SA_ATTR_STR_ARRAY_P(S) \
 (SA_ATTR_VALUE(S)).tagged_union.string_array

#define SA_ATTR_STR_ARRAY_NUM(S) (SA_ATTR_STR_ARRAY_P(S))->num_strings
#define SA_ATTR_STR_ARRAY_ELT_P(S,I) (SA_ATTR_STR_ARRAY_P(S))->strings[I]

#define SA_ATTR_BYTES_P(S) \
 (SA_ATTR_VALUE(S)).tagged_union.bytes

#define SA_ATTR_BYTES_LEN(S) (SA_ATTR_BYTES_P(S))->length
#define SA_ATTR_BYTES_DATA(S,I) (SA_ATTR_BYTES_P(S))->data[I]

#define SA_ATTR_IDATA_P(S) \
 (SA_ATTR_VALUE(S)).tagged_union.idata

#define SA_ATTR_IDATA_CODESET(S) (SA_ATTR_IDATA_P(S))->codeset
#define SA_ATTR_IDATA_LEN(S) (SA_ATTR_IDATA_P(S))->length
#define SA_ATTR_IDATA_DATA(S,I) (SA_ATTR_IDATA_P(S))->data[I]

#define SA_ATTR_UUID(S) \

488 Application Development Guide: Core Components

 (SA_ATTR_VALUE(S)).tagged_union.uuid

#define SA_ATTR_SET_P(S) \
 (SA_ATTR_VALUE(S)).tagged_union.attr_set

#define SA_ATTR_SET_NUM(S) (SA_ATTR_SET_P(S))->num_members
#define SA_ATTR_SET_MEMBERS(S,I) (SA_ATTR_SET_P(S))->members[I]

#define SA_ATTR_BND_INFO_P(S) \
 (SA_ATTR_VALUE(S)).tagged_union.binding

#define SA_ATTR_BND_AUTH_INFO(S) \
 (SA_BND_AUTH_INFO(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_INFO_TYPE(S) \
 (SA_BND_AUTH_INFO_TYPE(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_DCE_INFO(S) \
 (SA_BND_AUTH_DCE_INFO(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_SVR_PNAME_P(S) \
 (SA_BND_AUTH_SVR_PNAME_P(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_PROT_LEVEL(S) \
 (SA_BND_AUTH_PROT_LEVEL(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHN_SVC(S) \
 (SA_BND_AUTH_AUTHN_SVC(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHZ_SVC(S) \
 (SA_BND_AUTH_AUTHZ_SVC(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_NUM(S) \
 (SA_BND_NUM(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_ARRAY(S,I) \
 (SA_BND_ARRAY((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_TYPE(S,I) \
 (SA_BND_TYPE((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_STRING_P(S,I) \
 (SA_BND_STRING_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_SVRNAME_P(S,I) \
 (SA_BND_SVRNAME_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_SVRNAME_SYNTAX(S,I) \
 (SA_BND_SVRNAME_SYNTAX((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_SVRNAME_NAME_P(S,I) \
 (SA_BND_SVRNAME_NAME_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_TWRSET_P(S,I) \
 (SA_BND_TWRSET_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_TWRSET_COUNT(S,I) \
 (SA_BND_TWRSET_COUNT((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_TWR_P(S,I,J) \
 (SA_BND_TWR_P((SA_ATTR_BND_INFO_P(S)),I,J))

#define SA_ATTR_BND_TWR_LEN(S,I,J) \
 (SA_BND_TWR_LEN((SA_ATTR_BND_INFO_P(S)),I,J))

 Chapter 29. The Extended Attribute Application Program Interfaces 489

#define SA_ATTR_BND_TWR_OCTETS(S,I,J) \
 (SA_BND_TWR_OCTETS((SA_ATTR_BND_INFO_P(S)),I,J))

Binding Data Structure Size Calculation Macros

The following macros are supplied to calculate the size of data types that hold binding information. The
macros work with the Extended Registry Attribute API data types and their equivalent dce_attr_sch data
types.

/$
 $ SA_BND_INFO_SIZE(N) - calculate the size required
 $ for a sec_attr_bind_info_t with N bindings.
 $/
#define SA_BND_INFO_SIZE(N) (sizeof(sec_attr_bind_info_t) + \

(((N) - 1) $ sizeof(sec_attr_binding_t)))

/$
 $ SA_TWR_SET_SIZE(N) - calculate the size required
 $ for a sec_attr_twr_set_t with N towers.
 $/
#define SA_TWR_SET_SIZE(N) (sizeof(sec_attr_twr_set_t) + \

(((N) - 1) $ sizeof(sec_attr_twr_ref_t)))

/$
 $ SA_TWR_SIZE(N) - calculate the size required
 $ for a twr_t with a tower_octet_string of length N.
 $/
#define SA_TWR_SIZE(N) (sizeof(twr_t) + (N) - 1)

Schema Entry Data Structure Size Calculation Macros

The following macro is supplied to calculate the size of an sec_attr_acl_mgr_info_set_t.

/$
 $ SA_ACL_MGR_SET_SIZE(N) - calculate the size required
 $ for a sec_attr_acl_mgr_info_set_t with N acl_mgrs.
 $/
#define SA_ACL_MGR_SET_SIZE(N) (sizeof(sec_attr_acl_mgr_info_set_t) + \

(((N) - 1) $ sizeof(sec_attr_acl_mgr_info_p_t)))

Attribute Instance Data Structure Size Calculation Macros

The following macros are supplied to calculate the size of data types that hold attribute information.

/$
 $ SA_ATTR_STR_ARRAY_SIZE(N) - calculate the size required
 $ for a sec_attr_enc_str_array_t with N sec_attr_enc_printstring_p_t-s.
 $/
#define SA_ATTR_STR_ARRAY_SIZE(N) (sizeof(sec_attr_enc_str_array_t) + \

(((N) - 1) $ sizeof(sec_attr_enc_printstring_p_t)))

/$
 $ SA_ATTR_BYTES_SIZE(N) - calculate the size required
 $ for a sec_attr_enc_bytes_t with byte string length of N.
 $/
#define SA_ATTR_BYTES_SIZE(N) (sizeof(sec_attr_enc_bytes_t) + (N) - 1)

/$
 $ SA_ATTR_IDATA_SIZE(N) - calculate the size required
 $ for a sec_attr_i18n_data_t with byte string length of N.

490 Application Development Guide: Core Components

 $/
#define SA_ATTR_IDATA_SIZE(N) (sizeof(sec_attr_i18n_data_t) + (N) - 1)

/$
 $ SA_ATTR_SET_SIZE(N) - calculate the size required
 $ for a sec_attr_enc_attr_set_t with N members (uuids).
 $/
#define SA_ATTR_SET_SIZE(N) (sizeof(sec_attr_enc_attr_set_t) + \

(((N) - 1) $ sizeof(uuid_t)))

Binding Semantic Check Macros

The following macros are supplied to check the semantics of entries in the binding fields. The macros
work with the Extended Registry Attribute API data types and their equivalent dce_attr_sch data types.

/$
 $ SA_BND_AUTH_INFO_TYPE_VALID(B) - evaluates to TRUE (1)
 $ if the binding auth_info type is valid; FALSE (0) otherwise.
 $ B is a pointer to a sec_attr_bind_info_t.
 $/
#define SA_BND_AUTH_INFO_TYPE_VALID(B) (\

(SA_BND_AUTH_INFO_TYPE(B)) == sec_attr_bind_auth_none || \
(SA_BND_AUTH_INFO_TYPE(B)) == sec_attr_bind_auth_dce ? true : false)

/$
 $ SA_BND_AUTH_PROT_LEV_VALID(B) - evaluates to TRUE (1)
 $ if the binding auth_info protect_level is valid; FALSE (0) otherwise.
 $ B is a pointer to a sec_attr_bind_info_t.
 $/
#define SA_BND_AUTH_PROT_LEV_VALID(B) (\

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_default || \
(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_none || \
(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_connect || \
(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_call || \
(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_pkt || \
(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_pkt_integ || \
(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_pkt_privacy ? \
true : false)

/$
 $ SA_BND_AUTH_AUTHN_SVC_VALID(B) - evaluates to TRUE (1)
 $ if the binding auth_info authentication service is valid;
 $ FALSE (0) otherwise.
 $ B is a pointer to a sec_attr_bind_info_t.
 $/
#define SA_BND_AUTH_AUTHN_SVC_VALID(B) (\

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_none || \
(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dce_secret || \
(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dce_public || \
(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dce_dummy || \
(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dssa_public || \
(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_default ? \
true : false)

/$
 $ SA_BND_AUTH_AUTHZ_SVC_VALID(B) - evaluates to TRUE (1)
 $ if the binding auth_info authorization service is valid;
 $ FALSE (0) otherwise.
 $ B is a pointer to a sec_attr_bind_info_t.
 $/
#define SA_BND_AUTH_AUTHZ_SVC_VALID(B) (\

(SA_BND_AUTH_AUTHZ_SVC(B)) == rpc_c_authz_none || \
(SA_BND_AUTH_AUTHZ_SVC(B)) == rpc_c_authz_name || \
(SA_BND_AUTH_AUTHZ_SVC(B)) == rpc_c_authz_dce ? \

 Chapter 29. The Extended Attribute Application Program Interfaces 491

true : false)

Schema Entry Semantic Check Macros

The following macros are supplied to check the semantics of schema entry fields. In the macros, S is a
pointer to a sec_attr_schema_entry_t and its equivalent dce_attr_sch data type.

#define SA_TRG_BND_AUTH_INFO_TYPE_VALID(S) \
 (SA_BND_AUTH_INFO_TYPE_VALID(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_PROT_LEV_VALID(S) \
 (SA_BND_AUTH_PROT_LEV_VALID(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHN_SVC_VALID(S) \
 (SA_BND_AUTH_AUTHN_SVC_VALID(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHZ_SVC_VALID(S) \
 (SA_BND_AUTH_AUTHZ_SVC_VALID(SA_TRG_BND_INFO_P(S))

Attribute Instance Semantic Check Macros

The following macros are supplied to check the semantics of entries in the attribute instance fields. In the
following macros, S is a pointer to a sec_attr_t. F is a sec_attr_trigs_types_flags_t.

#define SA_ATTR_BND_AUTH_INFO_TYPE_VALID(S) \
 (SA_BND_AUTH_INFO_TYPE_VALID(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_PROT_LEV_VALID(S) \
 (SA_BND_AUTH_PROT_LEV_VALID(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHN_SVC_VALID(S) \
 (SA_BND_AUTH_AUTHN_SVC_VALID(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHZ_SVC_VALID(S) \
 (SA_BND_AUTH_AUTHZ_SVC_VALID(SA_ATTR_BND_INFO_P(S))

#define SA_SCH_FLAG_IS_SET(S,F) \
(((S)->schema_entry_flags & (F)) == (F))

#define SA_SCH_FLAG_IS_SET_UNIQUE(S) \
 (SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_unique))

#define SA_SCH_FLAG_IS_SET_MULTI_INST(S) \
 (SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_multi_inst))

#define SA_SCH_FLAG_IS_SET_RESERVED(S) \
 (SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_reserved))

#define SA_SCH_FLAG_IS_SET_USE_DEFAULTS(S) \
 (SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_use_defaults))

Schema Entry Flag Set and Unset Macros

The following macros set and unset flag(s) in the schema entry schema_entry_flags field. In the
following macros, S is a pointer to a sec_attr_schema_entry_t.

/$
 $ Macro's to set the flags.
 $/
#define SA_SCH_FLAG_SET(S, FLAG) ((S)->schema_entry_flags |= (FLAG))

#define SA_SCH_FLAG_SET_UNIQUE(S) \

492 Application Development Guide: Core Components

 (SA_SCH_FLAG_SET((S),sec_attr_sch_entry_unique))

#define SA_SCH_FLAG_SET_MULTI_INST(S) \
 (SA_SCH_FLAG_SET((S),sec_attr_sch_entry_multi_inst))

#define SA_SCH_FLAG_SET_RESERVED(S) \
 (SA_SCH_FLAG_SET((S),sec_attr_sch_entry_reserved))

#define SA_SCH_FLAG_SET_USE_DEFAULTS(S) \
 (SA_SCH_FLAG_SET((S),sec_attr_sch_entry_use_defaults))

/$
 $ Macro's to unset the flags.
 $/
#define SA_SCH_FLAG_UNSET(S, FLAG) ((S)->schema_entry_flags &= (FLAG))

#define SA_SCH_FLAG_UNSET_UNIQUE(S) \
 (SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_unique))

#define SA_SCH_FLAG_UNSET_MULTI_INST(S) \
 (SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_multi_inst))

#define SA_SCH_FLAG_UNSET_RESERVED(S) \
 (SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_reserved))

#define SA_SCH_FLAG_UNSET_USE_DEFAULTS(S) \
 (SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_use_defaults))

Schema Trigger Entry Flag Check Macros

The following macros evaluate to TRUE if the requested flag(s) is set in the schema entry trig_types field.
In the following macros, S is a pointer to a sec_attr_schema_entry_t and F is a
sec_attr_trigs_types_flags_t.

#define SA_SCH_TRIG_FLAG_IS_SET(S,F) \
(((S)->trig_types & (F)) == (F))

#define SA_SCH_TRIG_FLAG_IS_NONE(S) \
 (SA_SCH_TRIG_FLAG_IS_SET((S),sec_attr_trig_type_none))

#define SA_SCH_TRIG_FLAG_IS_QUERY(S) \
 (SA_SCH_TRIG_FLAG_IS_SET((S),sec_attr_trig_type_query))

#define SA_SCH_TRIG_FLAG_IS_UPDATE(S) \
 (SA_SCH_FLAG_IS_SET((S),sec_attr_trig_type_update))

Utilities to Use with Extended Attribute Calls

The Extended Attribute APIs includes utilities to help programmers using the Extended Attribute interfaces.
These utilities are:

sec_attr_util_alloc_copy Copies data from one sec_attr_t data to another.

sec_attr_util_free Frees memory allocated to a sec_attr_t by the
sec_attr_util_alloc_copy() function.

sec_attr_util_inst_free_ptrs Frees non-null pointers in a sec_attr_t.

sec_attr_util_inst_free Frees non-null pointers in a sec_attr_t and the pointer to the
sec_attr_t itself.

 Chapter 29. The Extended Attribute Application Program Interfaces 493

sec_attr_util_sch_ent_free_ptrs Frees non-null pointers in a sec_attr_schema_entry_t.

sec_attr_util_sch_ent_free Frees non-null pointers in a sec_attr_schema_entry_t and the
pointer to the sec_attr_schema_entry_t itself. The utility also works
with the equivalent dce_attr_sch data type.

494 Application Development Guide: Core Components

Chapter 30. The Login Application Program Interface

This chapter shows you how to use the DCE Login API and related APIs so that you can have your DCE
application login to DCE Security and establish its login context. It includes information on:

� Establishing login contexts
� Handling expired certificates of identity
� Importing and exporting contexts
� Changing a groupset
� Automatically logging into DCE
� Miscellaneous login API functions.

Read this chapter if you are interested in having your application login on its own or any of the other tasks
related to DCE login.

The Login API communicates with the Security Server to establish, and possibly change, a principal’s login
context. A login context contains the information necessary for a principal to qualify for, although not
necessarily be granted access to, network services and possibly local resources. Login context
information normally includes the following:

� Identity information concerning the principal, including its certificate of identity (in Shared-Secret
Authentication, this is the TGT), its EPAC, and Registry policy information, such as the maximum
lifetime of certificates of identity.

� The context state (that is, whether the Authentication Service has validated the context or not).

� The source of authentication information, that is, the network Authentication Service.

Establishing Login Contexts

The basic procedure by which a network login context is established (described in detail in Chapter 24,
“Authentication” on page 413) is as follows:

1. The client calls sec_login_setup_identity() specifying the name of the principal whose network
identity is to be established. Memory is allocated to receive the principal's login context.

2. The client calls sec_login_validate_identity(), which:

a. Forwards a TGT request encrypted with the user's secret key and with a random key, to the
Authentication Service, which decrypts the request, authenticates the principal, and returns a
Ticket-Granting Ticket for the principal.

b. The client's security runtime then decrypts the TGT and forwards it to the Privilege Service, which
creates an EPAC for the principal and encloses it in a Privilege-Ticket Granting Ticket (PTGT),
which is returned to the client's security runtime.

c. The runtime decrypts the message containing the PTGT and returns information about the source
of the authentication information to the API (if the authentication information comes from the
network Security Server, then the login context is validated).

3. Finally, the client calls sec_login_set_context(), which establishes a validated login context that other
processes may refer and use.

In “A Walkthrough of User Authentication” on page 416, it was mentioned that one function of
sec_login_valid_and_cert_ident() is demonstrating that a valid trust path exists between the
Authentication Service and the host computer where the principal logs in. After setting up and validating a
login context, any application that sets identity information (that is, establishes a login context) for local

 Copyright IBM Corp. 1994, 2001 495

processes should check to ensure that the server providing the certificate of identity is sound. This
demonstrates that the trust path between the client and the Authentication Service is valid.

Validating the Login Context and Certifying the Security Server

A validated login context is one that is regarded as sound by the local Security runtime. A validated and
certified login context is one that is sound, and was likely issued by a valid Security Server. Certifying that
the Security Server is valid prevents faked identity information from being distributed to local processes.

For example, a spurious server may collaborate with a dishonest user in order to obtain an identity with
comprehensive permissions (for example, an authorized user identity). With such an identity, the
dishonest user could gain access to sensitive local objects, such as key-storage files for server principals
that run on the host. (Servers running on other hosts would not trust this principal, however, because it
does not know their keys.) Of course, if a spurious server can return to the application a ticket encrypted
with the hosts’s secret key, it means the server has access to the host’s key — but in that case, network
security has already been seriously undermined.

When an application needs to certify the originator of a certificate of identity, it may call
sec_login_certify_identity(). This routine makes an authenticated RPC to the local dced daemon to
acquire a ticket to the host principal. If dced succeeds in decrypting the message containing the ticket,
the server that granted the certificate of identity must know the host principal’s secret key. This evidence
indicates that it is a valid Security Server. Because dced runs with the required authority to access the
host’s key, the process calling sec_login_certify_identity() need not.

The sec_login_valid_and_cert_ident() is similar to sec_login_certify_identity(), except that it combines
the validation and certification procedures (and therefore, the password of the principal that is logging in
must be known to the process making this call). The sec_login_valid_and_cert_ident() routine calls the
Security Server for a ticket to the host and attempts decryption. The process calling
sec_login_valid_and_cert_ident() must have access to the host’s secret key, and so must possess the
proper authority.

Note: Because system login programs should not set local identities derived from an uncertified context,
all Login API routines that return data from an uncertified context set a status code indicating that
the login context is not certified.

Validating the Login Context Without Certifying the Security Server

An application that does not use login contexts to set local identity information does not need to certify its
login contexts. Since an illegitimate Security Server is unlikely to know the key of a remote server
principal with which the application might communicate, the application will simply be refused the service
requested from the remote server principal. If local operating system identity information is assumed to be
neither of interest nor of concern to an application, it may call sec_login_validate_identity(), which does
not attempt to verify the Security Server’s knowledge of the host principal’s key.

Unlike sec_login_certify_identity() and sec_login_valid_and_cert_ident(), the
sec_login_validate_identity() routine does not acquire a PTGT. Instead, the PTGT is acquired when the
application first makes an authenticated RPC.

Note: The sec_login_validate_identity() and sec_login_valid_and_cert_ident() APIs will destroy the
input password. If an application needs to refer to the password, a backup copy of the password should
be maintained.

496 Application Development Guide: Core Components

Example of a System Login Program

Figure 103 contains an example of a system login program that obtains a login context that can be trusted
for both network and local operations. It must be issued from a privileged user ID.

Note: A function call appearing in the following example, sec_login_purge_context(), is described in
“Miscellaneous Login API Functions” on page 499.

if (sec_login_setup_identity(principal,sec_login_no_flags,
 &login_context,&st))
{
 ...get password...

if (sec_login_valid_and_cert_ident(login_context, password,
&reset_passwd, &auth_src, &st))

 {
 if(auth_src==sec_login_auth_src_network)
 {
 if (GOOD_STATUS(&st)
 sec_login_set_context(login_context);
 }
 }
 if (reset_passwd)
 {

...reset the user’s password...

 if (passwd_reset_fails)
 {
 sec_login_purge_context(login_context)

...application login-failure actions...
 }

...application-specific login-valid actions...
 }
}

Figure 103. Example of a System Login Program from a Privileged User ID

Establishing the Initial Context

An application calls sec_login_setup_identity() so that it can make other authenticated RPC calls.
However, sec_login_setup_identity() is itself a local interface to an authenticated RPC, and
authenticated RPC needs a validated login context to run. For applications like system login, the daemon
dced supplies the validated context. However, dced must be running before any other daemons can be
started.

Handling Expired Certificates of Identity

For a principal to use an intercepted certificate of identity, it must successfully decrypt it. To make the
task of decryption more difficult, a certificate of identity has a limited life span. Once it expires, the
associated login context is no longer valid.

Because this security feature may inconvenience users, an application may warn a user when the
certificate of identity is about to expire. The sec_login_get_expiration() routine returns the expiration

 Chapter 30. The Login Application Program Interface 497

date of a certificate of identity. When a certificate of identity is about to expire, the application may call
sec_login_refresh_identity(), to refresh any login context.

Similarly, a server principal may need to determine whether a certificate of identity could expire during a
long network operation. If so, it needs to refresh it to ensure that the operation is not prevented from
completing. Following is an example:

sec_login_get_expiration (login_context,&expire_time,&st);

if (expire_time < (current_time + operation_duration))
{
 if (sec_login_refresh_identity(login_context,&st))
 {

...identity has changed and must be validated again...
 }
 else
 {

...login context cannot be renewed...

 exit(0);
 }
}

operation();

Figure 104. An Example of Handling Expired Certificates of Identity

Note that only long running application servers whose up time exceeds the expiration time for a login
context (default is 8 hours) needs to handle expired certificates as in the above example.

Because sec_login_refresh_identity() acquires a certificate of identity, refreshed contexts must be
revalidated with sec_login_validate_identity() or sec_login_valid_and_cert() before they can be used.

Importing and Exporting Contexts

Under some circumstances, an application may need two processes to run using the same login context.
A process may acquire its login context in a form suitable for imparting to another process by calling
sec_login_export_context(). This call collects the login context from the local context cache and loads it
into a buffer. Another process can then call sec_login_import_context() to unpack the buffer and create
its own login context cache to store the imported context. Because the context has already been
validated, the process that imports it can use it immediately. (The CDS Clerk is an example of a context
importer.)

These operations are strictly local; the exporting and importing processes must be running on the same
host. In addition, a process cannot export a private context. A private context is created when you use
sec_login_setup_identity() with the sec_login_credentials_private bit (in the flags parameter) set to on.
When this happens, the login context that is created and validated cannot be retained; that is, it cannot be
passed from one address space to another as a login context marked private cannot become the network
context. That is, the sec_login_set_context() call which sets the KRB5CCNAME environment variable
cannot be issued, and thus the login context cannot be passed between different address spaces.

Note that importing the login context only enables you to obtain the name of the credential cache file. If
you try to use the credential cache file that is pointed to by the login context, you require read and write
permissions to that credential cache file. Thus, importing a login context does not imply that you can just
pick a login context and use another principal’s login credential cache file.

498 Application Development Guide: Core Components

Changing a Groupset

The sec_login_newgroups() routine enables a principal to assume the minimum groupset that is required
to accomplish a given task. For example, a user may have privilege attributes that include membership in
an administrative group associated with a comprehensive permission set and membership in a user group
associated with a more restricted permission set. Such a user may not want the permissions associated
with the administrative group, except when those permissions are essential to an administrative task. This
avoids inadvertently damaging objects that are accessible to members of the administrative group, but are
not accessible to members of the user group.

To offer users the capability of removing groups from their groupsets, an application could use the Login
API as shown in the following example.

Note: Two of the function calls that appear in the following example, sec_login_get_current_context()
and sec_login_inquire_net_info(), are described in “Miscellaneous Login API Functions.”

sec_login_get_current_context(&login_context,&st);

sec_login_inquire_net_info(login_context,&net_info,&st);

for (i=0; i < num_groups; i++)
{

...query whether the user wants to discard any of the current
group memberships. Copy new group set to the new_groups array...

}

if (!sec_login_newgroups(login_context,sec_login_no_flags,
num_new_groups, new_groups, &restricted_context,&st))

{
if (st == sec_login_s_groupset_invalid)

 printf("Newgroupsetinvalid\n");

...application-specific error handling...
}

Figure 105. Removing Groups from Their Groupsets

Note that the sec_login_newgroups() call can only return a restricted groupset: it cannot return a
groupset larger than the one associated with the login context that is passed to it. This routine also
enables the calling process to flag the new login context as private to the calling process.

Miscellaneous Login API Functions

This section describes a few miscellaneous Login API routines, some of which have appeared previously
in examples in this chapter.

 Chapter 30. The Login Application Program Interface 499

Getting the Current Context

The sec_login_get_current_context() routine returns a handle to the login context for the currently
established principal. This routine is useful for several Login API functions that take a login context handle
as input.

Getting Information from a Login Context

The sec_login_inquire_net_info() routine returns a data structure comprising the principal’s EPAC,
account expiration date, password expiration date, and identity expiration date. The
sec_login_free_net_info() frees the memory allocated to this data structure.

Note that once sec_login_set_context() has been used to set the network credentials to a particular login
context, sec_login_get_current_context() returns a handle to that particular login context, even though
the login context may no longer be valid. Therefore, you should verify whether the login context returned
by sec_login_get_current_context() is still valid by issuing the sec_login_get_expiration() call.

Getting Group Information for Local Process Identities

The sec_login_get_groups() call returns password or group information from the network Registry, if that
service is available.

Releasing and Deleting a Context

When a process is finished using a login context, it can call sec_login_release_context() to free storage
occupied by the context handle. When a process releases a login context, the context is still available to
other processes that use it. If an application needs to destroy a login context, it can call
sec_login_purge_context(), which also frees storage occupied by the handle. Because a destroyed
context is unavailable to all processes that use it, application developers should be careful when using
sec_login_purge_context() to destroy the current context.

500 Application Development Guide: Core Components

Chapter 31. The Key Management Application Program
Interface

Every principal has an entry in the Registry database that specifies a secret key. In the case of an
interactive principal (that is, a user), the secret key is derived from the principal’s password. Just as users
need to keep their passwords secure by memorizing them (rather than writing them down, for example), a
noninteractive principal also needs to be able to store and retrieve its secret key in a secure manner. The
Key Management API provides simple key management functions for noninteractive principals.

While the key management routines themselves are relatively secure, it is the application’s responsibility to
ensure the security of the file or other device used to store the key. By default, server principals that run
on the same computer share a local key file; however, the Key Management API also allows principals to
specify an alternative local file.

When users change their passwords, they are free to forget their old passwords. When a noninteractive
principal changes its secret key, however, there may be clients with valid tickets to that principal that are
encrypted with the old key. To save clients the trouble of requesting new tickets to a noninteractive
principal when the principal’s key has changed, every key is flagged with a version number. Old key
versions are kept until all tickets that could have been encrypted with that key have expired.

Finally, if a noninteractive principal’s key has been compromised, it can be invalidated (along with all the
corresponding tickets held by any clients) by simply deleting it from the local key storage.

Notes:

1. The Key Management API is for use only by applications using the DCE Shared-Secret Authentication
protocol and the key-type DES (Data Encryption Standard).

2. Your server applications should not have more than one thread accessing a given keytab file. If
multiple key management threads are necessary, then use multiple keytab files, one keytab file per
thread.

Retrieving a Key

The key management API provides two functions for retrieving a key from the local key storage. The
sec_key_mgmt_get_key() function returns a specified key version for a specified principal. The meaning
of specifying version 0 (zero) in this routine varies depending on the authentication protocol in effect. (If
the protocol is DCE Shared-Secret, the value 0 for the version identifier means the version that was most
recently added to the local storage.) In any case, a principal’s login is almost always successful if the
principal uses the version 0 key.

When there are valid tickets that are encrypted with different key versions, an application may need to
retrieve more than one key version. In that case, the application can call
sec_key_mgmt_initialize_cursor() to set a cursor in the local storage to the first suitable entry
corresponding to the named principal and key type, and then call sec_key_mgmt_get_next_key() to get
all versions of that key in storage. The application can then call sec_key_mgmt_release_cursor(), which
disposes of information associated with the cursor. Neither of the key-retrieval routines can return keys
that have been explicitly deleted, or that have been garbage collected after expiring.

The two key-retrieval functions dynamically allocate the memory for the returned keys. To enable the
efficient allocation of memory, an application can call sec_key_mgmt_free_key(), which frees the memory
occupied by the key and returns it to the allocation pool.

 Copyright IBM Corp. 1994, 2001 501

Changing a Key

The sec_key_mgmt_change_key() function communicates with the Registry to change the principal’s key
to a specified string, and also places the new string in the local key storage. Local key storage is a flat
file on the host machine, as opposed to the machine where the Security daemon resides, that is used for
storing passwords, or keys, for DCE principals that cannot enter a password interactively. This refers to
most server applications that have to log in and do not want to supply their passwords as startup
parameters. The keydata input argument for this call can be a new key that the application specifies, or a
random key returned by the sec_key_mgmt_gen_rand_key() routine. An application can call
sec_key_mgmt_get_next_kvno() to determine the next key version number that should be assigned to
the new key, so that it can refer to this key version when retrieving a key.

In some circumstances, a principal may need to change its key in the local key storage, but not
immediately update the Registry database. For example, a database application can maintain replicas of
a master database that are managed by servers running on different computers. If these servers all
provide exactly the same service, it makes sense for them to share the same key (meaning that they
share the same principal identity). This way, a user with a ticket to the principal can be directed to
whichever server is least busy.

When the Registry database obtains a new key for a principal, the Authentication Service can immediately
begin issuing tickets to the principal that are encrypted under the new key. However, suppose the master
for a single-principal replicated service were to call sec_key_mgmt_change_key() and a client presented
a ticket encoded with the latest key to a replica that had not yet learned that key. The replica would
refuse service, even though the ticket was valid. If an application employs replicated servers that are also
instances of a single principal identity, the application should:

1. Generate a new key by calling sec_key_mgmt_gen_rand_key(). This routine simply returns a key to
the calling process, without updating the Registry or local storage.

2. Disseminate the new key to all replicas.

3. Cause the replicas to call sec_key_mgmt_set_key(). This call updates the local storage to the new
key, but does not update the Registry database entry for the principal. The key version specified in
this routine must not be 0. The replicas should notify the master when they have completed setting
their local stores to the new key.

4. Cause the master to call sec_key_mgmt_change_key() after all replicas have set the new key
locally, thereby updating both the master’s local storage and the Registry database entry. Here again,
the key version must not be 0.

If the master and each replica has its own principal identity, each server can call
sec_key_mgmt_change_key() without coordinating this activity with any others.

Automatic Key Management

It is sometimes convenient for a principal to be able to change its key on a schedule determined by the
password expiration policy for that principal, rather than to rely on a network administrator to decide when
this should be done. In this case, the application can call sec_key_mgmt_manage_key(). This function
calls sec_key_mgmt_gen_rand_key() shortly before the current key is due to expire, updates both the
local key storage and the Registry database entry with the new key, and then calls
sec_key_mgmt_garbage_collect() to discard any obsolete keys. This function runs indefinitely; it will
never return during normal operation and so should be called from a thread dedicated to key
management. It is not intended for use by server principals that share the same key.

502 Application Development Guide: Core Components

Deleting Expired Keys

In order to prevent service interruptions, the Key Management API does not immediately discard keys that
have been replaced; instead, it maintains the keys, with a version number and key-type identifier, in the
local key storage. However, after a key has been out of use for longer than the maximum life of a ticket
to the principal, it is no longer possible that any client of that principal has a valid ticket encrypted with that
key. At this time, the principal may have its key storage garbage collected. The
sec_key_mgmt_garbage_collect() routine collects garbage in the local key storage by deleting all keys
older than the maximum ticket lifetime for the cell. The garbage_collect_time argument, which is returned
by sec_key_mgmt_change_key(), specifies when key-storage garbage will be collected.

Deleting a Compromised Key

When a principal’s key has been compromised, it should be deleted as soon as the damage has been
discovered, in order to prevent another party from masquerading as that principal. Two routines delete a
principal’s key:

� The sec_key_mgmt_delete_key() routine removes all key types having the specified key version
identifier from the local key storage, thus invalidating all existing tickets encrypted with that key.

� The sec_key_mgmt_delete_key_type() routine removes only a specified version of a specified key
type.

If the compromised key is the current one, the application should first change the key with
sec_key_mgmt_change_key(). It is not an error for a process to delete the current key as long as it is
done after the login context has been established, but it may inconvenience valid clients of a service. The
inconvenience may be justified, however, if the application data is sensitive.

Since an application may have no means to discover that its key has been compromised, the rgy_edit
and dcecp tools provide interfaces that call sec_key_mgmt_delete_key(),
sec_key_mgmt_change_key(), and sec_key_mgmt_gen_rand_key() so that a network administrator,
who is more likely to detect that a key has been compromised, may handle a security breach of this kind.
As an alternative, the application may provide user interfaces to these routines.

 Chapter 31. The Key Management Application Program Interface 503

504 Application Development Guide: Core Components

Chapter 32. The Access Control List Application Program
Interfaces

Normally, DCE Security program interfaces are local client-side APIs only. The ACL facility includes this
kind of interface, and some others as well, as follows:

� The DCE ACL interface (sec_acl), which enables clients to browse or edit DCE ACLs.

� The DCE ACL manager library (dce_acl), which enables servers to perform DCE-conformant
authorization checks at runtime. This ACL library provides an implementation of the ACL Manager
Interface and the ACL Network Interface. It supports the development of ACL managers for DCE
servers.

� The DCE ACL network interface (rdacl), which enables servers that manage access control (such as
ACL managers that use sec_acl_mgr) to communicate with clients that use sec_acl.

Figure 106 shows a schematic view of the relationships and usage of these interfaces, as well as some
relevant RPC interfaces. This chapter first discusses the client API, and then the two server program
interfaces.

Client Server

Application CodeApplication Code

DCE LibraryDCE Library

Resolver Code

IDL
generated

code

IDL
generated

code

ACL
Library

Backing
Store

Library
sec_acl_xxx()

Cell
Directory
Service ACL

Store

Figure 106. ACL Program Interfaces

 Copyright IBM Corp. 1994, 2001 505

The Client-Side API

The client-side API is a local interface consisting of a set of routines that are prefixed sec_acl. from
which the default DCE ACL editor (dcecp) is built. An application that needs to replace dcecp with a
DCE ACL editor or browser of its own calls this interface. The following sections provide specific
information on the functionality that this API supports.

Binding to an ACL

Any operation performed on an ACL uses an ACL handle to identify the target of the operation. The
handle is bound to the object protected by the ACL, not to the ACL itself. Since an object may be
protected by more than one ACL manager type, the ACL itself can only be uniquely identified by the ACL
handle in combination with the manager type that manages it. ACL editing calls must also specify the
ACL type to be read or otherwise manipulated (the object, default container, or default object ACL types).

An application may call sec_acl_bind() to get an ACL handle. The handle itself is opaque to the calling
program, which needs none of the information encoded in it to use the ACL interface.

A program can obtain a list of ACL manager types protecting an object and pass this data, along with the
ACL type identifier, to another client-side routine. There are two calls that perform this function:

sec_acl_get_manager_types() Returns a list of UUIDs corresponding to the manager
types.

sec_acl_get_mgr_types_semantics() Returns a list of UUIDs corresponding to the manager types
and the POSIX semantics supported by each manager
type. The output of this call is used by the
sec_acl_calc_mask() routine when it calculates a new
mask_obj mask.

(In the absence of a cell naming service, an application may call sec_acl_bind_to_addr(); this call binds
to a network address rather than a cell namespace entry.)

Once an application is finished using an ACL handle, it may call sec_acl_release_handle() to dispose of
it.

ACL Editors and Browsers

After obtaining a handle to the object in question (and using sec_acl_get_manager_types() or
sec_acl_get_mgr_types_semantics() to determine the ACL manager types protecting the object), editors
and browsers use the sec_acl_lookup() function to return a copy of an object’s ACL. Once an object’s
ACL is loaded in memory, the editor can call sec_acl_get_printstring() to receive instructions about how
to display the permissions of the ACL in a human-readable form. This call returns a symbol or word for
each permission, as well as common combinations of permissions. In addition, the printstring structure
includes a short explanation of each permission.

An ACL cannot be changed in part. To change an ACL, an editor must read the entire ACL (the
sec_acl_t structure), change it, and replace it entirely by calling sec_acl_replace().

If the ACL Manager supports the mask_obj mask type, you can use sec_acl_calc_mask() to calculate a
new sec_acl_e_type_mask_obj entry type.

This function is supported for POSIX compatibility only, for those applications that use mask_obj with its
POSIX semantics. Accordingly, sec_acl_calc_mask() returns the union of the permissions of all ACL

506 Application Development Guide: Core Components

entries other than user_obj, other_obj, unauthenticated (and the preexisting mask_obj). These
correspond approximately to what POSIX calls the “File Group Class” of ACL entries, although that
designation is not appropriate in the DCE context. In particular, sec_acl_calc_mask() works
independently of the DCE DFS. Use the sec_acl_get_mgr_types_semantics() routine to obtain the
required POSIX semantics and determine if the manager to which the ACL list will be submitted supports
the sec_acl_e_type_mask_obj entry type.

An ACL can occupy a substantial amount of memory. The memory management routine,
sec_acl_release(), frees the memory occupied by an ACL, and returns it to the pool. This is strictly a
local operation.

 Testing Access

Access testing by clients is not definitive because the state of an ACL can change between the access
test and the request to the server to perform an application operation. More typically, a client simply
requests an operation; then, on receiving the request, the server performs the access test, and depending
on the result, either runs the client’s request or returns an error to the client. However, if an application
server acts as a client of another server that manages ACLs for the application objects, the application
server needs the results of access tests from the ACL manager server in order to process requests from
application clients.

After calling sec_acl_bind() to acquire an ACL handle to the target object, such an application server
would call sec_acl_test_access() with the returned handle, the UUID of the ACL manager, and the
permission(s) requested in order to perform the requested operation. The access-test function returns
TRUE if the object’s ACL allows the client to perform the operation, otherwise it returns FALSE. An
alternative to sec_acl_test_access() is sec_acl_get_access().

Some applications need to check an ACL on behalf of a principal other than the one represented by the
calling process. For example, a replicated database server would presumably need to check the privilege
attributes of its clients against the database ACL entries. In this case, the server would use the
sec_acl_test_access_on_behalf() function, which is identical to the sec_acl_test_access() function,
except that it also requires the credentials of the principal for which the server principal is acting as an
agent.

 Errors

Although the ACL API saves errors received from the DCE RPC runtime (or other APIs) in ACL handle
data, it returns an error describing the ACL operation that failed as a result of the RPC error. However, if
an error occurs and the client needs to know the cause of the ACL operation failure, it may call
sec_acl_get_error_info(). This routine returns the error code last stored in the handle.

Guidelines for Constructing ACL Managers

ACL manager names for all of DCE should follow the convention for naming dcecp attributes. There is no
architectural restriction involved in the guidelines shown here, merely an attempt at consistency. The
dcecp program will accept names outside of this convention, but adherence to it will make usage of ACL
managers easier.

The guidelines are:

� Alphabetic characters in names must be lower case only.

� Names should not contain underscores.

 Chapter 32. The Access Control List Application Program Interfaces 507

� Names should not contain spaces.

� Names should be no longer than 16 bytes, the defined value of sec_acl_printstring_len.

� Names should be similar to object command names supported in dcecp whenever possible. For
example, the ACL manager name principal refers to the object, /.:/sec/principal, that contains
registry information about principals. Note that dcecp allows abbreviations. For example, a user can
specify org for the ACL manager name organization.

� Names must be unique within a component's ACL manager, but not necessarily within DCE. For
example, the name xattrschema can be used for a DCED Extended Attribute Configuration Schema
ACL object and for a Security Extended Registry Attribute Schema ACL object.

� The helpstring for an ACL manager must specify the component that owns or manages the objects in
questions, because this information cannot always be derived from the ACL manager name.

Extended Naming of Protected Objects

The DCE ACL model supports extended naming, which enables ACL managers to protect separately
objects that are not registered in the cell name space. This provides an alternative to registering all the
server's objects with CDS. The server alone is registered, and it contains code to identify its own objects
by name. To achieve ACL protection for these objects, the ACL manager must be able to identify the
ACLs in the same way the server identifies the objects. A resolution routine provides this ability.

Figure 107 shows the example of a printer server that is registered with CDS, with printers that are not.
The ACL manager for the printer server uses the dce_acl_resolve_by_name() resolution routine to obtain
the UUIDs of the several printers that are supported. The administrator in charge of the printers can
change the printers, their names, and their ACLs without concern for registering them with CDS.

CDS Registration
Names in Printer Server

/.:/servers/printer/4th-floor/janis
/3rd-floor/milhaus
/3rd-floor/myopia
/letterhead
/pen-plotter

Figure 107. Protection with Extended Naming

When the dce_acl_register_object_type() routine registers an object type, it associates a resolution
routine with the object type. The ACL Library provides two resolution routines,

508 Application Development Guide: Core Components

dce_acl_resolve_by_name() and dce_acl_resolve_by_uuid(). Other resolution routines can be easily
written, as required.

To take advantage of extended naming, an ACL manager must register the server name, object UUID,
and rdaclif.idl interface with the Cell Directory Service (refer to the z/OS DCE Application Development
Guide: Directory Services for more information). In addition, the ACL manager must register the object
UUID and rdaclif.idl interface with the RPC endpoint mapper (refer to Part 2, “Using the DCE Remote
Procedure Call APIs” on page 35).

The ACL Network Interface

The ACL network interface (rdacl) provides a DCE-common interface to ACL managers. It is the interface
exported by the default DCE ACL managers to the default DCE ACL client (that is, the dcecp tool), and
any other client that uses the DCE ACL interface (sec_acl).

The client API, sec_acl, is a local interface that calls a client-side implementation of the ACL network
interface. However, you are responsible for writing the server side of this interface. The implementation
needs to conform to the sections of the z/OS DCE Application Development Reference that describe the
rdacl routines. Following is a summary of these routines:

rdacl_lookup() Retrieves a copy of the object’s ACL.

rdacl_replace() Replaces the specified ACL.

rdacl_get_access() Returns a principal’s permissions to an object

rdacl_test_access() Determines whether the calling principal has the requested
permission(s).

rdacl_test_access_on_behalf() Determines whether the principal represented by the calling principal
has the requested permission(s). This function returns TRUE if both
the principal and the calling principal acting as its agent have the
requested permission(s).

rdacl_get_manager_types() Returns a list of manager types protecting the object.

rdacl_get_printstring() Obtains human-readable representations of permissions.

rdacl_get_referral() Returns a referral to an ACL update site. This function enables a
client that attempts to change an ACL at a read-only site to recover
from the error and rebind to an update site.

The ACL Library

The ACL Library provides an implementation of the ACL Manager Interface and the ACL Network Interface
for the convenience of programmers who are writing ACL managers for DCE servers.

The ACL Library meets the following needs:

� It provides stable storage for ACLs.

� It implements the rdacl interface, including support for multiple object types, initial default object ACLs,
and initial default container ACLs.

� It implements the full access algorithm, including masks and delegation.

� It provides DCE developers with a set of convenience functions, so that servers can easily perform
common styles of access control with minimal effort.

 Chapter 32. The Access Control List Application Program Interfaces 509

ACL Library Capabilities: The ACL Library provides simple and practical access to the DCE
security model.

The library provides a routine that indicates in a single call whether or not a client has the appropriate
permissions to perform a particular operation. A server can also easily retrieve the full set of permissions
granted to a client by an object's ACL.

The library provides the complete rdacl remote interface. Standard routines are provided to map either a
UUID attached to a handle or a residual name specified as one of the parameters.

The combination of these capabilities means that most servers will not have any need to use the DCE
ACL data types directly.

The ACL Application Programmer Interface: The ACL Library API, dce_acl, is a local
interface that provides the server-side implementation of the ACL network interface. The z/OS DCE
Application Development Reference describes the library routines.

The ACL library consists of the following parts:

� Initialization routines, where the server registers each ACL manager type.

� Server queries, where a server can perform various types of access checks.

� ACL object creation, where servers can create ACLs without concern for most low-level data type
details.

� The rdacl implementation and server callback, where the server maps rdacl parameters into a specific
ACL object. Two sample resolver routines are associated with this part:

dce_acl_resolve_by_name() Finds an ACL's UUID, given an object's name.

dce_acl_resolve_by_uuid() Finds an ACL's UUID, given an object's UUID.

Initialization Routines: An ACL manager must first define the types of the objects it manages. For
example, a simple directory service would have directories and entries, and each type of object would
have a different ACL manager. On a practical level, if a server has different types of objects, then the
most common difference between the ACL managers is the printed representation of its permission bits.
In other words, although the sec_acl_printstring_t values differ, the algorithm for evaluating permissions
remains the same.

The ACL library provides a global printstring that specifies the read, write, and control bits. Application
developers are encouraged to use this printstring whenever appropriate.

An ACL manager calls the dce_acl_register_object_type() routine to register an object type, once for
each type of object that the server manages. The manager printstring does not define any permission
bits; they are set by the library to be the union of all permissions in the ACL printstring.

The server must register the rdacl interface with the RPC runtime and with the endpoint mapper. See the
information about dce_server_register() in the z/OS DCE Application Development Reference.

510 Application Development Guide: Core Components

Server Queries: The ACL library provides several routines to automate the most common use of DCE
ACLs:

dce_acl_is_client_authorized() Checks whether a client's credentials are authenticated, and if so,
that they grant the desired access.

dce_acl_inq_client_permset() Returns the client's permissions, corresponding to an ACL.

dce_acl_inq_client_creds() Returns the client's credentials.

dce_acl_inq_permset_for_creds() Determines a client's complete extent of access to an object.

dce_acl_inq_acl_from_header() Retrieves the UUID of an ACL from the header of an object in the
backing store.

dce_acl_inq_prin_and_group() Inquires the principal and the group of an RPC caller.

Creating ACL Objects: The following convenience functions may be used by an application programmer
to create ACL objects in other servers or clients.

dce_acl_copy_acl() Copies an ACL.

dce_acl_obj_init() Initializes an ACL for an object.

dce_acl_obj_free_entries() Frees space used by an ACL's entries.

dce_acl_obj_add_user_entry() Adds permissions for a user ACL entry to the given ACL.

dce_acl_obj_add_group_entry() Adds permissions for a group ACL entry to the given ACL.

dce_acl_obj_add_id_entry() Adds permissions for an ACL entry to the given ACL.

dce_acl_obj_add_unauth_entry() Adds permissions for unauthenticated ACL entry to the given
ACL.

dce_acl_obj_add_obj_entry() Adds permissions for an “obj” ACL entry to the given ACL.

dce_acl_obj_add_foreign_entry() Adds permissions for the ACL entry for a foreign user or group to
the given ACL.

dce_acl_obj_add_any_other_entry() Adds permissions for the “any_other” ACL entry to a given ACL.

RDACL Implementation and Server Callback: The ACL Library makes a complete implementation of
the rdacl interface available to programmers writing servers, in a manner that is mostly transparent to the
rest of the server code.

The operations in the rdacl interface share an initial set of parameters that specify the ACL object being
operated upon:

handle_t h
sec_acl_component_name_t component_name
uuid_t $manager_type
sec_acl_type_t sec_acl_type

The sec_acl_type parameter indicates whether a protection ACL, an initial default object ACL, or an initial
default container ACL is desired. It does not appear in the access operations as it must have the value
sec_acl_type_object.

In order to implement the rdacl interface, the server must provide a resolution routine that maps these
parameters into the UUID of the desired ACL object; the library includes two such routines,
dce_acl_resolve_by_uuid() and dce_acl_resolve_by_name().

The resolution routine is required because servers use the namespace in different ways. Here are three
examples:

 Chapter 32. The Access Control List Application Program Interfaces 511

� Servers that only export their binding information and manage a single object, and hence use a single
ACL, do not need the resolution parameters. DTS is an example of this case.

� Servers with many objects in the namespace, with a UUID in each entry, will call
rpc_binding_inq_object on the handle to obtain the object UUID. They then use this same UUID as
the index of the ACL object. Many application servers will be of this type. One ACL Library resolver
function, dce_acl_resolve_by_uuid(), matches this paradigm. This paradigm is not appropriate if the
number of objects is immense.

� Servers with many objects will use a junction or similar architecture so that the component name (also
called the residual) specifies the ACL object by name. The DCE security server is essentially of this
type. Another ACL Library resolver function, dce_acl_resolve_by_name(), matches this paradigm.

The following typedef specifies the signature for a resolution routine. The first four parameters are the
common rdacl parameters mentioned above.

typedef void ($dce_acl_resolve_func_t)(
/$ [in] parameters $/
 handle_t h,
 sec_acl_component_name_t component_name,
 sec_acl_type_t sec_acl_type,
 uuid_t $manager_type,
 boolean32 writing,
 void $resolver_arg
/$ [out] parameters $/
 uuid_t $acl_uuid,
 error_status_t $st
);

For situations in which neither of the ACL Library resolver functions, dce_acl_resolve_by_uuid() or
dce_acl_resolve_by_name(), is appropriate, application developers must provide their own.

The following two examples illustrate the general structure of the dce_acl_resolve_by_uuid() API and
dce_acl_resolve_by_name() API that are supplied in the ACL Library. They may be used as paradigms
for creating additional resolver routines.

The first example shows dce_acl_resolve_by_name().

A server has several objects, and stores each in a backing store database. Part of the standard header
for each object is a structure that contains the UUID of the ACL for that object. (The standard header is
not intended to be an abstract type, but rather a common prologue provided to ease server development.)
The resolution routine for this server retrieves the object UUID from the handle, uses that as an index into
its own backing store, and uses the sec_acl_type parameter to retrieve the appropriate ACL UUID from
the standard data header.

This routine needs the database handle for the server's object storage, which is specified as the
resolver_arg parameter in the dce_acl_register_object_type call.

#define STAT_CHECK_RET(st) { if (st != error_status_ok) return; }
dce_acl_resolve_func_t
dce_acl_resolve_by_uuid(
/$ in $/

 handle_t h,
 sec_acl_component_name_t component_name,
 sec_acl_type_t sec_acl_type,
 uuid_t $manager_type,
 boolean32 writing,
 void $resolver_arg,
/$ out $/

 uuid_t $acl_uuid,

512 Application Development Guide: Core Components

 error_status_t $st
)
{
 dce_db_handle_t db_h;
 dce_db_header_t dbh;
 uuid_t obj;

/$ Get the object. $/
rpc_binding_inq_object(h, &obj, st);

 STAT_CHECK_RET($st);

/$ Get object header using the object backing store. The handle was
$ passed in as the resolver_arg in the dce_acl_register_object_type call.

 $/
db_h = (dce_db_handle_t)resolver_arg;
dce_db_std_header_fetch(db_h, &obj, &dbh, st);

 STAT_CHECK_RET($st);

/$ Get the appropriate ACL based on the ACL type. $/
dce_acl_inq_acl_from_header(dbh, sec_acl_type, acl_uuid, st);

 STAT_CHECK_RET($st);
}

The next example shows dce_acl_resolve_by_name().

A server uses the residual name to resolve an ACL object, by using dce_acl_resolve_by_name(). This
routine requires a DCE database that maps names into ACL UUIDs. This backing store database must be
maintained by the server application so that created objects always get a name, and that name must be a
key into a database that stores the UUID identifying the object. The resolver_arg parameter given in the
dce_acl_register_object_type call must be a handle for that database.

#define STAT_CHECK_RET(st) { if (st != error_status_ok) return; }
dce_acl_resolve_func_t
dce_acl_resolve_by_name(
/$ in $/

 handle_t h,
 sec_acl_component_name_t component_name,
 sec_acl_type_t sec_acl_type,
 uuid_t $manager_type,
 boolean32 writing,
 void $resolver_arg,
/$ out $/

 uuid_t $acl_uuid,
 error_status_t $st
)
{
 dce_db_handle_t db_h;
 dce_db_header_t dbh;

/$ Get object header using the object backing store. The handle was
$ passed in as the resolver_arg in the dce_acl_register_object_type call.

 $/
db_h = (dce_db_handle_t)resolver_arg;
dce_db_std_header_fetch(db_h, component_name, &dbh, st);

 STAT_CHECK_RET($st);

/$ Get the appropriate ACL based on the ACL type. $/
dce_acl_inq_acl_from_header(dbh, sec_acl_type, acl_uuid, st);

 STAT_CHECK_RET($st);

}

 Chapter 32. The Access Control List Application Program Interfaces 513

514 Application Development Guide: Core Components

Chapter 33. The ID Map Application Program Interface

In the multicell environment, the global print string representation of a principal identity can be ambiguous,
even though every principal and its local cell have unique names in the form of UUIDs to which the print
string representations normally resolve. For example, all ACLs maintain UUIDs as the definitive
representations of principal and cell names.

The acl_edit tool, on the other hand, takes as input (and also displays) this same information as print
strings. This string-to-UUID mapping is accomplished easily when an ACL entry refers to a local identity;
that is, a member of the local cell. However, when a user adds an ACL entry for a foreign principal
identity such as /.../world/dce/rd/writers/tom, it is not evident to the ACL Manager which part of the name
identifies the cell, and which identifies the principal within the cell. The name /... /world/dce may refer to
a cell containing the principal /rd/writers/tom, or the cell name may be /.../world/dce/rd and the principal
name may be /writers/tom.

To parse the fully qualified principal name that the user types into its cell name and local principal-name
components, and for these components to be mapped to UUIDs, ACL Managers that support entries for
foreign identities use the ID Map API. For the same reasons, many other kinds of servers in a DCE
multicell environment need a facility to parse global names and translate UUIDs into print string names.

The ID Map API provides a simple interface to translate a fully qualified name (that is, the global
representation of a name) into its components and back again. This API consists of the following calls:

sec_id_parse_name() Takes as input a registry context handle and a fully qualified principal name, and
returns the principal’s print string name and UUID, and the print string name and
UUID of the principal’s local cell.

sec_id_gen_name() Translates a principal UUID and the UUID of its local cell UUID into a
cell-relative principal name, a cell name, and a fully qualified principal name.

sec_id_parse_group() This call is like sec_id_parse_name() except that it operates on group names.

sec_id_gen_group() This call is like sec_id_gen_name() except that it operates on group names.

 Copyright IBM Corp. 1994, 2001 515

516 Application Development Guide: Core Components

Chapter 34. DCE Audit Service

Audit plays a critical role in distributed systems. Adequate audit facilities are necessary for detecting and
recording critical events in distributed applications.

Audit, a key component of DCE, is provided by the DCE Audit Service.

This chapter provides an introduction to the DCE Audit Service.

Features of the DCE Audit Service
The DCE Audit Service has the following features:

� An Audit daemon performs the logging of audit records based on specified criteria.

� Application Programming Interfaces (APIs) can be used as part of application server programs to
record audit events. These APIs can also be used to create tools that analyze the audit records.

� An administrative command interface to the Audit daemon directs the daemon in selecting the events
that are going to be recorded based on certain criteria.

� An event classification mechanism is used to logically group a set of audit events for ease of
administration.

� Audit records can be directed to logs or to the operator console.

Components of DCE Audit Service
The DCE Audit Service has three basic components:

� Application Programming Interfaces (APIs)

Provide the functions that are used to detect and record critical events when the application server
services a client. The application programmer uses these functions at code points in the application
server program to actuate the recording of audit events.

Other APIs are also provided which can be used to create tools that examine and analyze the audit
event records.

� Audit daemon (auditd)

Maintains the filters and the central audit logs.

� Audit Management Interface

Management interface to the Audit daemon. Used by the administrator to specify how the Audit
daemon will filter the recording of audit events. This interface is available from the DCE Control
Program (dcecp).

DCE Audit Service Concepts
This section briefly describes the DCE Audit concepts that are relevant to DCE application programming.

 Copyright IBM Corp. 1994, 2001 517

 Audit Clients

All RPC-based servers are potential audit clients—DCE servers and user-written application servers. The
DCE Security Service and Distributed Time Service are auditable. That is, code points (discussed in the
next section), are already in place on these services.

The Audit daemon can also audit itself.

 Code Point

A code point is a location in the application server program where DCE Audit APIs are used. Code
points generally correspond to operations or functions offered by the application server for which audit is
required. For example, if a bank server offers the cash withdrawal function acct_withdraw(), this function
may be deemed to be an auditable event and be designated as a code point.

As mentioned previously, code points are already in place in the DCE Security Service and Distributed
Time Service code. The code points for these services are described in the z/OS DCE Administration
Guide.

 Events

An audit event is any event that an audit client wishes to record. Generally, audit events involve the
integrity of the system. For example, when a client withdraws cash from his bank account, this can be an
audit event.

An audit event is associated with a code point in the application server code.

The terms audit event, event, and auditable event are used interchangeably in this book.

Event Names and Event Numbers: Each event has a symbolic name as well as a 32-bit
number assigned to it. Symbolic names are used only for documentation in identifying audit events. In
creating event classes, the administrator uses the event numbers associated with these events.

Event numbers are 32-bit integers. Each event number is a tuple made up of a set-ID and the event-ID.
The set-ID corresponds to a set of event numbers and is assigned by OSF to an organization or vendor.
The event-ID identifies an event within the set of events. The organization or vendor manages the
issuance of the event-ID numbers to generate an event number.

Event numbers must be consecutive. That is, within a range of event numbers, no gaps in the
consecutive order of the numbers are allowed.

The structure and administration of event numbers can be likened to the structure and administration of IP
addresses. Recall that an IP address is a tuple of a network ID (analogous to the set-ID) and a host ID
(analogous to the event-ID). The format and administration of event numbers are also analogous to IP
addresses, as will be discussed in the next sections.

518 Application Development Guide: Core Components

Event Number Formats: Event numbers follow one of five formats (A to E), depending on the
number of audit events in the organization. The format of an event number can be determined from its
four high-order bits.

� Format A can be used by large organizations (such as OSF or major DCE vendors) that need more
than 16 bits for the event-ID. This format allocates 7 bits to the set-ID and 24 bits to the event-ID.
Format A event numbers with zero (0) as its set-ID are assigned to OSF. That is, all event numbers
used by OSF have a zero in the most significant byte.

� Format B can be used by intermediate-sized organizations that need 8 to 16 bits for the event-ID.

� Format C can be used by small organizations that need less than 8 bits for the event-ID.

� Format D is not administered by OSF and can be used freely within the cell. These event numbers
may not be unique across cells and should not be used by application servers that are installed in
more than one cell.

� Format E is reserved for future use.

The event number formats are illustrated in Figure 108.

Figure 108. Event Number Formats

Example Event Numbers for DCE Servers: Following are examples of event numbers in the
DCE Security and Time servers, as defined in a header file used by the Security Server and Time Server
programs, respectively.

/$ Event numbers 0x00000100 to 0x000001FF are assigned to the
Security Server. $/

#define AS_Request 0x00000101
#define TGS_TicketReq 0x00000102
#define TGS_RenewReq 0x00000103
#define TGS_ValidateReq 0x00000104
 ...

/$ Event numbers 0x00000200 to 0x000002FF are
assigned to the Time Server. $/

#define evt_create_cmd 0x00000200
#define evt_delete_cmd 0x00000201
#define evt_enable_cmd 0x00000202
#define evt_disable_cmd 0x00000203
 ...

 Chapter 34. DCE Audit Service 519

Example Event Numbers for an Application Server: The following is an example of the
event numbers in a banking server application, as defined in the application's header file.

#define evt_vn_bank_server_acct_open 0x01000000
#define evt_vn_bank_server_acct_close 0x01000001
#define evt_vn_bank_server_acct_withdraw 0x01000002
#define evt_vn_bank_server_acct_deposit 0x01000003
#define evt_vn_bank_server_acct_transfer 0x01000004

Administration of Event Numbers: Organizations and vendors must administer the event
numbers assigned to them (through the set-ID) to maintain the unique assignment of event numbers.

 Event Class

Audit events can be logically grouped together into an event class. Event classes provide an efficient
mechanism by which sets of events can be specified by a single value. Generally, an event class consists
of audit events with some commonality. For example, in a bank server program, the cash transaction
events (deposit, withdrawal, and transfer) may be grouped into an event class.

Typically, the administrator creates and maintains event classes. For more details on event classes, see
the z/OS DCE Administration Guide.

Event Class Number

Each event class is assigned an event class number. Like the event number, the event class number is
a 32-bit integer and is administered by OSF. Event class numbers are discussed in more detail in the
z/OS DCE Administration Guide.

 Filters

Once the code points are identified and placed in the application server, all audit events corresponding to
the code points will be logged in the audit trail file, irrespective of the outcome of these audit events.
However, recording all audit events under all conditions may neither be practical nor necessary. Filters
provide a means by which audit records are logged only when certain conditions are satisfied. A filter is
composed of filter guides that specify these conditions. Filter guides also specify what action to take if
the condition (outcome) is met.

A filter answers the following questions:

� Who will be audited?

� What events will be audited?

� What should be the outcome of these events before an audit record is written?

� Will the audit record be logged in the audit trail file, or displayed on the system console, or both?

For example, for the bank server program, you can impose the following conditions before an audit record
is written:

Audit all withdrawal transactions (the audit events) that fail because of access denial (outcome of the
event) that are performed by all customers in the DCE cell (who to audit).

520 Application Development Guide: Core Components

Filter Subject Identity: A filter is associated with one filter subject, which denotes to who the filter
applies. The filter subject is the client of the distributed application who caused the event to happen.

For more information on the filter subject identity, see the z/OS DCE Administration Guide.

 Audit Records

An audit record has a header and a trailer. The header contains the common information of all events, for
example, the identities of the client and the server, group privileges used, address, and time. The trailer
contains event-specific information, for example, the dollar amount of a fund-transfer event.

Audit records are initialized and filled by calling the Audit API routines.

There are five stages in the writing of an audit record:

1. First, the audit trail file must be opened.

2. Second, the code point registers an audit event. At this point, the audit record does not yet have any
form.

3. The audit record descriptor is built. This is a representation of the audit data which is built by the
dce_aud_start(), dce_aud_put_ev_info(), and dce_aud_commit() routines. This is stored in a data
structure in the client's core memory until the dce_aud_commit() routine is called. This data is not
IDL-encoded until the dce_aud_commit() call.

4. The audit record is written to the log. This is stored as IDL-encoded data in the audit log.

5. The audit record is transformed into human-readable form and the resulting character string is stored
in a buffer by calls to the dce_aud_next() and dce_aud_print() routines. (This is not an IDL-encoded
representation.)

Audit Trail File

The audit trail file contains all the audit records that are written by the Audit daemon or the Audit APIs.
You can specify either a central audit trail file or a local audit trail file. The central audit trail file is
maintained by the Audit daemon. The local audit trail file is maintained by the Audit APIs. The terms
audit trail file and audit trail are used interchangeably in this book.

Administration and Programming in DCE Audit
This section gives you an example of how auditing is accomplished using the DCE Audit Service. Both
the programmer and the administrator have to perform tasks to enable the writing of audit records in the
audit trail. This section looks at the life cycle of an audit trail, from the time that audit events are identified
in the server code, to the time that they are filtered and recorded in the audit trail file.

A bank server example illustrates each stage of the life cycle. In this example, the bank server program
offers five operations: acct_open(), acct_close(), acct_withdraw(), acct_deposit(), and acct_transfer().

 Chapter 34. DCE Audit Service 521

 Programmer Tasks

The programmer uses the DCE Audit APIs to enable auditing in the application server program. The
following steps show how the programmer performs these tasks.

1. The programmer identifies the code points in the bank server program. Because each of the five
operations (corresponding to an RPC interface) offered by the bank server is a security-relevant
operation, the programmer deems that all these operations are security-relevant. The programmer
assigns a codepoint to each operation.

acct_open() /$ first code point $/
 ...
acct_close() /$ second code point $/

 ...
acct_withdraw() /$ third code point $/

 ...
acct_deposit() /$ fourth code point $/

 ...
acct_transfer() /$ fifth code point $/

 ...
 ...

Each code point corresponds to an audit event.

2. The programmer then assigns an event number to each audit event (corresponding to each code
point). For example, define these numbers in the header file as follows:

/$ event number for the first code point, acct_open() $/
#define evt_vn_bank_server_acct_open 0xC1000000

/$ event number for the second code point, acct_close() $/
#define evt_vn_bank_server_acct_close 0xC1000001

/$ event number for the third code point, acct_withdraw() $/
#define evt_vn_bank_server_acct_withdraw 0xC1000002

/$ event number for the fourth code point, acct_deposit() $/
#define evt_vn_bank_server_acct_deposit 0xC1000003

/$ event number for the fifth code point, acct_transfer() $/
#define evt_vn_bank_server_acct_transfer 0xC1000004

3. The programmer now starts adding Audit API routines to the bank server program.

In the initialization part of the server, the application programmer uses the dce_aud_open() API to
open an audit trail file for writing the audit records. This routine uses the lowest-numbered event as
one of its parameters, in this case, 0xC1000000 (evt_vn_bank_server_acct_open). Using the
lowest-numbered event enhances the performance of the filter search.

 ...
/$ open an audit trail file for writing $/

 dce_aud_open(aud_c_trl_open_write, description,
 evt_vn_bank_server_acct_open,

5, &audit_trail, &status);
 ...

4. The programmer invokes the following DCE Audit APIs at each code point :

� The dce_aud_start() API to initialize an audit record. This routine assigns the event number to
the event represented by the code point. Thus, it uses the event number corresponding to that
code point as one of its parameters.

� The dce_aud_put_ev_info() API to add event-specific information to the audit record. This
routine is invoked once for each event-specific item.

522 Application Development Guide: Core Components

� The dce_aud_commit() API to commit the audit record in the audit trail file.

The use of these three APIs is illustrated in the following example of the bank server program:

 ...
acct_open() /$ first code point $/

 ...
/$ Uses the event number for acct_open(), evt_vn_bank_server_acct_open $/

 dce_aud_start(evt_vn_bank_server_acct_open,
 binding,options,outcome,&ard, &status);
 ...

if (ard) /$ If events need to be logged, add trailer info (optional)$/
 dce_aud_put_ev_info(ard,info,&status);
 ...

if (ard) /$ If events need to be logged, add header and trailer info $/
 dce_aud_commit(at,ard,options,format,outcome,&status);
 ...
 ...
 ...
acct_close() /$ second code point $/

 ...
/$ Uses the event number for acct_close(), evt_vn_bank_server_acct_close $/

 dce_aud_start(evt_vn_bank_server_acct_close,
 binding,options,outcome,&ard, &status);
 ...

if (ard) /$ If events need to be logged $/
 dce_aud_put_ev_info(ard,info,&status);
 ...

if (ard) /$ If events need to be logged $/
 dce_aud_commit(at,ard,options,format,outcome,&status);
 ...
 ...
 ...

5. The programmer uses the dce_aud_close() API in the termination routine of the application server.
This API closes the audit trail file (and frees up memory) if the application server shuts down.

The coding of the application program to enable auditing is essentially complete at this point.

 Administrator Tasks

The following steps will be performed by the administrator to filter the audit events and control the audit
trail file.

1. The administrator obtains the event numbers corresponding to the events represented by the code
points in the bank server program from the programmer or from the program's documentation. These
events and their assigned event numbers are:

acct_open() 0xC1000000

acct_close() 0xC1000001

acct_withdraw() 0xC1000002

acct_deposit() 0xC1000003

acct_transfer() 0xC1000004

2. The administrator decides to create two event classes: the account_creation_operations class
comprised of acct_open() and acct_close(), and the account_balance_operations class comprised of
acct_withdraw(), acct_deposit(), and acct_transfer().

3. The administrator decides to create two filters, one for all users within the cell (for the cell
/.:/torolabcell), and the other for all other users.

 Chapter 34. DCE Audit Service 523

The filter for all users within the cell has the following guides:

� Audit the events in the event class account_balance_operations only, subject to the next
condition.

� Write an audit record only if an operation in that event class failed because of access denial.

� If the first condition is fulfilled, write the audit record in an audit trail file only.

The filter for all other users has the following filter guides:

� Audit the events in both event classes, subject to the next condition.

� Write an audit record if an operation in that event class succeeded or failed.

� Write the audit record both in an audit trail file and the console.

The scenarios described here can be summarized as follows:

� The programmer identifies the code points in the distributed application corresponding to the audit
events.

� The programmer uses the Audit API routines on those code points to enable auditing.

� The administrator creates event classes which are used to group the audit events.

� The administrator creates filters to narrow down the conditions by which audit records are written for
the audit events. Filters are created with the dcecp audfilter command.

Figure 109 illustrates the interactions among the Audit client program, the audit API routines, the Audit
daemon (auditd), and the Audit management interface (available from dcecp).

auditor dcecp

auditd audit client

audit API

command i/f

audit records

filter read/write

log to file

read/write

in-core copy
of filters

trail files
filters

Event Class
Configuration
Files

Timestamps(filter files)
filters
event tablestat, read

stat, read

filter update notification

filter updates

(per machine)

read/write

Figure 109. Overview of the DCE Audit Service

The Audit management interface (accessed through the DCE Control Program) is used by the systems
administrator to specify who, what, when, and how to audit. This is accomplished through the use of the
filters. The Audit daemon maintains the filter's information in its address space. The filters are also stored
in local files so that the filters can be restored when the machine restarts, and so that Audit clients can
read the filter information from these files.

The Audit clients are the users of the filter information. Using the dce_aud_open routine, the Audit client
reads the information on filters and event class configuration. The Audit client reads these files only once,
unless an update notification is received from the Audit daemon (which is triggered by an update initiated
by an administrator using the DCE Control program).

524 Application Development Guide: Core Components

Chapter 35. Using the Audit API Routines

This chapter describes the use of the Audit API routines to add audit capability to distributed applications
and to write audit trail analysis and examination tools.

Adding Audit Capability to Distributed Applications
To record audit events in an audit trail file, the DCE Audit API routines must be called in the distributed
application to perform the following:

1. Open the audit trail file during the startup of the application

2. Initialize the audit records at each code point

3. Add Event Information to the audit records at each code point (optional)

4. Commit the audit records at each code point

5. Close the audit trail file when the application shuts down

Note that steps 2, 3, and 4 are repeated in sequence at each code point in the distributed application.
Step 3 can be repeated for each event-specific item being put in the audit record.

The use of the Audit API routines in each of these steps is illustrated with the bank server example
introduced in Chapter 34, “DCE Audit Service” on page 517.

Five code points are identified in the bank server program: acct_open(), acct_close(), acct_withdraw(),
acct_deposit(), and acct_transfer(). Each code point has been assigned an event number and defined in
the application server's header file as follows:

#define evt_vn_bank_server_acct_open 0x01000000
#define evt_vn_bank_server_acct_close 0x01000001
#define evt_vn_bank_server_acct_withdraw 0x01000002
#define evt_vn_bank_server_acct_deposit 0x01000003
#define evt_vn_bank_server_acct_transfer 0x01000004

Opening the Audit Trail
To open the audit trail file, the main routine of the application server uses the dce_aud_open routine.
With this routine call, the audit trail file can:

� Be opened for reading or for writing.

� Be directed to the default audit trail file or to a specific file. If dce_aud_open() is called without
specifying an audit trail file, (by having NULL as the value of the description parameter), the default
audit trail file is used. This is the central trail file which is accessed by RPC calls to the Audit
daemon.

If an audit trail file is specified in the dce_aud_open() call (through the description parameter), that
file is opened directly by the Audit library, bypassing RPCs and the Audit daemon.

In the bank server application, the routine call is:

dce_aud_open(aud_c_trl_open_write, &audit_file,
 evt_vn_bank_server_acct_open,

5, &audit_trail, &status);

In this call, the audit trail file audit_file is opened for writing. The third parameter
evt_vn_bank_server_acct_open specifies the lowest event number used in the bank server application.

 Copyright IBM Corp. 1994, 2001 525

The fourth parameter, 5, specifies the number of events defined. The call returns an audit-trail descriptor
audit_trail that will be used to append audit records to the audit trail file.

Initializing the Audit Records
Audit records can be initialized by using the dce_aud_start_* routines. This routine has five variations,
and the use of each variation depends on the available information about the server. In general, if you
have the RPC binding information about the server, use the dce_aud_start() routine. If not, use the other
four variations of this routine, depending on the available information. The five variations are:

dce_aud_start() For use by DCE RPC-based server applications.

dce_aud_start_with_server_binding() For use by DCE RPC-based client applications

dce_aud_start_with_pac() For use by applications that do not use DCE RPC, but use the
DCE authorization model.

dce_aud_start_with_name() For use by applications that neither use DCE RPC nor the DCE
authorization model.

dce_aud_start_with_uuid() For use by RPC-based applications that know their client's
identity in UUID form.

The dce_aud_start_* routines determine if a specified event must be audited based on the subject
identity and event outcome that were defined for that event by the filters.

If the event specifics match the event filters (that is, the event has to be audited), these routines return a
pointer to an audit record buffer. If it is determined that the event does not need to be audited, a NULL
pointer is returned, and the application can then discontinue any auditing activity. If it cannot be
determined whether the event needs to be audited (because the event needs to be audited based on a
specific outcome(s) but the outcome is not yet known) these routines return a non-NULL pointer.

When an audit record is initialized, the identification of the audit subject (that is, the client of the distributed
application) is recorded.

You can use the dce_aud_start_* routines to specify the amount of header information in the audit
record. You can specify any or a combination of the following:

� Information on all groups and addresses

� Information on groups only

� Information on addresses only

Using these routines, you can bypass the filter altogether and log the event to the audit trail file or display
it on the system console. This option is useful for applications whose events require unconditional audit
actions.

In our example, each of the bank server routines (acct_open(), acct_close(), acct_withdraw(),
acct_deposit(), acct_transfer()) will make a dce_aud_start routine call. In the acct_transfer() routine,
the routine call is made as follows:

 acct_transfer()
 ...
 dce_aud_start (evt_vn_bank_server_acct_transfer,
 h, aud_c_evt_all_info,

aud_c_esl_cond_success, &ard, &status);
 ...

526 Application Development Guide: Core Components

The h points to the RPC binding of the client making the call. The aud_c_evt_all_info option means that
all information about the client's groups and addresses are included in the audit record header. The
aud_c_esl_cond_success event outcome means that the event completed successfully.

Adding Event-Specific Information
If the dce_aud_start() routine returns an audit record descriptor to the audit record buffer (meaning that
the event needs to be audited), the dce_aud_put_ev_info() routine call can be used to add event-specific
information to the tail of the audit record.

You can opt not to use the dce_aud_put_ev_info() routine if the information provided by the audit record
header is already sufficient for your auditing purposes.

If you elect to use this routine, it can be called one or more times, the order of which is preserved in the
audit record.

The dce_aud_put_ev_info() routine has two parameters: the ard parameter, which is the pointer to the
audit record descriptor, and the info parameter, which is a dce_aud_ev_info_t type data containing the
event-specific information. The programmer can specify the dce_aud_ev_info_t data type to include all
the audit information that needs to be collected. For more information on the formats of the audit record,
see the z/OS DCE Application Development Reference.

In the acct_transfer() code point of the bank server example, if you want to record the account numbers
of the parties involved in the transfer and the amount of each transaction, the data type declarations and
the routine calls can be made as follows:

dce_aud_ev_info_t info;

/$ account numbers and transfer amounts are all unsigned 32-bit integers $/
info.format = aud_c_evt_info_ulong_int;

info.data = acct_from;
dce_aud_put_ev_info(ard, info, &status);
info.data = acct_to;
dce_aud_put_ev_info(ard, info, &status);
info.data = amount;
dce_aud_put_ev_info(ard, info, &status);

Committing an Audit Record

After the header and the optional tail information has been included in the audit record, the
dce_aud_commit() routine call is used to write the audit record to the audit trail file. This routine uses the
audit trail file previously opened by the dce_aud_open() routine. You can specify one of two options in
the way the routine writes the audit record in the audit trail file:

� Return an error status if the storage or logging service is not available when an attempt is made to
write the audit record. This option can be used if the application program can handle write failures in
the stable storage.

� If the storage or logging service is not available, keep on trying until the routine is able to write to it.
This option can be used if the audit record must be written to stable storage before the routine can
proceed safely to another task.

In the bank server example, the routine call can be made as follows:

dce_aud_commit(audit_trail, ard, options, format, outcome, &status);

The audit_trail parameter is the trail descriptor returned in the dce_aud_open() call made earlier. The
ard parameter is the audit record descriptor returned in the dce_aud_start() call (and used in the
dce_aud_put_ev_info() routine call). The format parameter specifies a format version number of the

 Chapter 35. Using the Audit API Routines 527

event-specific information. The initial version number should be zero, and be incremented when the
format changes. For example, the data type used for account numbers might change from 32-bit integer
to UUID. The event outcome must be provided in this call, even if it has been provided in the
dce_aud_start() call made earlier.

Closing an Audit Trail File

The audit trail file must be closed using the dce_aud_close() routine when the application shuts down
(because of rpc_mgmt_stop_server_listening() routine call or other exceptional conditions). For
example, to close the trail, the bank server's main program can make the following routine call:

dce_aud_close(audit_trail, &status);

This routine flushes buffered audit records to stable storage, and releases the memory allocated for the
trail descriptor.

Writing Audit Trail Analysis and Examination Tools
The Audit APIs can be used to write audit trail analysis and examination tools that selectively review:

� Events that are invoked by one or more subjects, for example, principals, groups, and cells

� Events that have a specific outcome

� Events that occurred during a specified time period

� Events that have specific event IDs

In its most basic form, an audit trail analysis and examination tool must perform five routines:

� Open an audit trail file for reading.

� Read the audit records into a buffer.

� Transform the audit records into human-readable form.

� Discard the audit record.

� Close the audit trail file.

These routines and the APIs that are used for each are discussed in the following sections.

Opening an Audit Trail File for Reading
To open the audit trail file for reading, use the dce_aud_open() routine and specify aud_c_trl_open_read
as the value for the flags parameter. In this case, the values for the first_evt_number and num_of_evts
does not affect the call. For example:

 dce_aud_open(aud_c_trl_open_read, AUDIT_TRAIL_FILE,
0, 0, &out_trail, status);

Reading the Desired Audit Records into a Buffer
After opening the audit trail file, you can use the dce_aud_next() routine to retrieve audit records. Audit
records are stored in the audit trail file in binary form. The dce_aud_next() routine does not convert the
file into readable form. You must use the dce_aud_print() routine to translate the audit record into
readable form.

The dce_aud_next() routine allows you to specify a criteria that will be used in selecting the records that
will be read from the file. This criteria is known as predicates and is expressed by setting the condition
on the value of certain attributes. The condition is set by using any of the following operators: = (equal
to), > (greater than), and < (less than).

528 Application Development Guide: Core Components

Predicates can be expressed in any of the following forms:

 � attribute=value

 � attribute>value

 � attribute= >value

 � attribute<value

 � attribute= <value

The following list summarizes these attributes and their acceptable values:

SERVER UUID of the principal which generated the record.

EVENT Audit event number.

OUTCOME Event outcome of the record.

STATUS Authorization status of the application client.

CLIENT UUID of the client principal.

TIME Time when the record was generated.

CELL The UUID of the application client's cell.

GROUP The UUID of the application client's group or groups.

ADDR The address (binding handle) of the client.

Details of these attributes, their values, and the allowable operators are discussed in the z/OS DCE
Application Development Reference.

For example, to have the routine retrieve audit records that pertain to a particular outcome only, you can
set the predicate to:

OUTCOME=SUCCESS

If the predicate parameter is set to NULL (that is, no criteria) the next audit record is read. For example,
to read the next audit record in a previously opened audit trail file, the following call is made:

dce_aud_next(out_trail, NULL, &out_ard, status);

You can specify multiple predicates, in which case the predicates are treated as a logical AND condition.

The dce_aud_next() routine returns a pointer to the record that was read. This pointer is used by the
dce_aud_print(), dce_aud_get_ev_info(), and dce_aud_get_header() routines in transforming the audit
records into readable format.

Transforming the Audit Record into Readable Text
After reading in the desired audit record using the dce_aud_next() routine, these binary audit records
must be transformed into human-readable form.

You can use any of the following three routines to transform the audit record information to
human-readable form:

dce_aud_print() Formats the entire audit record (header and tail) into human_readable (ASCII)
format.

dce_aud_get_header() Obtains the header information of the audit record and formats it into human
readable form.

 Chapter 35. Using the Audit API Routines 529

dce_aud_get_ev_info() Obtains the event-specific information in the tail of the audit record and formats
it into human-readable form.

The dce_aud_next() routine returns the address of the audit record to these routines. These routines
then allocate memory for the buffer (using malloc()) and fills it with the human-readable representation of
the audit record. The user must call dce_aud_discard() to release this memory when all audit record
retrieving and transforming tasks have been accomplished. For storage obtained by
dce_aud_get_header, call dce_aud_free_header. For storage obtained by dce_aud_get_ev_info, call
dce_aud_free_ev_info.

Discarding the Audit Record
The dce_aud_discard() routine frees the memory allocated to the binary version of the audit record, that
is, the structure returned by the dce_aud_next() routine. The dce_aud_discard() routine does not free
the structures allocated by dce_aud_print(), dce_aud_get_header(), or dce_aud_get_ev_info().

Closing the Audit Trail File
Finally, the audit trail file from which the audit records were read must be closed using the
dce_aud_close() routine.

530 Application Development Guide: Core Components

Chapter 36. The Password Management Application
Programming Interfaces

User passwords are the weakest link in the chain of DCE security. Users, unless their choices are
restricted, typically choose passwords that are easy to for them to remember; unfortunately, these
memorable passwords are also easy for attackers to “crack.”

The Password Management facility is intended to reduce this risk by providing the tools necessary to
develop customized password management servers, and to call them from client password change
programs. This facility enables cell administrators to:

� Enforce stricter constraints on users' password choices than those in DCE Standard Policy

� Offer, or force, automatic generation of user passwords

The Password Management facility includes the following APIs:

� The DCE Password Management interface, sec_pwd_mgmt(), which enables clients to retrieve a
principal's password management ERA values and to request strength-checking and generation of
passwords.

� The DCE Password Management network interface, rsec_pwd_mgmt(), which enables a Password
Management Server to accept and process password strength checking and generation requests.

The following figure provides a schematic view of the relationships and usages of these interfaces, as well
as some relevant Security Registry APIs. This chapter first discusses the client API, and then the network
API.

Figure 110. Usage of Password Management Facility APIs

 Copyright IBM Corp. 1994, 2001 531

For information on how to administer password generation and strength-checking, see the z/OS DCE
Administration Guide.

The Client-Side API

Dcecp and rgy_edit provide support for password generation based on a principal's password validation
type ERA. However, if you want to enhance your own password change program, you will need to use
the client-side sec_pwd_mgmt() API.

This API provides functions that retrieve a principal's password management ERA values, and request
password strength-checking and generation from a password management server.

The sec_pwd_mgmt() API is defined in the sec_pwd_mgmt.idl file.

The general procedure for using the client-side password management API in a password change
program is as follows. Refer to Figure 110 on page 531 as you read the following steps:

1. The client calls sec_pwd_mgmt_setup(), specifying the login name of the principal whose password
is being changed. The Registry Service returns the pwd_val_type and pwd_mgmt_binding ERAs
as well as the Registry standard (password) policy for the principal to the client's security runtime,
which is stored in a password management handle (an opaque data type).

2. The client calls sec_pwd_mgmt_get_val_type(), specifying the handle returned by
sec_pwd_mgmt_setup() in step 1. The value of the principal's pwd_val_type ERA is extracted from
the handle and returned to the client.

3. The client analyzes the principal's pwd_val_type ERA to determine whether a generated password is
required. If so, it calls sec_pwd_mgmt_gen_pwd(), specifying the number of passwords needed, and
the handle returned by sec_pwd_mgmt_setup. The client security runtime makes an RPC call to the
password management server, which generates passwords that adhere to the principal's password
policy.

4. The client calls sec_rgy_acct_passwd() (or some other form), specifying the new password (either
input by the user or generated by sec_pwd_mgmt_gen_pwd()). If the principal's pwd_val_type
ERA mandates it, the Registry Service makes an RPC call to the password management server,
specifying the name of the principal and the password to be strength-checked. The password
management server checks the format of the password according to the user's password policy and
accepts or rejects it.

5. The client calls sec_pwd_mgmt_free_handle() to free the memory associated with the password
management handle.

Example of a Password Change Program

Following is an example of a password change program that calls the sec_pwd_mgmt() API as described
above.

sec_pwd_mgmt_setup(&pwd_mgmt_h, context, login_name, login_context, NULL, &st);
if (GOOD_STATUS(&st)) {

sec_pwd_mgmt_get_val_type(pwd_mgmt_h, &pwd_val_type, &st);
 }
if (GOOD_STATUS(&st)) {

switch (pwd_val_type) {
case 0: /$ NONE $/
case 1: /$ USER_SELECT $/

... get password ...
 break;

case 2: /$ USER_CAN_SELECT $/

532 Application Development Guide: Core Components

... if user does not want generated password ... {
... get password ...

 break;
 }

case 3: /$ GENERATION_REQUIRED $/
sec_pwd_mgmt_gen_pwd(pwd_mgmt_h, 1, &num_returned,

 &passwd, &st);
... display generated password to user - possibly

prompting for confirmation ...
 break;
 }
 }
if (GOOD_STATUS(&st)) {

sec_rgy_acct_passwd(context, &login_name, &caller_key, &passwd,
new_keytype, &new_key_version, &st);

 }

 sec_pwd_mgmt_free_handle(&pwd_mgmt_h, &st);

The Password Management Network Interface

The Password Management interface, rsec_pwd_mgmt(), provides a DCE-common interface to Password
Management servers. It is the interface exported by the sample password management server provided
with DCE1.1 (pwd_strengthd) and it is the interface that application developers should use to write their
own password management servers. Developers should use the sample code provided as a base for
enhancements.

The API is defined in the rsec_pwd_mgmt.idl file.

Implementations must conform to the rsec_pwd_mgmt() information in the z/OS DCE Application
Development Reference.

The rsec_pwd_mgmt() routines are:

rsec_pwd_mgmt_gen_pwd Generates one or more passwords for a given principal.

rsec_pwd_mgmt_str_chk Strength checks a principal's password according to policy.

 Chapter 36. The Password Management Application Programming Interfaces 533

534 Application Development Guide: Core Components

Chapter 37. RACF-DCE Interoperability Application
Programming Interfaces

This chapter discusses the services available to a z/OS DCE application server to access the DCE
information contained in the RACF database. This information can be used when DCE security is used for
authentication and RACF is used for authorization to resources.

 DCE APIs

DCE APIs are used to obtain the cell and DCE principal's UUID for DCE 1.1 level clients and servers.
Some interfaces are:

� rpc_binding_inq_auth_caller, which returns a handle to the client's authorization information

� sec_cred_get_initiator, which returns a handle to a single DCE client's authorization information. If
delegation has been used, sec_cred_get_delegate returns a handle to additional DCE clients'
authorization information. This API is issued until no more entries are available.

� sec_cred_get_pa_data returns the handle to the Privilege Attribute Certificate (PAC) or Extended
Privilege Attribute Certificate (EPAC) that contains the UUIDs of the DCE principal and cell.

� uuid_to_string converts the binary form of the UUID to the string form.

For more information on these interfaces, see z/OS DCE Application Development Reference.

 z/OS APIs

z/OS UNIX System Services provides two application programming interfaces (APIs) for z/OS DCE
application servers to use.

A DCE application server on z/OS can use DCE security services for controlling access to resources that
are owned by the application server. As an alternative, the application developer may want to use RACF
for controlling access to the set of resources that are managed by the application server. This choice
represents a set of tradeoffs. Application servers that use DCE services exclusively on z/OS are the most
portable to platforms which support DCE. If portability is not a primary concern, and you want to
centralize access control list information in RACF, then non-DCE services such as those described in this
section can be considered.

These services enable:

� DCE identity conversion to RACF user ID

� The ability for a DCE server application (with some restrictions) to use RACF services as its ACL
(access control list) manager.

They are:

Service Name Function

auth_check_resource_np (BPX1ACK) Check access to a RACF protected resource

convert_id_np (BPX1CID) Convert a DCE UUID to a user ID or a userid to a DCE UUID

The BPX1xxx names are the names of the kernel callable service that may be used by an application
coding to z/OS assembler.

 Copyright IBM Corp. 1994, 2001 535

For more information on the use and format of these APIs see z/OS UNIX System Services Programming:
Assembler Callable Services Reference, SA22-7803.

For the above interfaces, the IBM C library provides C language bindings. The C functions are:

C Language Function Name Service

__check_resource_auth_np() Check access to a RACF protected resource

__convert_id_np() Convert a DCE UUID to a user ID or a user ID to a DCE UUID

For more information on the use and format of these APIs see z/OS C/C++ Run-Time Library Reference,
SA22-7821.

Along with these two APIs, there are a related C Language API, pthread_security_np(), and a z/OS
UNIX System Services kernel API, pthread_security_np (BPX1TLS). These APIs, along with other
thread related services (provided by z/OS UNIX System Services), enable a multithreaded server
application to do a unit of work under the RACF identity of a client. Or in other words, the server can
become a surrogate for its clients, acting under the identity of its clients.

For more information on the z/OS UNIX System Services kernel pthread_security_np (BPX1TLS) API
and related thread APIs, see z/OS UNIX System Services Programming: Assembler Callable Services
Reference, SA22-7803.

536 Application Development Guide: Core Components

Appendix A. POSIX-based DCE Portable Character Set

Table 24 (Page 1 of 4). POSIX 1003.2 Portable Character
Set (without Control Characters)

Symbolic Name Alternative
Name

Character

<space> <SP01>

<exclamation-mark> <SP02> !

<quotation-mark> <SP04> "

<number-sign> <SM01> #

<dollar-sign> <SC03> $

<percent-sign> <SM02> %

<ampersand> <SM03> &

<apostrophe> <SP05> '

<left-parenthesis> <SP06> (

<right-parenthesis> <SP07>)

<asterisk> <SM04> $

<plus-sign> <SA01> +

<comma> <SP08> ,

<hyphen> <SP10> -

<period> <SP11> .

<slash> <SP12> /

<zero> <ND10> 0

<one> <ND01> 1

<two> <ND02> 2

<three> <ND03> 3

<four> <ND04> 4

<five> <ND05> 5

 Copyright IBM Corp. 1994, 2001 537

Table 24 (Page 2 of 4). POSIX 1003.2 Portable Character
Set (without Control Characters)

Symbolic Name Alternative
Name

Character

<six> <ND06> 6

<seven> <ND07> 7

<eight> <ND08> 8

<nine> <ND09> 9

<colon> <SP13> :

<semicolon> <SP14> ;

<less-than-sign> <SA03> <

<equals-sign> <SA04> =

<greater-than-sign> <SA05> >

<question-mark> <SP15> ?

<commercial-at> <SM05> @

<A> <LA02> A

 <LB02> B

<C> <LC02> C

<D> <LD02> D

<E> <LE02> E

<F> <LF02> F

<G> <LG02> G

<H> <LH02> H

<I> <LI02> I

<J> <LJ02> J

<K> <LK02> K

<L> <LL02> L

<M> <SM02> M

<N> <LN02> N

538 Application Development Guide: Core Components

Table 24 (Page 3 of 4). POSIX 1003.2 Portable Character
Set (without Control Characters)

Symbolic Name Alternative
Name

Character

<O> <LO02> O

<P> <LP02> P

<Q> <LQ02> Q

<R> <LR02> R

<S> <LS02> S

<T> <LT02> T

<U> <LU02> U

<V> <LV02> V

<W> <LW02> W

<X> <LX02> X

<Y> <LY02> Y

<Z> <LZ02> Z

<left-square-bracket> <SM06> [

<backslash> <SM07> \

<right-square-bracket> <SM08>]

<circumflex> <SD15> ^

<underscore> <SP09> _

<grave-accent> <SD13> `

<a> <LA01> a

 <LB01> b

<c> <LC01> c

<d> <LD01> d

<e> <LE01> e

<f> <LF01> f

<g> <LG01> g

 Appendix A. POSIX-based DCE Portable Character Set 539

Table 24 (Page 4 of 4). POSIX 1003.2 Portable Character
Set (without Control Characters)

Symbolic Name Alternative
Name

Character

<h> <LH01> h

<i> <LI01> i

<j> <LJ01> j

<k> <LK01> k

<l> <LL01> l

<m> <LM01> m

<n> <LN01> n

<o> <LO01> o

<p> <LP01> p

<q> <LQ01> q

<r> <LR01> r

<s> <LS01> s

<t> <LT01> t

<u> <LU01> u

<v> <LU01> v

<w> <LW01> w

<x> <LX01> x

<y> <LY01> y

<z> <LZ01> z

<left-brace> <SM11> {

<vertical-line> <SM13> |

<right-brace> <SM14> }

<tilde> <SD19> ˜

540 Application Development Guide: Core Components

Appendix B. IBM Code Pages

Code Page IBM-1027

Figure 111. Code Page IBM-1027

 Copyright IBM Corp. 1994, 2001 541

Code Page IBM-1047

Figure 112. Code Page IBM-1047

542 Application Development Guide: Core Components

Code Page IBM-037

Figure 113. Code Page IBM-037

 Appendix B. IBM Code Pages 543

Code Page IBM-273

Figure 114. Code Page IBM-273

544 Application Development Guide: Core Components

Code Page IBM-277

Figure 115. Code Page IBM-277

 Appendix B. IBM Code Pages 545

Code Page IBM-278

Figure 116. Code Page IBM-278

546 Application Development Guide: Core Components

Code Page IBM-280

Figure 117. Code Page IBM-280

 Appendix B. IBM Code Pages 547

Code Page IBM-284

Figure 118. Code Page IBM-284

548 Application Development Guide: Core Components

Code Page IBM-285

Figure 119. Code Page IBM-285

 Appendix B. IBM Code Pages 549

Code Page IBM-297

Figure 120. Code Page IBM-297

550 Application Development Guide: Core Components

Code Page IBM-500

Figure 121. Code Page IBM-500

 Appendix B. IBM Code Pages 551

Code Page IBM-871

Figure 122. Code Page IBM-871

552 Application Development Guide: Core Components

 Appendix C. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

 Copyright IBM Corp. 1994, 2001 553

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

 Trademarks

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

AIX BookManager CICS
CICS/ESA DATABASE 2 DB2
IBM IBMLink IMS
IMS/ESA Language Environment Library Reader
OS/390 Parallel Sysplex RACF
Resource Link SecureWay System/390
VTAM z/OS zSeries

554 Application Development Guide: Core Components

Other company, product, and service names may be trademarks or service marks of others.

 Appendix C. Notices 555

556 Application Development Guide: Core Components

 Glossary

This glossary defines technical terms and abbreviations
used in z/OS DCE documentation. If you do not find the
term you are looking for, refer to the index of the
appropriate z/OS DCE manual or view the IBM
Glossary of Computing Terms, located at:

http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:

� IBM Dictionary of Computing, SC20-1699.

� Information Technology—Portable Operating
System Interface (POSIX), from the POSIX series of
standards for applications and user interfaces to
open systems, copyrighted by the Institute of
Electrical and Electronics Engineers (IEEE).

� American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West
42nd Street, New York, New York 10036.
Definitions are identified by the symbol (A) after the
definition.

� Information Technology Vocabulary, developed by
Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1.SC1).

� CCITT Sixth Plenary Assembly Orange Book,
Terms and Definitions and working documents
published by the International Telecommunication
Union, Geneva, 1978.

� Open Software Foundation (OSF).

The following abbreviations indicate terms that are
related to a particular DCE service:

CDS Cell Directory Service

CICS/ESA Customer Information Control
System/ESA

DTS Distributed Time Service

GDS Global Directory Service

IMS/ESA Information Management
System/ESA

RPC Remote Procedure Call

Security Security Service

Threads Threads Service

XDS X/Open Directory Services

XOM X/Open OSI-Abstract-Data
Manipulation

A
absolute time. A point on a time scale.

access control list (ACL). (1) GDS: Specifies the
users with their access rights to an object. (2) Security:
Data that controls access to a protected object. An
ACL specifies the privilege attributes needed to access
the object and the permissions that may be granted, to
the protected object, to principals that possess such
privilege attributes.

access control list facility. A Security Service feature
that checks a principal’s access to an object. This
facility determines access rights by comparing the
principal’s privileges to entries in an access control list
(ACL) of an object.

access right. Synonym for permission.

accessible. Pertaining to an object whose client
possesses a valid designator or handle.

account. Data in the Registry database that allows a
principal to log in. An account is a registry object that
relates to a principal.

ACF. Attribute configuration file.

ACL. Access control list.

active context handle. RPC: A context handle in RPC
applications that the RPC has set to a non-null value
and passed back to the calling program. The calling
program supplies the active context handle in any future
calls to procedures that share the same client context.
See client context and context handle.

address. An unambiguous name, label, or number that
identifies the location of a particular entity or service.
See presentation address.

address family. A set of related communications
protocols that use a common addressing mechanism to
identify end-points; for example, the U.S. Department of
Defense Internet Protocols. Synonymous with protocol
family.

alias. Synonym for alias name.

alias name. (1) GDS: A name for a directory object
that consists of one or more alias entries in the
directory information tree (DIT). (2) Security: An
optional alternate for a principal’s primary name.

 Copyright IBM Corp. 1994, 2001 557

Synonymous with alias. The alias shares the same
UUID with the primary name.

aliasing. RPC: Pertaining to the pointing of two
pointers of the same operation at the same storage.

API. Application program interface.

application program interface (API). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
the licensed program.

application thread. A thread of execution created and
managed by application code. See client application
thread, local application thread, RPC thread, and server
application thread.

architecture. (1) The organizational structure of a
computer system, including the interrelationships among
its hardware and software. (2) The logical structure
and operating principles of a computer network. The
operating principles of a network include those of
services, functions, and protocols.

association (connection-oriented). A connection
between a client and a server.

asynchronous. Without a regular time relationship;
unexpected or unpredictable with respect to the running
of program instructions.

at-most-once semantics. RPC: A characteristic of a
procedure that restricts the procedure to being run
once, partially, or not at all. See broadcast semantics,
idempotent semantics, and maybe semantics.

attribute. (1) RPC: An Interface Definition Language
(IDL) or attribute configuration file (ACF) that conveys
information about an interface, type, field, parameter, or
operation. (2) DTS: A qualifier used with DTS
commands. DTS has four attribute categories:
characteristics, counters, identifiers, and status.
(3) XDS: Information of a particular type concerning an
object and appearing in an entry that describes the
object in the directory information base (DIB). It
denotes the attribute’s type and a sequence of one or
more attribute values, each accompanied by an integer
denoting the value’s syntax.

attribute configuration file (ACF). RPC: An optional
companion to an interface definition file that changes
how the Interface Definition Language (IDL) compiler
locally interprets the interface definition. See also
interface definition and Interface Definition Language.

Attribute Configuration Language. RPC: A high-level
declarative language that provides syntax for attribute
configuration files. See attribute configuration file.

attribute syntax. GDS: A definition of the set of
values that an attribute may assume. Attribute syntax
includes the data type, in ASN.1, and usually one or
more matching rules by which values may be
compared.

attribute type. (1) XDS: The component of an
attribute that indicates the type of information given by
that attribute. Because it is an object identifier, it is
unique among other attribute types. (2) XOM: Any of
various categories into which the client dynamically
groups values on the basis of their semantics. It is an
integer unique only within the package.

attribute value. XDS, XOM: A particular instance of
the type of information indicated by an attribute type.

authentication. In computer security, a method used
to verify the identity of a principal.

authentication level. Synonym for protection level.

authentication protocol. A formal procedure for
verifying a principal’s network identity. Kerberos is an
instance of a shared-secret authentication protocol.

Authentication Service. One of three services
provided by the Security Service: it verifies principals
according to a specified authentication protocol. The
other Security services are the Privilege Service and the
Registry Service.

authentication surrogate. Security: A type of principal
entry in a cell’s Registry database that represents a
foreign cell. This principal shares a secret key with a
corresponding entry in the foreign cell’s Registry. The
Authentication Services of the two cells use the secret
key to exchange data about principals without either
Authentication Service having to share its private key
with the other.

authorization. (1) The determination of a principal’s
permissions with respect to a protected object. (2) The
approval of a permission sought by a principal with
respect to a protected object.

authorization protocol. A formal procedure for
establishing the authorization of principals with respect
to protected objects. Authorization protocols supported
by the Security Service include DCE authorization and
name-based authorization.

authorization service. RPC: An implementation of an
authorization protocol.

automatic binding method. RPC: A method of
managing the binding for a remote procedure call. It
completely hides binding management from client
application code. If the client makes a series of remote
procedure calls, the stub passes the same binding

558 Application Development Guide: Core Components

handle with each call. See binding handle, explicit
binding method, and implicit binding method.

B
big endian. An attribute of data representation that
reflects how multi-octet data is stored. In big endian
representation, the lowest addressed octet of a
multi-octet data item is the most significant. See little
endian.

binary timestamp. An opaque 128-bit (16-octet)
structure that represents a DTS time value.

binding. RPC: A relationship between a client and a
server involved in a remote procedure call.

binding handle. RPC: A reference to a binding. See
binding information.

binding information. RPC: Information about one or
more potential bindings, including an RPC protocol
sequence, a network address, an endpoint, at least one
transfer syntax, and an RPC protocol version number.
See binding. See also endpoint, network address, RPC
protocol, RPC protocol sequence, and transfer syntax.

broadcast. A notification sent to all members within an
arbitrary grouping such as nodes in a network or
threads in a process. See also signal.

broadcast semantics. RPC: A form of idempotent
semantics that indicates that the operation is always
broadcast to all host systems on the local network,
rather than delivered to a specific system. An operation
with broadcast semantics is implicitly idempotent.
Broadcast semantics are supported only by
connectionless protocols. See at-most-once semantics,
idempotent semantics, and maybe semantics.

Browser. CDS: A Motif-based program that lets users
view the contents and structure of a cell name space.

C
C interface. The interface that is defined at a level
that depends on the variant of C standardized by ANSI.

cache. (1) CDS: The information that a CDS clerk
stores locally to optimize name lookups. The cache
contains attribute values resulting from previous
lookups, as well as information about other
clearinghouses and namespaces. (2) Security:
Contains the credentials of a principal after the DCE
login. (3) GDS: See DUA cache.

callback. A role reversal technique used by the server
to make a request back to the original client. For
example, the server may request state information

(such as sequence numbers) needed to provide reliable
data transfer or identity information needed for an
authenticated RPC call.

call handle. An RPC data structure used by the RPC
runtime to maintain the state information for an RPC
call. A client call handle is maintained by the client, and
a corresponding server call handle is maintained by the
server.

call queue. RPC: A FIFO queue used by an RPC
server to hold incoming calls when the server is already
running its maximum number of concurrent calls.

call thread. RPC: A thread created by an RPC
server’s runtime to run remote procedures. When
engaged by a remote procedure call, a call thread
temporarily forms part of the RPC thread of the call.
See application thread and RPC thread.

cancel. (1) Threads: A mechanism by which a thread
informs either itself or another thread to stop the thread
as soon as possible. If a cancel arrives during an
important operation, the canceled thread may continue
until it can end the thread in a controlled manner.
(2) RPC: A mechanism by which a client thread notifies
a server thread (the canceled thread) to end the thread
as soon as possible. See also thread.

CCITT. Consultative Committee on International
Telegraphy and Telephone

CDS. Cell Directory Service.

CDS clerk. The software that provides an interface
between client applications and CDS servers.

CDS control program (CDSCP). A command
interface that CDS administrators use to control CDS
servers and clerks and manage the name space and its
contents. See also manager.

CDSCP. CDS control program.

cell. The basic unit of operation in the distributed
computing environment. A cell is a group of users,
systems, and resources that are grouped around a
common purpose and that share common DCE
services.

Cell Directory Service (CDS). A DCE component. A
distributed replicated database service that stores
names and attributes of resources located in a cell.
CDS manages a database of information about the
resources in a group of machines called a DCE cell.

cell-relative name. Synonym for local name.

central processing unit (CPU). The part of a
computer that includes the circuits that control the
interpretation and processing of instructions.

 Glossary 559

child process. A process, created by a parent
process, that shares the resources of the parent
process to carry out a request. Contrast with parent
process. See also fork.

class. A category into which objects are placed on the
basis of their purpose and internal structure.

clerk. (1) DTS: A software component that
synchronizes the clock for its client system by
requesting time values from servers, calculating a new
time from the values, and supplying the computed time
to client applications. (2) CDS: A software component
that receives CDS requests from a client application,
ascertains an appropriate CDS server to process the
requests, and returns the results of the requests to the
client application.

client. A computer or process that accesses the data,
services, or resources of another computer or process
on the network. Contrast with server.

client application thread. RPC: A thread executing
client application code that makes one or more remote
procedure calls. See application thread, local
application thread, RPC thread, and server application
thread.

client binding information. Information about a
calling client provided by the client runtime to the server
runtime, including the address where the call originated,
the RPC protocol used for the call, the requested object
UUID, and client authentication information. See
binding information and server binding information.

client context. RPC: The state within an RPC server
generated by a set of remote procedures and
maintained across a series of calls for a particular
client. See context handle. See also manager.

client stub. RPC: The surrogate code for an RPC
interface that is linked with and called by the client
application code. In addition to general operations such
as marshalling data, a client stub calls the RPC runtime
to perform remote procedure calls and, optionally, to
manage bindings. See server stub.

client/server model. A form of computing where one
system, the client, requests something, and another
system, the server, responds.

clock. The combined hardware interrupt timer and
software register that maintains the system time.

code page. (1) A table showing codes assigned to
character sets. (2) An assignment of graphic
characters and control function meanings to all code
points. (3) Arrays of code points representing
characters that establish numeric order of characters.

[OSF] (4) A particular assignment of hexadecimal
identifiers to graphic elements. (5) Synonymous with
code set. (6) See also code point, extended character.

code set. Synonym for code page.

collapse. CDS: To remove the contents of a directory
from the display (close it) using the CDS Browser. To
collapse an open directory, double-click on its icon.
Double-clicking on a closed directory expands it.
Contrast with expand.

communications link. RPC: A network pathway
between an RPC client and server that uses a valid
combination of transport and network protocols that are
available to both the client and server RPC run times.

compatible server. RPC: A server that offers the
requested RPC interface and RPC object and that is
accessible over a valid combination of network and
transport protocols. It is supported by both the client
and server RPC run times.

condition variable. Threads: A synchronization object
used in conjunction with a mutex. It allows a thread to
suspend running until some condition is true.

conformant array. RPC: An array whose size is
determined at runtime. A structure containing a
conformant array as a field is a conformant structure.

connectionless protocol. RPC: A transport protocol
such as UDP that does not require a connection to be
established prior to data transfer. Contrast with
connection-oriented protocol.

connection-oriented protocol. RPC: An RPC
protocol that runs over a connection-based transport
protocol. It is a connection-based, reliable, virtual-circuit
transport protocol, such as TCP. Contrast with
connectionless protocol.

Consultative Committee on International Telegraphy
and Telephone (CCITT). A United Nations Specialized
Standards group whose membership includes common
carriers concerned with devising and proposing
recommendations for international telecommunications
representing alphabets, graphics, control information,
and other fundamental information interchange issues.

context handle. RPC: A reference to state (client
context) maintained across remote procedure calls by a
server on behalf of a client. See client context.

control access. CDS: An access right that grants
users the ability to change the access control on a
name and to perform other powerful management tasks,
such as replicate a directory or move a clearinghouse.

conversation key. Synonym for session key.

560 Application Development Guide: Core Components

copy. GDS, XDS: Either a copy of an entry stored in
other DSAs through bilateral agreement or a locally and
dynamically stored copy of an entry resulting from a
request (a cache copy).

CPU. central processing unit

creation timestamp (CTS). An attribute of all CDS
clearinghouses, directories, soft links, child pointers,
and object entries that contains a unique value
reflecting the date and time the name was created. The
timestamp consists of two parts; a time portion and a
portion containing the system identifier of the node on
which the name was created. These two parts
guarantee uniqueness among timestamps generated on
different nodes.

credentials. Security: A general term for privilege
attribute data that has been certified by a trusted
privilege certification authority.

cross-linking information. In order for z/OS DCE to
provide RACF-DCE interoperability and single sign-on
to DCE, DCE provides utilities (see mvsexpt and
mvsimpt) to incorporate into RACF the information that
associates a z/OS-RACF user ID with a DCE principal's
identifying information and the DCE principal's UUID
with the corresponding z/OS-RACF user ID. The
information is placed in a RACF DCE segment and the
RACF general resource class, DCEUUIDS. This is
called cross-linking information and is what allows
interoperability and single sign-on to work. See also
interoperability and single sign-on.

customized binding handle. RPC: A user-defined
data structure from which a primitive binding handle can
be derived by user-defined routines in application code.
See primitive binding handle.

D
daemon. (1) A long-lived process that runs
unattended to perform continuous or periodic
system-wide functions such as network control Some
daemons are triggered automatically to perform their
task; others operate periodically. An example is the
cron daemon, which periodically performs the tasks
listed in the crontab file. Many standard dictionaries
accept the spelling demon. (2) A DCE server process.

Data Encryption Standard (DES). The National
Institute of Standards and Technology (NIST) Data
Encryption Standard, adopted by the U.S. government
as Federal Information Processing Standard (FIPS)
Publication 46, which allows only hardware
implementations of the data encryption algorithm.

data limit. RPC: A value that specifies which elements
of an array are transmitted during a remote procedure
call.

datagram. RPC: A network data packet that is
independent of all other packets and does not
guarantee delivery or sequentiality.

datagram protocol. RPC: A datagram-based transport
protocol, such as User Datagram Protocol (UDP), that
runs over a connectionless transport protocol.

DCE. Distributed Computing Environment.

DCEKERN. The address space that contains the DCE
daemons.

decrypt. Security: To decipher data.

default element. RPC: An optional profile element that
contains a nil interface identifier and object UUID and
that specifies a default profile. Each profile can contain
only one default element. See default profile, profile,
and profile element.

default profile. RPC: A backup profile referred to by
the default element in another profile. The NSI import
and lookup operations use the default profile, if present,
whenever a search based on the current profile fails to
find any useful binding information. See default
element and profile.

DES. Data Encryption Standard.

descriptor. (1) XOM: The means by which the client
and service exchange an attribute value and the
integers that denote its representation, type, and syntax.
(2) XDS: A defined data structure that is used to
represent an OM attribute type and a single value.

destructor. A user-supplied routine that is expected to
finalize and then deallocate a per-thread context value.

DFS. Distributed File Service.

DIB. Directory information base.

directory. (1) A logical unit for storing entries under
one name (the directory name) in a CDS namespace.
Each physical instance of a directory is called a replica.
(2) A collection of open systems that cooperates to hold
a logical database of information about a set of objects
in the real world.

directory information base (DIB). GDS: The
complete set of information to which the directory
provides access, which includes all of the pieces of
information that can be read or manipulated using the
operations of the directory.

directory schema. GDS: The set of rules and
constraints concerning directory information tree (DIT)
structure, object class definitions, attribute types, and

 Glossary 561

syntaxes that characterize the directory information
base (DIB).

Directory Service. A DCE component. The Directory
Service is a central repository for information about
resources in a distributed system. See Cell Directory
Service and Global Directory Service.

discriminator. RPC: The data item that determines
which union case is currently used.

distributed computing. A type of computing that
allows computers with different hardware and software
to be combined on a network, to function as a single
computer, and to share the task of processing
application programs.

Distributed Computing Environment (DCE). A
comprehensive, integrated set of services that supports
the development, use, and maintenance of distributed
applications. DCE is independent of the operating
system and network; it provides interoperability and
portability across heterogeneous platforms.

Distributed File Service (DFS). A DCE component.
DFS joins the local file systems of several file server
machines making the files equally available to all DFS
client machines. DFS allows users to access and share
files stored on a file server anywhere in the network,
without having to consider the physical location of the
file. Files are part of a single, global name space, so
that a user can be found anywhere in the network by
means of the same name.

distributed service. A DCE service that is used
mainly by administrators to manage a distributed
environment. These services include DTS, Security,
and Directory.

Distributed Time Service (DTS). A DCE component.
It provides a way to synchronize the times on different
hosts in a distributed system.

DNS. Domain Name System.

Domain Name System (DNS). A hierarchical scheme
for giving meaningful names to hosts in a TCP/IP
network.

domain name. A unique network name that is
associated with a network’s unique address.

DTS. Distributed Time Service.

DTS entity. DTS: The server or clerk software on a
system.

DUA cache. GDS: The part of the DUA that stores
information to optimize name lookups. Each cache
contains copies of recently accessed object entries as
well as information about DSAs in the directory.

dynamic endpoint. RPC: An endpoint that is
generated by the RPC runtime for an RPC server when
the server registers its protocol sequences. It expires
when the server stops running. See endpoint and
well-known endpoint.

E
effective permissions. Security: The permissions
granted to a principal as a result of a masking
operation.

element. RPC: Any of the bits of a bit string, the
octets of an octet string, or the octets by means of
which the characters of a character string are
represented.

encrypt. To systematically encode data so that it
cannot be read without knowing the coding key.

encryption key. A value used to encrypt data so that
only possessors of the encryption key can decipher it.

endian. An attribute of data representation that reflects
how certain multi-octet data is stored in memory. See
big endian and little endian.

endpoint. RPC: An address of a specific server
instance on a host.

endpoint map. RPC: A database local to a node
where local RPC servers register binding information
associated with their interface identifiers and object
identifiers. The endpoint map is maintained by the
endpoint map service of the DCE daemon.

endpoint map service. RPC: A service that maintains
a system’s endpoint map for local RPC servers. When
an RPC client makes a remote procedure call using a
partially bound binding handle, the endpoint map
service looks up the endpoint of a compatible local
server. See endpoint map.

entity. (1) CDS: Any manageable element through the
CDS namespace. Manageable elements include
directories, object entries, servers, replicas, and clerks.
The CDS control program (CDSCP) commands are
based on directives targeted for specific entities.
(2) DTS: See DTS entity.

entry. GDS, XDS: The part of the DIB that contains
information relating to a single directory object. Each
entry consists of directory attributes.

entry point vector (EPV). RPC: A list of addresses for
the entry points of a set of remote procedures that
starts the operations declared in an interface definition.
The addresses are listed in the same order as the
corresponding operation declarations.

562 Application Development Guide: Core Components

ENV. environment variable

envelope. Security: Used to transport authentication
data and conversation keys between the security server
and principals.

environment variable (ENV). A variable included in
the current software environment that is available to any
called program that requests it.

EPV. Entry point vector.

exception. (1) An abnormal condition such as an I/O
error encountered in processing a data set or a file.
(2) One of five types of errors that can occur during a
floating-point exception. These are valid operation,
overflow, underflow, division by zero, and inexact
results. [OSF] (3) Contrast with interrupt, signal.

executor thread. See call thread.

expand. CDS: To display the contents of (open) a
directory using the CDS Browser. A directory that is
closed can be expanded by double-clicking on its icon.
Double-clicking on an expanded directory collapses it.
Contrast with collapse.

expiration age. RPC: The amount of time that a local
copy of name service data from a NSI attribute remains
unchanged before a request from an RPC application
for the attribute requires its updating. See also NSI
attribute.

explicit binding method. RPC: The explicit method of
managing the binding for a remote procedure call in
which a remote procedure call passes a binding handle
as its first parameter. The binding handle is initialized
in the application code. See automatic binding method,
binding handle, and implicit binding method.

export. (1) RPC: To place the server binding
information associated with an RPC interface or a list of
object UUIDs or both into an entry in a name service
database. (2) To provide access information for an
RPC interface. Contrast with unexport.

F
fault. RPC: An exception condition, occurring on a
server, that is transmitted to a client.

filter. An assertion about the presence or value of
certain attributes of an entry to limit the scope of a
search.

FIFO. first-in-first-out

first-in-first-out (FIFO). A queueing technique in
which the next item to be retrieved is the item that has
been in the queue the longest time.

fixed array. RPC: The size of the array is defined in
the IDL. All of the data in the array is transmitted
during a remote procedure call.

foreign cell. A cell other than the one to which the
local machine belongs. A foreign cell and its binding
information are stored in either GDS or the Domain
Name System (DNS). The act of contacting a foreign
cell is called intercell. Contrast with local cell.

fork. To create and start a child process. Forking is
similar to creating an address space and attaching. It
creates a copy of the parent process, including open file
descriptors.

full name. CDS: The complete specification of a CDS
name, including all parent directories in the path from
the cell root to the entry being named.

full pointer. RPC: A pointer without the restrictions of
a reference pointer.

fully bound binding handle. RPC: A server binding
handle that contains a complete server address
including an endpoint. Contrast with partially bound
binding handle.

G
General-Use Programming Interface (GUPI). An
interface, with few restrictions, for use in
customer-written programs. The majority of
programming interfaces are general-use programming
interfaces, and are appropriate in a wide variety of
application programs. A general-use programming
interface requires the knowledge of the externals of the
interface and perhaps the externals of related
programming interfaces. Knowledge of the detailed
design or implementation of the software product is not
required.

GDS. Global Directory Service.

Global Directory Agent (GDA). A DCE component
that makes it possible for the local CDS to access
names in foreign cells. The GDA provides a connection
to foreign cells through either the GDS or the Domain
Name System (DNS).

Global Directory Service (GDS). A DCE component.
A distributed replicated directory service that provides a
global namespace that connects the local DCE cells
into one worldwide hierarchy. DCE users can look up a
name outside a local cell with GDS.

global name. A name that is universally meaningful
and usable from anywhere in the DCE naming
environment. The prefix /... indicates that a name is
global.

 Glossary 563

global server. DTS: A server that provides its clock
value to courier servers on other cells, or to DTS
entities that have failed to obtain the specified number
of servers locally.

group. (1) RPC: A name service entry that
corresponds to one or more RPC servers that offer
common RPC interfaces, RPC objects, or both. A
group contains the names of the server entries, other
groups, or both that are members of the group. See
NSI group attribute. (2) Security: Data that associates
a named set of principals that can be granted common
access rights. See subject identifier.

group member. (1) RPC: A name service entry
whose name occurs in the group. (2) Security: A
principal whose name appears in a security group. See
group.

H
handle. RPC: An opaque reference to information.
See binding handle, context handle, interface handle,
name service handle, and thread handle.

heterogeneous. Pertaining to a collection of dissimilar
host computers such as those from different
manufacturers. Contrast with homogeneous.

home cell. Synonym for local cell.

homogeneous. Pertaining to a collection of similar
host computers such as those of one model or one
manufacturer. Contrast with heterogeneous.

host ID. Synonym for network address.

I
idempotent semantics. RPC: A characteristic of a
procedure in which running it more than once with
identical input always produces the same result, without
any undesirable side effects. For example, a procedure
that calculates the square root of a number is
idempotent. DCE RPC supports maybe and broadcast
semantics as special forms of idempotent operations.
See at-most-once semantics, broadcast semantics, and
maybe semantics.

IDL. Interface Definition Language.

IDL compiler. RPC: A compiler that processes an
RPC interface definition and an optional attribute
configuration file (ACF) to generate client and server
stubs, and header files See Interface Definition
Language.

implicit binding method. RPC: The implicit method of
managing the binding for a remote procedure call in

which a global variable in the client application holds a
binding handle that the client stub passes to the RPC
runtime. See automatic binding method, binding
handle, and explicit binding method.

import. (1) RPC: To obtain binding information from a
name service database about a server that offers a
given RPC interface by calling the RPC NSI import
operation. (2) RPC: To incorporate constant, type, and
import declarations from one RPC interface definition
into another RPC interface definition by means of the
IDL import statement.

import context. The context set up by the client to
import compatible binding handles from the name
space. Name service interfaces (NSI) are used to set
up and free the import context.

inaccuracy. DTS: The bounded uncertainty of a clock
value as compared to a standard reference.

instance. XOM: An object in the category represented
by a class.

instance UUID. RPC: An object Universal Unique
Identifier (UUID) that is associated with a single server
instance and is provided to clients to identify that
instance unambiguously. See object UUID and server
instance.

integrity. RPC: A protection level that may be
specified in secure RPC communications to ensure that
data transferred between two principals has not been
changed in transit.

interface. RPC: A shared boundary between two or
more functional units, defined by functional
characteristics, signal characteristics, or other
characteristics, as appropriate. The concept includes
the specification of the connection of two devices
having different functions. See RPC interface.

interface definition. RPC: A description of an RPC
interface written in the DCE Interface Definition
Language (IDL). See RPC interface.

Interface Definition Language (IDL). A high-level
declarative language that provides syntax for interface
definitions.

interface handle. RPC: A reference in code to an
interface specification. See binding handle and
interface specification.

interface identifier. RPC: A string containing the
interface Universal Unique Identifier (UUID) and major
and minor version numbers of a given RPC interface.
See RPC interface.

interface specification. RPC: An opaque data
structure that is generated by the DCE IDL compiler

564 Application Development Guide: Core Components

from an interface definition. It contains identifying and
descriptive information about an RPC interface. See
interface definition, interface handle, and RPC interface.

interface UUID. RPC: The Universal Unique Identifier
(UUID) generated for an RPC interface definition using
the UUID generator. See interface definition and RPC
interface.

International Organization for Standardization
(ISO). An international body composed of the national
standards organizations of 89 countries. ISO issues
standards on a vast number of goods and services
including networking software.

Internet address. The 32-bit address assigned to
hosts in a TCP/IP network.

Internet Protocol (IP). In TCP/IP, a protocol that
routes data from its source to its destination in an
Internet environment. IP provides the interface from the
higher level host-to-host protocols to the local network
protocols. Addressing at this level is usually from host
to host.

interoperability. The capability to communicate,
execute programs, or transfer data among various
functional units in a way that requires the user to have
little or no knowledge of the unique characteristics of
those units.

interval. DTS: The combination of a time value and
the inaccuracy associated with it; the range of values
represented by a combined time and inaccuracy
notation. As an example, the interval 08:00.00I00:05:00
(eight o’clock, plus or minus five minutes) contains the
time 07:57.00.

IP. Internet Protocol

ISO. International Organization for Standardization

J
junction. A specialized entry in the DCE namespace
that contains binding information to enable
communications between different DCE services.

K
Kerberos. The authentication protocol used to carry
out DCE private key authentication. Kerberos was
developed at the Massachusetts Institute of Technology.

key. A value used to encrypt and decrypt data.

key file. A file that contains encryption keys for
noninteractive principals.

key management facility. A Security Service facility
that enables noninteractive principals to manage their
secret keys.

L
LAN. Local area network.

layer. In network architecture, a group of services,
functions, and protocols that is complete from a
conceptual point of view, that is one out of a set of
hierarchically arranged groups, and that extends across
all systems that conform to the network architecture.

listener thread. Created by RPC to listen on all
TCP/IP sockets for calls coming into the client for the
datagram protocol and for calls coming into the server
for datagram and connection-oriented protocols.

little endian. An attribute of data representation that
reflects how multi-octet data is stored. In little endian
representation, the lowest addressed octet of a
multi-octet data item is the least significant. See big
endian.

liveness. Context handle and related maintenance
functions that maintain context on behalf of clients even
during periods of nominal client inactivity.

local. (1) Pertaining to a device directly connected to
a system without the use of a communication line.
(2) Pertaining to devices that have a direct, physical
connection. Contrast with remote.

local application thread. RPC: An application thread
that runs within the confines of one address space on a
local system and passes control exclusively among
local code segments. See application thread, client
application thread, RPC thread and server application
thread.

local area network (LAN). A network in which
communication is limited to a moderate-sized
geographical area (1 to 10 km) such as a single office
building, warehouse, or campus, and which does not
generally extend across public rights-of-way. A local
network depends on a communication medium capable
of moderate to high data rate (greater than 1Mbps), and
normally operates with a consistently low error rate.

local cell. The cell to which the local machine
belongs. Synonymous with home cell. Contrast with
foreign cell.

local file system (LFS). An organized collection of
data in the form of a root directory and its subdirectories
and files. An LFS supports special features useful in a
distributed environment: the ability to replicate data; to
log file system data, enabling quick recovery after a
crash; to simplify administration by dividing the file

 Glossary 565

system into easily managed units called filesets; and to
associate access control lists (ACLs) with files and
directories. An LFS is located on a disk that is
physically attached to a machine In other file systems, a
single disk partition contains only one file system. In
DCE LFS an aggregate can contain multiple file
systems (filesets). See also access control list (ACL).

local name. A name that is meaningful and usable
only within the cell where an entry exists. The local
name is a shortened form of a global name. Local
names begin with the prefix /.: and do not contain a cell
name. Synonymous with cell-relative name.

local server. DTS: A server that synchronizes with its
peers and provides its clock value to other servers and
clerks in the same network.

local type. RPC: A type named in a represent_as
clause and used by application code to manipulate data
that is passed in a remote procedure call as a network
type. See network type.

logical unit (LU). A host port through which a user
gains access to the services of a network.

login facility. A Security Service facility that enables a
principal to establish its identity.

M
manager. RPC: A set of remote procedures that
implement the operations of an RPC interface and that
can be dedicated to a given type of object. See also
object and RPC interface.

manager entry point vector. RPC: The runtime code
on the server side uses this entry point vector to
dispatch incoming remote procedure calls. See entry
point vector and manager.

manager thread. See call thread.

marshalling. RPC: The process by which a stub
converts local arguments into network data and
packages the network data for transmission. Contrast
with unmarshalling.

mask. (1) A pattern of characters used to control the
retention or deletion of portions of another pattern of
characters (2) Security: Used to establish maximum
permissions that can then be applied to individual ACL
entries. (3) GDS: The administration screen interface
menus.

master replica. CDS: The first instance of a specific
directory in the namespace. After copies of the
directory have been made, a different replica can be
designated as the master, but only one master replica
of a directory can exist at a time. CDS can create,

update, and delete object entries and soft links in a
master replica.

maybe semantics. RPC: A form of idempotent
semantics that indicates that the caller neither requires
nor receives any response or fault indication for an
operation, even though there is no guarantee that the
operation was completed. An operation with maybe
semantics is implicitly idempotent and lacks output
parameters. See at-most-once semantics, broadcast
semantics, and idempotent semantics.

mutex. Mutual exclusion. A read/write lock that grants
access to only a single thread at any one time. A
mutex is often used to ensure that shared variables are
always seen by other threads in a consistent way.

mvsexpt. One of two (the other is mvsimpt) utilities
used to automate much of the administrator's work in
creating the cross-linking information for DCE-RACF
interoperability. The mvsexpt utility creates the
cross-linking information in the RACF database from
information in the DCE registry. See also cross-linking
information, interoperability, and single sign-on.

mvsimpt. One of two (the other is mvsexpt) utilities
used to automate much of the administrator's work in
creating the cross-linking information for DCE-RACF
interoperability. The mvsimpt utility creates DCE
principals from information obtained from the RACF
database. See also cross-linking information,
interoperability, and single sign-on.

name. GDS, CDS: A construct that singles out a
particular (directory) object from all other objects. A
name must be unambiguous (denote only one object);
however, it need not be unique (be the only name that
unambiguously denotes the object).

name service. A central repository of named
resources in a distributed system. In DCE, this is the
same as Directory Service.

name service handle. RPC: An opaque reference to
the context used by the series of next operations called
during a specific name service interface (NSI) search or
inquiry.

name service interface (NSI). RPC: A part of the
application program interface (API) of the RPC run time.
NSI routines access a name service, such as CDS, for
RPC applications.

namespace. CDS: A complete set of CDS names that
one or more CDS servers look up, manage, and share.
These names can include directories, object entries,
and soft links.

NCA. Network Computing Architecture.

NDR. Network Data Representation.

566 Application Development Guide: Core Components

network. A collection of data processing products
connected by communications lines for exchanging
information between stations.

network address. An address that identifies a specific
host on a network. Synonymous with host ID.

Network Computing Architecture (NCA). RPC: An
architecture for distributing software applications across
heterogeneous collections of networks, computers, and
programming environments using UDP. NCA specifies
part of the DCE Remote Procedure Call architecture.

network data. RPC: Data represented in a format
defined by a transfer syntax. See also transfer syntax.

Network Data Representation (NDR). RPC: The
transfer syntax defined by the Network Computing
Architecture. See transfer syntax.

network descriptor. RPC: The identifier of a potential
network channel, such as a UNIX socket.

network protocol. A communications protocol from
the Network Layer of the Open Systems Interconnection
(OSI) network architecture, such as the Internet
Protocol (IP).

Network Time Protocol (NTP). A clock
synchronization protocol commonly used on an Internet.

network type. RPC: A type defined in an interface
definition and referenced in a represent_as clause that
is converted into a local type for manipulation by
application code. See local type.

node. (1) An endpoint of a link, or a junction common
to two or more links in a network. Nodes can be
preprocessors, controllers, or workstations, and they
can vary in routing and other functional capabilities.
(2) In network topology, the point at an end of a
branch. It is usually a physical machine.

non-idempotent. An RPC call attribute type describing
an RPC call that must run no more than once. Before
running a non-idempotent call, servers and clients verify
each other's identity using one of the simple
conversation callback operations provided by a set of
conversation manager routines for the datagram RPC
protocol service.

null time provider. The daemon that fetches the time
from the hardware clock of the DCE host for DTS.

NSI. Name service interface.

NSI attribute. RPC: An RPC-defined attribute of a
name service entry used by the RPC name service
interface. A name service interface (NSI) attribute
stores one of the following: binding information, object
Universal Unique Identifiers (UUIDs), a group, or a

profile. See NSI binding attribute, NSI group attribute,
NSI object attribute, and NSI profile attribute.

NSI binding attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry; the binding
attribute stores binding information for one or more
interface identifiers offered by an RPC server and
identifies the entry as an RPC server entry. See
binding information and NSI object attribute. See also
server entry.

NSI group attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores the
entry names of the members of an RPC group and
identifies the entry as an RPC group. See group.

NSI object attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores the
object UUIDs of a set of RPC objects. See object.

NSI profile attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores a
collection of RPC profile elements and identifies the
entry as an RPC profile. See profile.

NTP. Network Time Protocol.

NULL. In the C language, a pointer that does not point
to a data object.

O
object. (1) A data structure that implements some
feature and has an associated set of operations.
(2) RPC: For RPC applications, anything that an RPC
server defines and identifies to its clients using an
object Universal Unique Identifier (UUID). An RPC
object is often a physical computing resource such as a
database, directory, device, or processor. Alternatively,
an RPC object can be an abstraction that is meaningful
to an application, such as a service or the location of a
server. See object UUID. (3) XDS: Anything in the
world of telecommunications and information processing
that can be named and for which the directory
information base (DIB) contains information. (4) XOM:
Any of the complex information objects created,
examined, changed, or destroyed by means of the
interface.

object class table (OCT). A recurring attribute of the
directory schema with the description of the object
classes permitted.

object entry. CDS: The name of a resource (such as
a node, disk, or application) and its associated
attributes, as stored by CDS. CDS administrators,
client application users, or the client applications
themselves can give a resource an object name. CDS
supplies some attribute information (such as a creation
timestamp) to become part of the object, and the client

 Glossary 567

application may supply more information for CDS to
store as other attributes. See entry.

object identifier (OID). A value (distinguishable from
all other such values) that is associated with an
information object. It is formally defined in the CCITT
X.208 standard.

object management (OM). The creation, examination,
change, and deletion of potentially complex information
objects.

object name. CDS: A name for a network resource.

object UUID. RPC: The Universal Unique Identifier
(UUID) that identifies a particular RPC object. A server
specifies a distinct object UUID for each of its RPC
objects. To access a particular RPC object, a client
uses the object UUID to find the server that offers the
object. See object.

octal. In reference to a selection, choice or condition
that has eight possible different values or states. In
reference to a fixed-radix numeration having a radix of
eight.

OCT. Object class table.

octet. A byte that consists of eight bits.

opaque. A datum or data type whose contents are not
visible to the application routines that use it.

Open Software Foundation (OSF). A nonprofit
research and development organization set up to
encourage the development of solutions that allow
computers from different vendors to work together in a
true open-system computing environment.

open system. A system whose characteristics comply
with standards made available throughout the industry
and that can be connected to other systems complying
with the same standards.

open systems interconnection (OSI). The
interconnection of open systems in accordance with
standards of the International Organization for
Standardization (ISO) for the exchange of information.

operation. (1) GDS: Processing performed within the
directory to provide a service, such as a read operation.
(2) RPC: The task performed by a routine or procedure
that is requested by a remote procedure call.

organization. (1) The third field of a subject identifier.
(2) Security: Data that associates a named set of users
who can be granted common access rights that are
usually associated with administrative policy.

orphaned call. RPC: A call running in an RPC server
after the client that started the call fails or loses
communication with the server.

OSF. Open Software Foundation.

OSI. Open systems interconnection

P
PAC. Privilege attribute certificate.

package. XOM: A specified group of related object
management (OM) classes, denoted by an object
identifier.

packet. (1) In data communication, a sequence of
binary digits, including data and control signals, that is
transmitted and switched as a composite whole. [1]
The data, call control signals, and error control
information are arranged in a specific format. (2) See
call-accepted packet, call-connected packet, call-request
packet. See clear-confirmation packet, clear-indication
packet, clear-request packet. See data packet,
incoming-call packet.

parent directory. CDS: Any directory that has one or
more levels of directories beneath it in a cell name
space. A directory is the parent of any directory
immediately beneath it in the hierarchy.

parent process. A process created to carry out a
program. The parent process in turn creates child
processes to process requests. Contrast with child
process.

partially bound binding handle. RPC: A server
binding handle that contains an incomplete server
address lacking an endpoint. Contrast with fully bound
binding handle.

Partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

password. A secret string of characters shared
between a computer system and a user. The user must
specify the character string to gain access to the
system.

PCS. Portable Character Set.

peer trust. A type of trust relationship established
between two cells by means of a secret key shared by
authentication surrogates maintained by the two cells.
A peer trust relationship enables principals in one cell to
communicate securely with principals in the other.

568 Application Development Guide: Core Components

permission. (1) The modes of access to a protected
object. The number and meaning of permissions with
respect to an object are defined by the access control
list (ACL) Manager of the object. (2) GDS: One of five
groups that assigns modes of access to users: MODIFY
PUBLIC, READ STANDARD, MODIFY STANDARD,
READ SENSITIVE, or MODIFY SENSITIVE.
Synonymous with access right. See also access control
list.

person. See principal.

pickle. A type of data encoding. When a Remote
Procedure Call (RPC) sends data between a client and
a server, it serializes the user's data structures by using
the IDL Encoding Services (ES). This serialization
scheme for encoding and decoding data is informally
called pickling,

ping. Utility in TCP/IP which is used to test if a
destination host can be reached by sending test
packets and waiting for a reply.

In the RPC control program, a command to test if a
server is listening.

pipe. (1) RPC: A mechanism for passing large
amounts of data in a remote procedure call. (2) The
data structure that represents this mechanism.

plaintext. The input to an encryption function or the
output of a decryption function. Encryption transforms
plaintext to ciphertext and decryption transforms
ciphertext into plaintext.

platform. The operating system environment in which
a program runs.

port. (1) Part of an Internet Protocol (IP) address
specifying an endpoint. (2) To make the programming
changes necessary to allow a program that runs on one
type of computer to run on another type of computer.

Portable Character Set. A set of characters to enable
internationalization. A character set used by DCE to
enable word wide connectivity by ensuring that a
minimum group of characters is supported in DCE. All
DCE RPC clients and servers are required to support
the DCE PCS.

position (within a string). XOM: The ordinal position
of one element of a string relative to another.

position (within an attribute). XOM: The ordinal
position of one value relative to another.

potential binding. RPC: A specific combination of an
RPC protocol sequence, RPC protocol major version,
network address, endpoint, and transfer syntax that an
RPC client can use to establish a binding with an RPC

server. See binding. See also endpoint, network
address, RPC protocol, RPC protocol sequence, and
transfer syntax.

predicate. A Boolean logic term denoting a logical
expression that determines the state of some variables.
For example, a predicate can be an expression stating
that variable A must have the value 3. The control
expression used in conjunction with condition variables
is based on a predicate. A condition variable can be
used to wait for some predicate to become true, for
example, to wait for something to be in a queue.

presentation address. An unambiguous name that is
used to identify a set of presentation service access
points. Loosely, it is the network address of an open
systems interconnection (OSI) service.

presented type. RPC: For data types with the
Interface Definition Language (IDL) transmit_as
attribute, the data type that clients and servers
manipulate. Stubs invoke conversion routines to
convert the presented type to a transmitted type, which
is passed over the network. See transmitted type.

primitive binding handle. RPC: A binding handle
whose data type in Interface Definition Language (IDL)
is handle_t and in application code is
rpc_binding_handle_t. See customized binding
handle.

principal. Security: An entity that can communicate
securely with another entity. In the DCE, principals are
represented as entries in the Registry database and
include users, servers, computers, and authentication
surrogates.

privacy. RPC: A protection level that encrypts RPC
argument values. in secure RPC communications.

private key. See secret key.

privilege attribute. Security: An attribute of a principal
that may be associated with a set of permissions. DCE
privilege attributes are identity-based and include the
principal’s name, group memberships, and local cell.

privilege attribute certificate (PAC). Security: Data
describing a principal’s privilege attributes that has been
certified by an authority. In the DCE, the Privilege
Service is the certifying authority; it seals the privilege
attribute data in a ticket. The authorization protocol,
DCE Authorization, determines the permissions granted
to principals by comparing the privilege attributes in
PACs with entries in an access control list.

privilege service. Security: One of three services
provided by the Security Service; the Privilege Service
certifies a principal’s privileges. The other services are
the Registry Service and the Authentication Service.

 Glossary 569

privilege ticket. Security: A ticket that contains the
same information as a simple ticket, and also includes a
privilege attribute certificate. See service ticket, simple
ticket, and ticket-granting ticket.

procedure declaration. RPC: The syntax for an
operation, including its name, the data type of the value
it returns (if any), and the number, order, and data
types of its parameters (if any).

product-sensitive programming interface (PSPI).
(1) A special interface that is intended only to be used
for a specialized task such as diagnosis, modification,
monitoring, repairing, tailoring, or tuning. (2) A special
interface that is dependent on or requires the customer
to understand significant aspects of the detailed design
and implementation of the IBM software product.

profile. RPC: An entry in a name service database
that contains a collection of elements from which name
service interface (NSI) search operations construct
search paths for the database. Each search path is
composed of one or more elements that refer to name
service entries corresponding to a given RPC interface
and, optionally, to an object. See NSI profile attribute
and profile element.

profile element. RPC: A record in an RPC profile that
maps an RPC interface identifier to a profile member (a
server entry, group, or profile in a name service
database). See profile. See also group, interface
identifier and server entry.

profile member. RPC: A name service entry whose
name occupies the member field of an element of the
profile. See profile.

programming interface. The supported method
through which customer programs request software
services. The programming interface consists of a set
of callable services provided with the product.

proprietary. Pertaining to the holding of the exclusive
legal rights in making, using, or marketing a product.

protection level. The degree to which secure network
communications are protected. Synonymous with
authentication level.

protocol. A set of semantic and syntactic rules that
determines the behavior of functional units in achieving
communication.

protocol family. Synonym for address family.

protocol sequence. Synonym for RPC protocol
sequence.

protocol sequence vector. RPC: A data structure that
contains an array-size count and an array of pointers to

RPC protocol-sequence strings. See RPC protocol
sequence.

R
RACF. Resource Access Control Facility.

read access. CDS: An access right that grants the
ability to view data.

read-only replica. (1) CDS: A copy of a CDS
directory in which applications cannot make changes.
Although applications can look up information (read)
from it, they cannot create, change, or delete entries in
a read-only replica. Read-only replicas become
consistent with other, changeable replicas of the same
directory during skulks and routine propagation of
updates. (2) Security: A replicated Registry server.

realm. Security: A cell, considered exclusively from the
point of view of Security; this term is used in Kerberos
specifications. The term cell designates the basic unit
of DCE configuration and administration and
incorporates the notion of a realm.

reference monitor. Code that controls access to an
object. In the DCE, servers control access to the
objects they maintain; for a given object, the ACL
manager associated with that object makes
authorization decisions concerning the object.

reference pointer. RPC: A non-null pointer whose
value is invariant during a remote procedure call and
cannot point at aliased storage.

referral. GDS: An outcome that can be returned by a
DSA that cannot perform an operation itself. The
referral identifies one or more other DSAs more able to
perform the operation.

register. (1) RPC: To list an RPC interface with the
RPC runtime. (2) To place server-addressing
information into the local endpoint map. (3) To insert
authorization and authentication information into binding
information. See endpoint map and RPC interface.

Registry database. Security: A database of security
information about principals, groups, organizations,
accounts, and security policies.

Registry Service. Security: One of three services
provided by the Security Service; the Registry Service
manages information about principals, accounts, and
security policies. The other services are the Privilege
Service and the Authentication Service.

relative time. A discrete time interval that is usually
added to or subtracted from an absolute time. See
absolute time.

570 Application Development Guide: Core Components

remote. Pertaining to a device, file or system that is
accessed by your system through a communications
line. Contrast with local.

remote procedure. RPC: An application procedure
located in a separate address space from calling code.
See remote procedure call.

remote procedure call. RPC: A client request to a
service provider located anywhere in the network.

Remote Procedure Call (RPC). A DCE component. It
allows requests from a client program to access a
procedure located anywhere in the network.

replica. CDS: A directory in the CDS namespace.
The first instance of a directory in the name space is
the master replica. See master replica and read-only
replica.

replication. The making of a shadow of a database to
be used by another node. Replication can improve
availability and load-sharing.

request. A command sent to a server over a
connection.

request buffer. RPC: A FIFO queue where an RPC
system temporarily stores call requests that arrive at an
endpoint of an RPC server until the server can process
them.

resource. Items such as printers, plotters, data
storage, or computer services. Each has a unique
identifier associated with it for naming purposes.

Resource Access Control Facility (RACF). An IBM
licensed program, that provides for access control by
identifying and verifying the users to the system,
authorizing access to protected resources, and logging
the detected unauthorized access to protected
resources.

return value. A function result that is returned in
addition to the values of any output or input/output
arguments.

ROM. Read-only memory.

RPC. Remote Procedure Call.

RPC control program (RPCCP). An interactive
administrative facility for managing name service entries
and endpoint maps for RPC applications.

RPCCP. RPC control program

RPC interface. A logical group of operations, data
types, and constant declarations that serves as a
network contract for a client to request a procedure in a
server. See also interface definition and operation.

RPC protocol. An RPC-specific communications
protocol that supports the semantics of the DCE RPC
API and runs over either connectionless or
connection-oriented communications protocols.

RPC protocol sequence. A valid combination of
communications protocols represented by a character
string. Each RPC protocol sequence typically includes
three protocols: a network protocol, a transport protocol,
and an RPC protocol that works with the network and
transport protocols. See network protocol, RPC
protocol, and transfer protocol. Synonymous with
protocol sequence.

RPC runtime. A set of operations that manages
communications, provides access to the name service
database, and performs other tasks, such as managing
servers and accessing security information, for RPC
applications. See RPC runtime library.

RPC runtime library. A group of routines of the RPC
runtime that support the RPC applications on a system.
The runtime library provides a public interface to
application programmers, the application programming
interface (API), and a private interface to stubs, the stub
programming interface (SPI). See RPC runtime.

RPC thread. A logical thread within which a remote
procedure call is executed. See thread.

rundown procedure. RPC: A procedure used with a
context handle that is called following a communications
failure. It recovers resources reserved by a server for
servicing requests by a particular client. See context
handle.

runtime semantics. RPC: The rules of run time for a
remote procedure call, including the effect of multiple
calls on the outcome of a procedure’s operation. See
at-most-once semantics, broadcast semantics,
idempotent semantics, and maybe semantics.

S
scalability. The ability of a distributed system to
expand in size without changes to the system structure,
applications, or the way users deal with the system.

schema. See directory schema.

secret key. Security: A long-lived encryption key
shared between a principal and the Authentication
Service.

Security Service. A DCE component that provides
trustworthy identification of users, secure
communications, and controlled access to resources in
a distributed system.

 Glossary 571

segment. One or more contiguous elements of a
string.

server. (1) On a network, the computer that contains
programs, data, or provides the facilities that other
computers on the network can access. (2) The party
that receives remote procedure calls. Contrast with
client.

server addressing information. RPC: An RPC
protocol sequence, network address, and endpoint that
represent one way to access an RPC server over a
network; a part of server binding information. See
network address. See also binding information,
endpoint, and RPC protocol sequence.

server application thread. RPC: A thread running the
server application code that initializes the server and
listens for incoming calls. See application thread, client
application thread, local application thread, and RPC
thread.

server binding information. RPC: Binding information
for a particular RPC server. See binding information
and client binding information.

server entry. RPC: A name service entry that stores
the binding information associated with the RPC
interfaces of a particular RPC server and object
Universal Unique Identifiers (UUIDs) for any objects
offered by the server. See also binding information,
NSI binding attribute, NSI object attribute, object and
RPC interface.

server instance. RPC: A server running in a specific
address space. See server.

server state. Application Support Server: The
condition of the Application Support Server after it has
been started. The server state may be any of the
following, depending on the actions directed to it by the
administrator: initializing, quiescent, starting, operating,
or stopping.

server stub. RPC: The surrogate calling code for an
RPC interface that is linked with server application code
containing one or more sets of remote procedures
(managers) that implement the interface. See client
stub. See also manager.

service. In network architecture, the capabilities that
the layers closer to the physical media provide to the
layers closer to the end user.

service ticket. Security: A ticket for a specified service
other than the ticket-granting service. See privilege
ticket, simple ticket, and ticket-granting ticket.

session. GDS: A sequence of directory operations
requested by a particular user of a particular directory

user agent (DUA) using the same session object
management (OM) object.

session key. Security: A short-lived encryption key
provided by the Authentication Service to two principals
for the purpose of ensuring secure communications
between them. Synonymous with conversation key.

shell script. A file containing shell commands. If the
file can be processed, you can specify its name as a
simple command. Processing of a shell script causes a
shell to run the commands in the script. Alternatively, a
shell can be requested to run the commands in a shell
script by specifying the name of the shell script as the
operand sh utility.

SID. Subject identifier.

signal. Threads: To wake only one thread waiting on a
condition variable. See broadcast.

signed. Security: Pertaining to information that is
appended to an enciphered summary of the information.
This information is used to ensure the integrity of the
data, the authenticity of the originator, and the
unambiguous relationship between the originator and
the data.

sign-on. (1) A procedure to be followed at a terminal
or workstation to establish a link to a computer. (2) To
begin a session at a workstation. (3) Same as log on
or log in.

simple ticket. Security: A ticket that contains the
principal’s identity, a session key, a timestamp and
other information, sealed using the target’s secret key.
See privilege ticket, service ticket, and ticket-granting
ticket.

single sign-on. In z/OS DCE, single sign-on to DCE
allows a z/OS user who has already been authenticated
to an external security manager, such as RACF, to be
logged in to DCE. DCE does this automatically when a
DCE application is started, if the user is not already
logged in to DCE.

skew. The time difference between two clocks or clock
values.

socket. A unique host identifier created by the
concatenation of a port identifier with a TCP/IP address.

specific. XOM: The attribute types that can appear in
an instance of a given class, but not in an instance of
its superclasses.

SPI. (1) System programming interface. (2) Stub
programming interface.

572 Application Development Guide: Core Components

S-stub. GDS: The part of the directory system agent
(DSA) that establishes the connection to the
communications network.

standard. A model that is established and widely
used.

string. An ordered sequence of bits, octets, or
characters, accompanied by the string’s length.

stub. RPC: A code module specific to an RPC
interface that is generated by the Interface Definition
Language (IDL) compiler to support remote procedure
calls for the interface. RPC stubs are linked with client
and server applications and hide the intricacies of
remote procedure calls from the application code. See
client stub and server stub.

Stub programming interface (SPI). RPC : A private
runtime interface whose routines are unavailable to
application code.

subject identifier (SID). A string that identifies a user
or set of users. Each SID consists of three fields in the
form person.group.organization. In an account, each
field must have a specific value; in an access control list
(ACL) entry, one or more fields may use a wildcard.

synchronization. DTS: The process by which a
Distributed Time Service entity requests clock values
from other systems, computes a new time from the
values, and adjusts its system clock to the new time.

syntax. (1) XOM: An object management (OM) syntax
is any of the various categories into which the OM
specification statically groups values on the basis of
their form. These categories are additional to the OM
type of the value. (2) A category into which an attribute
value is placed on the basis of its form. See attribute
syntax.

System programming interface (SPI).. A private
interface reserved for use by other services within a
system and not available to application code. Contrast
with API.

system time. The time value maintained and used by
the operating system.

T
TCP. Transmission Control Protocol

TCP/IP. Transmission Control Protocol/Internet
Protocol

TDF. Time differential factor.

thread. A single sequential flow of control within a
process.

thread handle. RPC: A data item that enables threads
to share a storage management environment.

Threads Service. A DCE component that provides
portable facilities that support concurrent programming.
The threads service includes operations to create and
control multiple threads of execution in a single process
and to synchronize access to global data within an
application.

ticket. Security: An application-transparent mechanism
that transmits the identity of an initiating principal to its
target. See privilege ticket, service ticket, simple ticket
and ticket-granting ticket.

ticket-granting ticket. Security: A ticket to the
ticket-granting service. See privilege ticket, service
ticket, and simple ticket.

time differential factor (TDF). DTS: The difference
between universal time coordinated (UTC) and the time
in a particular time zone.

timeout period. The amount of time in seconds that
the Control Task waits for a daemon to initialize
successfully. If this time elapses and the daemon does
not indicate to the Control Task that it has successfully
initialized, the daemon’s state is deemed to be
UNKNOWN.

time provider (TP). DTS: A process that queries
universal time coordinated (UTC) from a hardware
device and provides it to the server.

time provider interface (TPI). An interface between
the DTS server and external time provider process.
The DTS server uses the interface to communicate with
the time provider and to obtain timestamps from an
external time source.

time provider program. DTS: An application that
functions as a time provider.

top level pointer. RPC: A pointer parameter that in a
chain of pointers is the only member that is not the
referent of any other pointer.

tower. CDS: A set of physical address and protocol
information for a particular server. CDS uses this
information to locate the system on which a server
resides and to determine which protocols are available
at the server. Tower values are contained in the
CDS_Towers attribute associated with the object entry
that represents the server in the cell namespace.

TP. Time provider.

TP server. DTS: A server connected to a time provider
(TP).

 Glossary 573

TPI. Time provider interface.

transaction. (1) A unit of processing consisting of one
more application programs initiated by a single request,
often from a terminal. (2) IMS/ESA: A message
destined for an application program.

transfer syntax. RPC: A set of encoding rules used
for transmitting data over a network and for converting
application data to and from different local data
representations. See also Network Data
Representation.

Transmission Control Protocol (TCP). A
communications protocol used in Internet and any other
network following the U.S. Department of Defense
standards for inter-network protocol. TCP provides a
reliable host-to-host protocol in packet-switched
communication networks and in an interconnected
system of such networks. It assumes that the Internet
Protocol is the underlying protocol. The protocol that
provides a reliable, full-duplex, connection-oriented
service for applications.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of non-proprietary communications
protocols that support peer-to-peer connectivity
functions for both local and wide area networks.

transmitted type. RPC: For data types with the IDL
transmit_as attribute, the data type that stubs pass
over the network. Stubs invoke conversion routines to
convert the transmitted type to a presented type, which
is manipulated by clients and servers. See presented
type.

transport independence. RPC: The capability, without
changing application code, to use any transport protocol
that both the client and server systems support, while
guaranteeing the same call semantics. See transport
layer and transport protocol.

transport layer. A network service that provides
end-to-end communications between two parties, while
hiding the details of the communications network. The
Transmission Control Protocol (TCP) and International
Organization for Standardization (ISO) TP4 transport
protocols provide full-duplex virtual circuits on which
delivery is reliable, error free, sequenced, and duplicate
free. User Datagram Protocol (UDP) provides no
guarantees. The connectionless RPC protocol provides
some guarantees on top of UDP.

transport protocol. A communications protocol, such
as the Transmission Control Protocol (TCP) or the User
Datagram Protocol (UDP).

trust peer. One side of a cross-registration that
enables two cells to have peer trust. See peer trust.

type. XOM: A category into which attribute values are
placed on the basis of their purpose. See attribute
type.

type UUID. RPC: The Universal Unique Identifier
(UUID) that identifies a particular type of object and an
associated manager. See also manager and object.

U
UDP. User Datagram Protocol.

unexport. RPC: To remove binding information from a
server entry in a name service database. Contrast with
export.

Universal Time Coordinated (UTC). The basis of
standard time throughout the world. Synonymous with
Greenwich mean time (GMT).

Universal Unique Identifier (UUID). RPC: An
identifier that is immutable and unique across time and
space. A UUID can uniquely identify an entity such as
an object or an RPC interface. See interface UUID,
object UUID, and type UUID.

unmarshalling. RPC: The process by which a stub
disassembles incoming network data and converts it
into local data in the appropriate local data
representation. Contrast with marshalling.

user. A person who requires the services of a
computing system.

User Datagram Protocol (UDP). In TCP/IP, a
packet-level protocol built directly on the Internet
protocol layer. UDP is used for
application-to-application programs between TCP/IP
host systems.

UTC. Universal Time Coordinated

UUID. Universal unique identifier

V
value. XOM: An arbitrary and complex information
item that can be viewed as a characteristic or property
of an object. See attribute value.

varying array. RPC: An array in which part of its
contents is transmitted during a remote procedure call.

vector. RPC: An array of references to other
structures.

vendor. Supplier of software products.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls

574 Application Development Guide: Core Components

communication and the flow of data in an SNA network.
It provides single-domain, multiple-domain, and
interconnected network capability.

W
well-known endpoint. RPC: A preassigned, stable
endpoint that a server can use every time it runs.
Well-known endpoints typically are assigned by a
central authority responsible for a transport protocol.
An application declares a well-known endpoint either as
an attribute in an RPC interface header or as a variable
in the server application code. See dynamic endpoint
and endpoint.

workstation. A device that enables users to transmit
information to or receive information from a computer,
for example, a display station or printer.

X
X.500. The CCITT/ISO standard for the open systems
interconnection (OSI) application-layer directory. It
allows users to register, store, search, and retrieve
information about any objects or resources in a network
or distributed system.

XDS. The X/Open Directory Services API.

X/Open Directory Services (XDS). An application
program interface that DCE uses to access its directory
service components. XDS provides facilities for adding,
deleting, and looking up names and their attributes.
The XDS library detects the format of the name to be
looked up and directs the calls it receives to either GDS
or CDS. XDS uses the XOM API to define and manage
its information.

XOM. The X/Open OSI-Abstract-Data Manipulation
API.

 Glossary 575

576 Application Development Guide: Core Components

 Bibliography

This bibliography is a list of publications for z/OS DCE and other products. The complete title, order number, and a
brief description is given for each publication.

z/OS DCE Publications

This section lists and provides a brief description of each publication in the z/OS DCE library.

 Overview
� z/OS DCE Introduction, GC24-5911

This book introduces z/OS DCE. Whether you are
a system manager, technical planner, z/OS system
programmer, or application programmer, it will help
you understand DCE and evaluate the uses and
benefits of including z/OS DCE as part of your
information processing environment.

 Planning
� z/OS DCE Planning, GC24-5913

This book helps you plan for the organization and
installation of z/OS DCE. It discusses the benefits
of distributed computing in general and describes
how to develop plans for a distributed system in a
z/OS environment.

 Administration
� z/OS DCE Configuring and Getting Started,

SC24-5910

This book helps system and network administrators
configure z/OS DCE.

� z/OS DCE Administration Guide, SC24-5904

This book helps system and network administrators
understand z/OS DCE and tells how to administer it
from the batch, TSO, and shell environments.

� z/OS DCE Command Reference, SC24-5909

This book provides reference information for the
commands that system and network administrators
use to work with z/OS DCE.

� z/OS DCE User's Guide, SC24-5914

This book describes how to use z/OS DCE to work
with your user account, use the directory service,

work with namespaces, and change access to
objects that you own.

 Application Development
� z/OS DCE Application Development Guide:

Introduction and Style, SC24-5907

This book assists you in designing, writing,
compiling, linking, and running distributed
applications in z/OS DCE.

� z/OS DCE Application Development Guide: Core
Components, SC24-5905

This book assists programmers in developing
applications using application facilities, threads,
remote procedure calls, distributed time service, and
security service.

� z/OS DCE Application Development Guide:
Directory Services, SC24-5906

This book describes the z/OS DCE directory service
and assists programmers in developing applications
for the cell directory service and the global directory
service.

� z/OS DCE Application Development Reference,
SC24-5908

This book explains the DCE Application Program
Interfaces (APIs) that you can use to write
distributed applications on z/OS DCE.

 Reference
� z/OS DCE Messages and Codes, SC24-5912

This book provides detailed explanations and
recovery actions for the messages, status codes,
and exception codes issued by z/OS DCE.

z/OS SecureWay Security Server Publications

This section lists and provides a brief description of books in the z/OS SecureWay Security Server library that may be
needed for z/OS SecureWay Security Server DCE and for RACF interoperability.

 Copyright IBM Corp. 1994, 2001 577

� z/OS SecureWay Security Server DCE Overview,
GC24-5921

This book describes the z/OS SecureWay Security
Server DCE and provides z/OS SecureWay Security
Server DCE information about the z/OS DCE
library.

� z/OS SecureWay Security Server LDAP Client
Programming, SC24-5924

This book describes the Lightweight Directory
Access Protocol (LDAP) client APIs that you can
use to write distributed applications on z/OS DCE
and gives you information on how to develop LDAP
applications.

� z/OS SecureWay Security Server RACF Security
Administrator's Guide, SA22-7683.

This book explains RACF concepts and describes
how to plan for and implement RACF.

� z/OS SecureWay Security Server LDAP Server
Administration and Use, SC24-5923

This book describes how to install, configure, and
run the LDAP server. It is intended for
administrators who will maintain the server and
database.

� z/OS SecureWay Security Server Firewall
Technologies, SC24-5922

This book provides the configuration, commands,
messages, examples and problem determination for
the z/OS Firewall Technologies. It is intended for
network or system security administrators who
install, administer and use the z/OS Firewall
Technologies.

Tool Control Language Publication

� Tcl and the Tk Toolkit, John K. Osterhout, (c)1994,
Addison—Wesley Publishing Company.

This non-IBM book on the Tool Control Language is
useful for application developers, DCECP script
writers, and end users.

IBM C/C++ Language Publication

� z/OS C/C++ Programming Guide, SC09-4765 This book describes how to develop applications in
the C/C++ language in z/OS.

z/OS DCE Application Support Publications

This section lists and provides a brief description of each publication in the z/OS DCE Application Support library.

� z/OS DCE Application Support Configuration and
Administration Guide, SC24-5903

This book helps system and network administrators
understand and administer Application Support.

� z/OS DCE Application Support Programming Guide,
SC24-5902

This book provides information on using Application
Support to develop applications that can access
CICS and IMS transactions.

578 Application Development Guide: Core Components

 Encina Publications

� z/OS Encina Toolkit Executive Guide and
Reference, SC24-5919

This book discusses writing Encina applications for
z/OS.

� z/OS Encina Transactional RPC Support for IMS,
SC24-5920

This book is to help software designers and
programmers extend their IMS transaction
applications to participate in a distributed,
transactional client/server application.

 Bibliography 579

580 Application Development Guide: Core Components

 Index

Special Characters
_free_inst suffix 293
_free_local suffix 293
_from_local suffix 293
_to_local suffix 293

A
ABENDs, caught as exceptions 344
ACCEPT credential type 447
ACF (Attribute Configuration File) 176

Attribute Configuration Language 285
attribute list 286
body 287
compiling 286
features 286
file extension 285
header 287
naming 285
structure 286
table of attributes 306

ACF attributes 149
ACF syntax, Language Grammar Synopsis 306
ACL (access control list)

access checking 440
client-side interface APIs 506
entries 437
manager types 436
network interface 509
object types and ACL types 435

ACL, permissions, for RPC control program 81
additional parameter 289, 291
address space association 268
aliasing 254, 255
allocating memory 173, 258, 294
API

See also Application Programming Interface (API)
definition 40

application
RPC code 40

Application Programming Interface (API)
Extended Attribute 465

application programming interfaces
RACF-DCE interoperability 535

application thread, RPC, description 85
applications, host service 5
array

array_declarator 247
bounds 247
conformant 247
field attribute 249
first_is attribute 251

array (continued)
fixed 247
last_is attribute 251
length_is attribute 252
max_is attribute 250
rules for 252
size_is attribute 250
varying 247

array attribute 249
first_is 251
last_is 251
length_is 252
max_is 250
size_is 250

array_attribute attribute 241
array_declarator 247
array, IDL 247
association, address space 268
asynchronous cancelability 328
asynchronous signals 332
at-most-once semantics, RPC, description 69
attribute

array_attribute 241
auto_handle 287, 288, 306
binding_callout 287
broadcast 225, 234, 235
code 287, 292, 306
code sets 155
comm_status 287, 288, 291, 306
condition variable 323
context_handle 225, 232, 235, 236, 268
cs_char 287
cs_tag_rtn 287
decode 287
enable_allocate 287, 294, 306
encode 287
endpoint 225, 227
explicit_handle 287, 289, 306
extern_exceptions 287
fault_status 287, 291, 306
first_is 225, 258
handle 225, 232, 258, 267
heap 295, 306
idempotent 225, 234, 235
IDL 224
IDL interface description header 226
ignore 225, 241
implicit_handle 287, 288, 290, 306
in 225, 236
in function results 257
in parameters 257
in structure fields 258

 Copyright IBM Corp. 1994, 2001 581

attribute (continued)
in union case 258
inherit scheduling 322
instance 466
instance, access control 468
last_is 225, 258
length_is 225, 258
local 225, 229
max_is 225
maybe 225, 234, 235
mutex type 323
nocode 287, 292, 306
out 224, 225, 236
pointer_default 225, 229, 254, 258
pointers 254
ptr 225, 232, 235, 236, 241, 254, 255
ref 225, 232, 236, 241, 254
represent_as 287, 288, 293, 306
scheduling policy 322
scheduling priority 322
schema

defined 465
size_is 225
stacksize 322
status 291
string 225, 232, 235, 236, 241
thread 322
transmit_as 225, 232, 273
types 466
unique 232, 236, 241
uuid 225, 226
version 225, 226

Attribute Configuration Language 285
ACF 285
syntax 285, 287, 306

attribute object 321
attributes, ACF 285, 295
audience skills xxiii
audit 517
Audit APIs 525
Audit clients 518
Audit code point 518
Audit data type 527
Audit event 518, 520
Audit Service 517

adding audit capability to distributed
applications 525

adding event-specific information 527
APIs

dce_aud_close() 528, 530
dce_aud_commit() 527
dce_aud_discard() 530
dce_aud_get_ev_info() 530
dce_aud_get_header() 529
dce_aud_next() 528
dce_aud_open() 525, 528
dce_aud_print() 529

Audit Service (continued)
APIs (continued)

dce_aud_put_ev_info() 527
dce_aud_start_with_name() 526
dce_aud_start_with_server_binding() 526
dce_aud_start_with_server_pac() 526
dce_aud_start_with_uuid() 526
dce_aud_start() 526
initializing audit records 526

closing an audit trail file 528, 530
committing an audit record 527
components 517
concepts 517
discarding an audit record 530
event number

format 519
features 517
opening an audit trail 525
opening audit trail file for reading 528
reading audit records into a buffer 528

predicates 528
record

criteria for selection 528
reading into a buffer 528
transforming into text 529

specifying amount of header information 526
trail file

writing analysis and examination tools 528
transforming audit records into text 529

audit trail file 521
authenticated RPC 400

access checking 93
and DCE Security 91, 94
and RPC runtime 91
authentication 91

cross-cell 92
rpc_c_authn_dce_public 91
rpc_c_authn_dce_secret 91
rpc_c_authn_none 91

authorization 91, 93
DCE 94
name-based 94
using ACLs 94
with EPACs 94

basic operations 74
defined 91
protection level 91, 92
routines 94
rpc_binding_inq_auth_client 95
rpc_binding_inq_auth_info 94
rpc_mgmt_inq_dflt_protect_level 94
rpc_mgmt_inq_server_princ_name 94
rpc_mgmt_set_authorization_fn 95
rpc_server_register_auth_info 95
server principal name 91, 94

582 Application Development Guide: Core Components

authenticating applications that use GSSAPI 430
authentication 91, 400, 414, 415, 433

commands 416, 422
cross-cell 92
protection level 92
rpc_c_authn_dce_public 91
rpc_c_authn_dce_secret 91
rpc_c_authn_none 91
server principal name 91, 94
third-party 417

authorization 91, 93, 400, 435, 446
DCE 94
name-based 94
options 93
with EPACs 94

auto_handle attribute 287, 288, 306
automatic binding 288
avoiding

deadlocks 336
nonreentrant software 334
race conditions 335

B
backing store, DCE

and IDL encoding services 29
APIs used 27
closing 30
conformant arrays not allowed in 29
data header 27
data in 27
deleting items 32
encoding and decoding 29
example of use 32
freeing data 31
headers, making or retrieving 31
iteration, performing 31
opening 30
overview 27
routines used in 30
user interface 28
using 27

base type specifiers 232
bibliography 577
BIH 369
Binary Timestamps 374
binding

auto_handle attribute 288
automatic 288
context handle 271
context_handle attribute 268
explicit 289
explicit_handle attribute 289
implicit 290
implicit_handle attribute 290
RPC, description 59

binding (continued)
to dced 7

binding attribute
RPC, description 97
searches of 107

binding handle, RPC 61
binding information 61
binding_callout attribute 287, 305
body, ACF 287
book organization xxv
books, list of DCE and related 577
Boolean

constants 231
boolean floating-point type 238
boss/worker model 316
boss/worker model, work queue variation 316
BOTH credential type 447
broadcast attribute 225, 234, 235
broadcast semantics, RPC, description 69
broadcasting 234, 235
buffer decoding 213
buffer sizing routines 150
buffering styles 212
byte type 239

C
C

library interfaces 406
call queue, RPC, description 206
call thread, RPC, description 86
cancel operations

RPC
using 88

cancel-timeout period, RPC, description 88
canceled thread, RPC, description 88
canceling a thread 328
cancels

RPC
using 70

CATCH 340
CATCH statement 57
CATCH_ALL 337
cell 414
cell name, RPC, description 98
cell profile, RPC, description 116
cell relative name, RPC, description 98
cell root, RPC, description 98
cell, RPC, description 98
certificate of identity 495
character

type 238
character set 143, 145

compatibility evaluation 145, 160
evaluation 163
local 145

 Index 583

character set interoperability 143
characters 231
characters, international 240
client

definition 39
exceptions 291

Client and Server Components 379
DTS daemon 379
Time-Provider process 379

client application thread, RPC, description 86
client binding handle, RPC, description 66
client binding information, RPC, description 66
client memory 259
client memory management 259
clients becoming servers 176, 261
code attribute 287, 292, 306
code page considerations 129
code pages

Code Page IBM-037 543
Code Page IBM-1027 541
Code Page IBM-1047 542
Code Page IBM-273 544
Code Page IBM-277 545
Code Page IBM-278 546
Code Page IBM-280 547
Code Page IBM-284 548
Code Page IBM-285 549
Code Page IBM-297 550
Code Page IBM-500 551
Code Page IBM-871 552

code point 518
code set 143, 145

compatibility evaluation 145, 160
evaluation 163
intermediate 154, 164
ISO 10646 154, 164
local 145, 154, 159
network 146
universal 154, 164

code set conversion
in RPC applications 144
in RPC protocol 143
method 163
model 164
operating system routines 152
operating system routines for 147
stub routines for 146, 150
stub support routines 151

code set interoperability 143
code set registry 145
code set tags

operation parameters 148
code sets

array 154
attribute 155
evaluation 145

code sets (continued)
exporting 145, 155
removing from the namespace 155
supported 145, 154
supported, exporting to the namespace 155

combination model 317
comm_status attribute 57, 287, 288, 291, 306
comm_status routine 176
command

idl 286
communication

failures
transport errors and exceptions 57

communication failure 57, 176
context rundown 270
status attribute 291

communications protocol
description 60
used by DCE RPC 60

compatible binding information, RPC,
description 63

compiling
ACF 286

complex type 273
concurrency control, RPC, description 89
condition variable 325, 326

attribute 323
diagram of 325
figure of 326
signaling 336

conformance in dimensions other than the
first 248

connection-oriented RPC protocol, description 61
connectionless RPC protocol, description 61
considerations, heterogeneous data 129
constant declaration 230
constant expressions 231
constants

Boolean 231
characters 231
integers 231
nulls 232
string 231

constructed data type 240
constructed type specifiers 234
ContactProvider Procedure

ContactProvider RPC
return arguments 380

description 381
output parameters 381

Binding Handle 381
Communication status 381
Control Message 381
Time-provider status 381

context acceptor (GSSAPI) 400

584 Application Development Guide: Core Components

context handle 258, 268
attribute 268
binding 271
creating new 270
definition 180
resource recovery 270
usage rules 271

context initiator (GSSAPI) 400
context initiators, credentials 448
context rundown procedure 270

RPC
description 70

rundown 270
context_handle attribute 225, 232, 235, 236, 268
conventions 48
conventions for using exceptions 342
conversion method 163
conversion model 164
Coordinated Universal Time (UTC) 369, 379
Coupling Facility (XCF) 204
creating

attribute object 321
context 270
threads 319

credentials
and principal types 447
creating types 448
default 447
delegating 449
GSSAPI 447
handles, creating 448
portability of applications and 447, 448
registering principal names for 448
types

ACCEPT 447
BOTH 447
creating 448
INITIATE 447

using defaults to accept a security context 448
using defaults to initiate a security context 448

cs_byte type 150
cs_char attribute 149, 150, 287, 298
cs_drtag attribute 149, 302
cs_rtag attribute 149, 302
cs_stag attribute 149, 302
cs_tag_rtn attribute 149, 150, 152, 287, 303
customized handle 267

D
data management, host 14
data representation 129
data, thread-specific 327
DCE

See also Distributed Computing Environment (DCE)
host services

overview 5

DCE Attribute interface 465
DCE exceptions, table of 343
DCE Host Daemon (dced)

and distributed applications 6
binding to 7

dce/pthread_exc.h header file 339
dce/utc.h header file 375, 376
dcecp 5
dced

See DCE Host Daemon (dced)
deadlock, avoiding 336
decode attribute 287, 296
default credentials 447
default pointer semantics 254
default profile element, RPC, description 102
default profile, RPC, description 102
defining

epilog actions 341
delegation 451

and GSSAPI credentials 449
identities 451

deleting
attribute object 321
condition variables 336
threads 320

determining the identity of an encoding 219
directional attribute 236
directory path name, RPC, description 98
directory service entries (NSI) 96
disabling memory 259
distributed application issues 6
Distributed Computing Environment (DCE)

backing store
See backing store, DCE

control program (dcecp) 5
host services

binding to 7
controlling remote servers 18
data management, description 5
DCE Host Daemon (dced) 5
distributed application issues 6
endpoint map, managing 6
endpoint mapper, description 5
key table management, description 5
managing host data 14
managing server key tables 23
security validation, description 5
server management, description 5
types of applications using 5
validating security server 23

overview of facilities 3
double type 238
DTS Absolute Time Structures, listing 373
DTS API Header Files

dce/utc.h 376
location 376

 Index 585

DTS API Header Files (continued)
time.h 376

DTS API routines
description 369

DTS programming example
utc_ascgmtime 391
utc_cmpintervaltime 391
utc_cmpmidtime 391
utc_mkanytime 391

DTS Relative Time Structures, listing 374
DTS reltimespec Time Structure 376
DTS Routines, functions 369
DTS Synchronization Algorithm 389
DTS Synchronization Algorithm, step-by-step

description 389
DTS Time Structures 373

reltimespec structure 376
timespec structure 375
tm structure 375
utc structure 374

DTS tm Time Structure 375
DTS utc Time Structure 374
dtsprovider_cstub.c 382
dtsprovider_sstub.c 382
dtsprovider.h 382
dynamic buffer encoding 212
dynamic endpoint, RPC, description 67
dynamic executor threads 208

E
enable_allocate attribute 287, 294, 306
enabling memory 259
encapsulated unions 242
encode attribute 287, 296
encoding services, IDL 211
encryption mechanisms 415
endpoint

role within server address 62
endpoint attribute 225, 227
endpoint map

managing 6
using 200

endpoint register operation, RPC, description 119
endpoint unregister operation, RPC, description 79
ENDTRY 337
ENDTRY statement 57
enumeration 244
environment variable

NSI defined 106
EPAC

authenticated RPC 94
epilog actions 341
ERA interface 465
error_status_ok 291

error_status_t type 239, 291
error_status_t type, unsigned32 type 291
errors

attribute 287
communication, RPC 176

evaluation routine 163
establishing 160

evaluation routines 164
event class 520
event class number 520
example

RPC
NSI searches 111
profile element 110

example program, prime number search 349
example, setting z/OS ABEND to be an

exception 345
examples

of backing store use 32
exception codes, RPC exceptions 177
exception-returning interface 337

syntax for C 337
using 339

exceptions 176, 288
and descriptions, table of 343
CATCH 340
CATCH_ALL 337
catching 340
client 57, 291
declaring and initializing 340
defining a region of code to catch 340
defining epilog actions 341
description 339
ENDTRY 340
errors 57
extern_exceptions attribute 296
FINALLY 342
handler 176
importing error status 341
naming convention for 342
operations on 339
raising 57, 340
RERAISE 337, 343
rpc_s_no_more_entries 288
rpc_x_no_more_entries 288
rules for using 342
server 57, 291
transport 57
TRY 340
using the exception-returning interface 339
z/OS ABENDs caught as 344

exceptions attribute 177, 228
exceptions, table of 343
exchanging client memory 259
executor thread pool 208

586 Application Development Guide: Core Components

executor threads, initializing 208
expiration age, RPC, description 113
explicit binding 289
explicit_handle attribute 287, 289, 306
export operation

description 80
RPC

description 73
exporting code sets to the namespace 145, 155
Extended Attribute APIs

overview 465
Extended Privilege Attribute API 451
Extended Registry Attribute (ERA) interface 465
extern_exceptions attribute 177, 287, 296

F
failures 288

attribute 287
communication 176
server 176

fault_status attribute 57, 287, 291, 306
fault_status routine 176
FIFO (First in, First out) scheduling 322
file

extension, ACF 285
name, ACF 285

filter 520
filter, subject identity 521

record
structure 521

FINALLY 342
first_is attribute 225, 251, 258
fixed buffer encoding 212
float type 238
floating-point numbers 238
freeing memory 173, 258, 294
full pointer 255
fully bound binding handle, RPC, description 63
function results, pointers 257

G
general cancelability 328
General TPI Control Flow

description 379
illustration 380
step-by-step explanation 380

Generic Security Service API (GSSAPI)
about 400
authentication process 430
context acceptor defined 400
context initiator defined 400
credentials, delegating 449
data integrity with 415
per-message security 415

Generic Security Service API (GSSAPI) (continued)
protection levels 415
services

protocols, authentication and authorization 400
global lock 334, 335

using to avoid nonreentrant software 335
glossary 557
GMT (Greenwich Mean Time) 369
group attribute

RPC
description 97

searches of 107
group member, RPC, description 101

H
handle 236

context 268
customized 267

handle attribute 232, 258, 267
handle_t type 239
handler block 337
handlers not provided with UNIX signals 332
header

ACF 287
headers, backing store 31
heap 357
heap attribute 295, 306
heavy-weight threads 358
heterogeneous data considerations 129
host services, DCE

binding to 7
controlling remote servers 18
data management, description 5
DCE Host Daemon (dced) 5
distributed application issues 6
endpoint map, managing 6
endpoint mapper, description 5
key table management, description 5
managing host data 14
managing server key tables 23
overview 5
security validation, description 5
server management, description 5
types of applications 5
validating security server 23

hyper type 237

I
iconv routines 147
ID map API summarized 515
idempotent attribute 225, 234, 235
idempotent semantics, RPC, description 69
identities, delegating 451

 Index 587

identity, certificate of 495
IDL

See also Interface Definition Language (IDL)
file, use of 379

IDL (Interface Definition Language)
array

attribute 249
array attribute 236, 241
arrays 247

array_declarator 247
bounds 247
conformant 247
fixed 247
rules for 252
varying 247

attribute 224
array_attribute 241
broadcast 225, 234, 235
context_handle 225, 232, 235, 236
endpoint 225, 227
first_is 225, 251
handle 225, 232, 267
idempotent 225, 234, 235
ignore 225, 241
in 225, 236
interface description header 226
last_is 225, 251
length_is 225, 252
local 225, 229
max_is 225, 250
maybe 225, 234, 235
out 225, 236
overview 225
pointer_default 225, 229
ptr 225, 232, 235, 236, 241
ref 225, 232, 236, 241
size_is 225, 250
string 225, 232, 235, 236, 241
transmit_as 225, 232, 273
unique 232, 236, 241
UUID 225, 226
version 225, 226

base type specifiers 232
basic data type 237
boolean type 238
byte type 239
case sensitivity 223
comments 223
const declaration 230
constant declarations 230
constants

Booleans 231
characters 231
integers 231
nulls 232
string 231

IDL (Interface Definition Language) (continued)
constructed type 240
constructed type specifiers 234
customized handle 267
data type 224
declarations 224
double type 238
enumeration 244
error_status_t type 239
file 221
float type 238
handle_t type 239
hyper type 237
identifiers 222
import declarations 225, 230
int type 237
interface description body 225
interface description header 224
interface description structure 224
international characters 240
keywords 222
lexical elements 222
long type 237
named type 232
operation declaration 234
out attribute 224
parameter declarations 235
pipes 244

example 245
in 244
out 244
rules for 246

predefined type specifiers 234
punctuation characters 222
short type 237
small type 237
special symbols 222
string 253
struct type 240
structures 240
syntax 221

language grammar synopsis 275
syntax notation 221
type 232
type attribute 232
type declarations 232
type declarators 234
typedef declaration 232
typography 221
unions 241
unsigned integer type 237
void type 239
white space 223

idl command 286
IDL encoding services 211

588 Application Development Guide: Core Components

IDL encoding services handles 213
IDL user-defined exceptions 177
idl_ macros 233
idl_void_p_t type 258, 259
ignore attribute 225, 241
implicit binding 290
implicit_handle attribute 287, 288, 290, 306
import declarations 230
import operation, RPC, description 74
in attribute 225, 236
inaccuracy 370
include statement 287, 288
incremental decoding 213
incremental encoding 212
inherit scheduling attribute 322
initialization routines, one-time 327
initializing executor threads 208
INITIATE credential type 447
instance

of an RPC server
distinguishing 119, 122
interchangeable instances 99, 117, 203

instance UUID, RPC, description 60
int type 237
integer

constant 231
constants 231
types 237
unsigned 237

interaction of attributes 297
interface 48

body 287
definition 48
header 287
password management facility 406
RACF-DCE interoperability 406

Interface Definition Language (IDL)
memory management 173

interface descriptions 221
body 225
header 224
structure 224

interface handle
RPC, use 80

interface identifier, RPC, description 101
interface specification

RPC
using 77

interface UUID 48
RPC

using 63
intermediate code set 154, 164
international characters 144, 240
International Time Bureau 369
internationalized RPC 143, 159

ACF for 149

internationalized RPC (continued)
application development steps for 147
client code 159
evaluation routines 163
execution model 144
interface definition for 147
server code 153
setting locale in 154
stub support routines 146, 150

ISO 8601 standard 369
ISO Format

example 370
example showing variations 371
specifying inaccuracy 370, 371
TDF in 370
use of commas as separators 371
use of I delineator 370
use of plus (+) or minus (-) characters 371
use of the [T] delineator 371
variations to 370

ISO time format 369
variations to 369

iteration 31

J
join primitive 327

K
key

changing 502
deleting, compromised 503
deleting, expired 503
retrieving 501

key management 501, 502
key tables, server

managing 23

L
Language Grammar Synopsis

ACF 287
ACF syntax 306
Attribute Configuration Language, syntax 285
Backus-Naur Form 287, 306
Backus-Naur Format (BNF) 275
BNF 287, 306
IDL syntax 275
Interface Definition Language, syntax 221
syntax 275, 287, 306

last_is attribute 225, 251, 258
leaf name, RPC, description 99
length_is attribute 225, 252, 258
local application thread, RPC, description 85

 Index 589

local attribute 225, 229
local code set 154
local type 293
locale 143, 159

setting 154, 159
lock, global 335
locking, mutex 336
login 497
login context 495, 496, 498, 499, 500
long type 237
lookup operation, RPC, description 74

M
major version number

of an RPC interface 63
of an RPC protocol 62

manager, RPC, description 71
map, endpoint

See endpoint map
marshalling 41
max_is attribute 225, 250
maybe attribute 225, 234, 235
maybe semantics, RPC, description 69
medium-weight threads 358
memory

advanced management support 259
allocating 173, 258, 294
disabling 259
enabling 259
exchanging 259
freeing 173, 258, 294
heap attribute 295
management 258

client 259
server 294
server threads 176, 260
usage rules 261

rpc_ss_allocate routine 258
rpc_ss_disable_allocate routine 259
rpc_ss_enable_allocate routine 259
rpc_ss_free routine 258
rpc_ss_get_thread_handle routine 260
rpc_ss_set_client_alloc_free routine 259
rpc_ss_set_thread_handle routine 260
rpc_ss_swap_client_alloc_free routine 259
server threads 176, 260
setting client 259
setting for a thread’s stack 322

memory management 173, 212
min_is attribute 249
minor version number

of RPC interface 63
of RPC protocol 62

model overview, threading 358

models for multithreaded programming
boss/worker 316
pipelining 316
pipelining, figure 316
work crew 316
work crew, figure 316

modular use of exceptions 342
multiple operations on a single IDL encoding

services handle 219
multitasking, z/OS, comparison with POSIX

multithreading 357
multithreaded applications, RPC, description 89
multithreaded programming

introduction 315
potential disadvantages 317

complexity 317
deadlocks 336
nonreentrant routines 317
race conditions 335

software models 315
boss/worker 316
combination 317
pipelining 316
work crew 316

multithreading, POSIX, comparison with z/OS
multitasking 357

mutex
attribute 323
deleting 324
description 323
locking before signaling condition variable 336

N
name

service entries, RPC guidelines for constructing 104
name service

entries
RPC server entries 99
RPC structure of entry names 98

handle, RPC 105
when to use 65

Name Service Interface (NSI)
See NSI (Name Service Interface)

named type 232
names 48
national languages 129
ncacn_ip_tcp protocol 227
ncadg_ip_udp protocol 227
nested RPC

description 197
phases 198

network address, RPC, description 62
network addressing information 62
network code set 146

590 Application Development Guide: Core Components

network descriptor, RPC, description 70
network protocol, description 60
network type 293
nil UUID, RPC, description 63
nocode attribute 287, 292, 306
nonencapsulated unions 243

See also unions, nonencapsulated
nonreentrant software 317, 334

using global lock to avoid 335
using thread-specific storage to avoid 335

nonterminating signals 332
nonthreaded libraries 333
NSI (Name Service Interface)

attribute
description 105
RPC 97
searches of 107

binding attribute, description 97
CDS ACL permissions, for control program 81
directory service entries

group, RPC 96
profile 96
server entry 96

export operation
description 73, 80

group attribute, description 97
import operation, description 74
lookup operation, description 74
name service handle, description 105
name service names, guidelines for

constructing 104
object attribute, description 97
operations, introduction 73
potential binding, description 79
profile attribute, description 97
search operations

description 101
rules for 107

search path, description 103
unexport operation, description 74
usage models

overview of 117
resource model 121
service model 117

NSI attribute
code sets 155

null constants 232

O
object

RPC
description 71
using 63

object attribute, RPC, description 97

object UUID 60
one-time initialization routines 327
opaque pointer 268
operation

attribute 235
broadcast 235
idempotent 235
maybe 235

declaration 235
IDL 234

parameter declaration 236
type specifier 235

operations
NSI, introduction 73
on exceptions 339

out attribute 225, 236
overview, threading model 358

P
Parallel Sysplex environment 204
parameter attribute

IDL 235
parameter declaration 236
parameters 257
parent directory, RPC, description 99
partially-bound handle

RPC, description 62
password management facility

interfaces 406
path, for NSI searches 103
PCS 143
per-message security 415
pickling 29
pipelining model

figure 316
multithreaded 316

pipes
example 245
IDL 244
in 244
out 196, 244
rules for 246

pointer levels 257
pointer_default attribute 225, 229, 254, 258
pointers 254, 256

attribute 254
default semantics 254
full 255
in function results 257
in parameters 257
in structure fields 258
in union case 258
levels 254
memory management 258
opaque 268

 Index 591

pointers (continued)
pointer_default attribute 258
ptr 254
ref 254
reference 254
unique

example 256
untyped 268
usage rules 258

port 227
Portable Character Set (PCS) 143
POSIX

multithreading, comparison with z/OS
multitasking 357

sigaction service 333
sigwait service 333

potential binding, RPC, description 79
preauthentication 495
predefined type specifiers 234
prime number search example 349
principal

description 413
privilege attribute certificate (EPAC)

authenticated RPC 94
Privilege Ticket-Granting Ticket (PTGT) 422
procedure declaration 39
process 357
profile 96

RPC
description 101
explanation of 103
uses of 116

profile attribute
RPC

description 97
searches of 108

profile element
RPC

description 101
profile, directory service entries (NSI) 96
programming

with threads 331
protection level

authenticated RPC 91
description 414
options 92

protection levels (GSSAPI) 415
protocol

for RPC communications 60
ncacn_ip_tcp 227
ncadg_ip_udp 227

protocol family 227
protocol sequence

RPC
description 61

protocols
authentication

third-party 417
PTGT (Privilege Ticket-Granting Ticket)

See Privilege Ticket-Granting Ticket (PTGT)
pthread_attr_create 321, 322
pthread_cancel 320, 328
pthread_cond_broadcast 326
pthread_cond_destroy 326
pthread_cond_init 326
pthread_cond_signal 326
pthread_cond_timedwait 320, 324, 326, 328
pthread_cond_wait 320, 324, 326, 328
pthread_condattr_create 321
pthread_create 322
pthread_delay_np 328
pthread_detach 319, 320
pthread_exit 320
pthread_getspecific 327
pthread_global_lock_np 335
pthread_global_unlock_np 335
pthread_join 320, 328
pthread_keycreate 327
pthread_lock_global_np 335
pthread_mutex_destroy 324
pthread_mutex_init 323
pthread_mutex_lock 324
pthread_mutex_trylock 324
pthread_mutex_unlock 324
pthread_mutexattr_create 321
pthread_mutexattr_delete 321
pthread_mutexattr_setkind_np 323
pthread_once 327
pthread_setasynccancel 328
pthread_setcancel 328
pthread_setspecific 327
pthread_testcancel 328
pthread.h file 339
ptr attribute 242

description 254
full pointer 236, 255
operation 235
overview 225
reference pointer 241
type 232

public profile, RPC, description 116

R
race condition

avoiding 335
example 335

RACF-DCE interoperability
application programming interfaces for 535
interfaces 406

592 Application Development Guide: Core Components

RACF-DCE interoperability application programming
interfaces 535

RAISE 340
reentrant code

avoiding nonreentrant routines 317
ref attribute

as type attribute 232
description 254
overview 225
pointer member 241
reference pointer 236, 254

reference pointer 254
reflect_deletions attribute 236
registering code sets in the namespace 145
registry 459, 460, 462

extending 465
Registry Service 91
Relative Time

calendar date field 372
defined 372
example of 372
negative 372
positive 372

reltimespec structure declaration 376
remote host data management 14
Remote Procedure Call (RPC)

ACL permissions, for control program 81
application thread, description 85
at-most-once semantics, description 69
binding handle 61
binding information, description 61
binding, description 59
broadcast semantics, description 69
call queue, description 206
call thread, description 86
cancel operations

overview 88
cancel-timeout period, description 88
canceled thread, description 88
cell name, description 98
cell profile, description 116
cell root, description 98
cell-relative name, description 98
cell, description 98
client application thread, description 86
client binding handle, description 66
client binding information, description 66
communications protocol, description 60
compatible binding information, description 63
concurrency control, description 89
connection-oriented RPC protocol, description 61
connectionless RPC protocol, description 61
context rundown procedure, description 70
default profile element, description 102
default profile, description 102
directory path name, description 98

Remote Procedure Call (RPC) (continued)
dynamic endpoint, description 67
endpoint map

using 200
environment variable, NSI defined 106
exception codes 177
expiration age, description 113
export operation

description 73
fully bound binding handle, description 63
group member, description 101
idempotent semantics, description 69
import operation, description 74
instance UUID, description 60
interface

definition 45
handle 80
identifier 101
UUID 63
version numbers 63

leaf name, description 99
local application thread, description 85
lookup operation, description 74
marshalling 41
maybe semantics, description 69
model 39
multithreaded applications, description 89
name service entries

server entries 99
structure of entry names 98

name service handle, description 105
name service names, guidelines for

constructing 104
nested

description 197
phases 198

network address, description 62
network protocol, description 60
nil UUID, description 63
NSI attribute

description 97
searches of 107

NSI binding attribute, description 97
NSI group attribute, description 97
NSI object attribute, description 97
NSI operations, introduction 73
NSI profile attribute, description 97
NSI search, rules 107
NSI usage models

overview of 117
resource model 121
service model 117

NSI, search operations 101
object

description 71
using 63

 Index 593

Remote Procedure Call (RPC) (continued)
operations

endpoint unregister 79
export 80

parent directory, description 99
partially bound handle, description 62
parts of application 40
potential binding, description 79
profile

definition 96
description 101
explanation of 103
uses of 116

profile element, description 101
protocol

description 61
version numbers 62

protocol sequence
description 61

public profile, description 116
request buffer, description 205
resource model, description 121
resource, description 121
RPC interface, specification 77
runtime

library 380
operations 42

runtime routines
rpc_binding_from_string_binding 83
rpc_binding_server_from_client 198
rpc_binding_to_string_binding 79
rpc_ep_register 120, 200
rpc_ep_register_no_replace 120, 204
rpc_ep_register_no_replace_wlb 204
rpc_ep_resolve_binding 119, 204
rpc_ep_unregister 79
rpc_mgmt_ep_elt_inq_* 204
rpc_ns_binding_export 80
rpc_ns_binding_import_* 82
rpc_ns_binding_import_next 106, 107
rpc_ns_binding_inq_entry_name 115
rpc_ns_binding_lookup_* 82
rpc_ns_binding_lookup_next 106, 107
rpc_ns_binding_select 82, 106
rpc_ns_binding_unexport 115
rpc_ns_entry_object_inq_* 98, 120, 123
rpc_ns_group_mbr_inq_next 106
rpc_ns_mgmt_handle_set_exp_age 113
rpc_ns_profile_elt_inq_next 106
rpc_object_set_type 76
rpc_server_inq_bindings 79
rpc_server_listen 81
rpc_server_register_if 77
rpc_server_use_protseq_ep 119

runtime semantics, description 68
search path, description 103

Remote Procedure Call (RPC) (continued)
server application thread, description 86
server binding handle, description 62
server binding information, description 62
server instances

distinguishing among 119, 122
interchangeable instances 99, 117, 203

service 46
service model, description 117
status codes

rpc_s_comm_failure 206
rpc_s_name_service_unavailable 113
rpc_s_no_more_bindings 107
rpc_s_server_too_busy 207

string binding, description 65
string bindings, usage guidelines 83
system profile, description 116
thread

description 85, 87
transfer syntax

using 62
transport protocol, description 60
type UUID

description 60
using 76, 78

type, of a manager EPV 78
unexport operation, description 74
unmarshalling 41
use of cancels

communications failure 70
UUID

definition 46
kinds of 60

well-known endpoint, description 67
remote server control 18
represent_as attribute 287, 288, 293, 306
representation of data 129
request buffer, RPC, description 205
RERAISE 337, 343
resource model, RPC, description 121
resource, RPC, description 121
restrictions on handle use 213
routines

comm_status 176
context rundown 270
fault_status 176
rpc_ss_allocate 258, 294
rpc_ss_disable_allocate 259
rpc_ss_enable_allocate 259
rpc_ss_free 258, 294
rpc_ss_get_thread_handle 260
rpc_ss_set_client_alloc_free 259
rpc_ss_set_thread_handle 260
rpc_ss_swap_client_alloc_free 259

RPC (Remote Procedure Call)
See Remote Procedure Call (RPC)

594 Application Development Guide: Core Components

RPC interface
major version number 63
minor version number 63

RPC protocol
definition of 61
major version number 62
minor version number 62

RPC status codes, exception codes 177
rpc_binding_from_string_binding, using 83
rpc_binding_inq_auth_client routine 95
rpc_binding_inq_auth_info routine 94
rpc_binding_server_from_client, using 198
rpc_binding_to_string_binding, using 79
rpc_ep_register_no_replace_wlb, using 204
rpc_ep_register_no_replace, using 120, 204
rpc_ep_register, using 120, 200
rpc_ep_resolve_binding, using 119, 204
rpc_ep_unregister, using 79
rpc_mgmt_ep_elt_inq_*, using 204
rpc_mgmt_inq_dflt_protect_level routine 94
rpc_mgmt_inq_server_princ_name routine 94
rpc_mgmt_set_authorization_fn routine 95
rpc_ns_binding_export, using 80
rpc_ns_binding_import_*, using 82
rpc_ns_binding_import_next, using 106, 107
rpc_ns_binding_inq_entry_name, using 115
rpc_ns_binding_lookup_*, using 82
rpc_ns_binding_lookup_next, using 106, 107
rpc_ns_binding_select, using 82, 106
rpc_ns_binding_unexport, using 115
rpc_ns_entry_object_inq_*, using 98, 120, 123
rpc_ns_group_mbr_inq_next, using 106
rpc_ns_mgmt_handle_set_exp_age

using 113
rpc_ns_profile_elt_inq_next, using 106
rpc_object_set_type, using 76
rpc_s_no_more_entries, exceptions 288
rpc_s_ok status 291
rpc_server_inq_bindings, using 79
rpc_server_listen, using 81
rpc_server_register_auth_info routine 95
rpc_server_register_if, using 77
rpc_server_use_protseq_ep, using 119
rpc_ss_allocate routine 258, 294
rpc_ss_disable_allocate routine 259
rpc_ss_enable_allocate routine 259
rpc_ss_free routine 258, 294
rpc_ss_get_thread_handle routine 260
rpc_ss_set_client_alloc_free routine 259
rpc_ss_set_thread_handle routine 260
rpc_ss_swap_client_alloc_free routine 259
rpc_x_no_more_entries, exceptions 288
RPC, internationalized 143
RPC, network descriptor, definition of 70
RR (Round Robin) scheduling 322

rules
for NSI search 107
for using exceptions 342

running Time-Provider Process
DTS daemon

operation 389
privileges required 389

endpoint mapper daemon, operation 389
runtime

automatic binding 288
maintaining context handle 268

runtime semantics
RPC, description 68

runtime, RPC 42

S
saved server state 268
scheduling

inherit scheduling attribute 322
policy attribute 322
priority attribute 322
thread 329

Schema 465, 466
search operations

attribute traversed by 106
criteria for satisfying a search 107
NSI description 101

search path, for NSI searches 103
sec_key_mgmt_change_key 502
sec_key_mgmt_delete_key 503
sec_key_mgmt_garbage_collect 503
sec_key_mgmt_get_key 501
security

authentication commands 416, 422
overview 399
relation with other DCE components 407
server, validating 23
summary of services 403

security contexts, delegation 449
security for peer-to-peer applications 400
server 39

exceptions 291
failure 176
initialization code 42
key tables

managing 23
memory management 294
remote, controlling 18
security

validating 23
threads 260

server application thread, RPC, description 86
server binding handle, RPC, description 62
server binding information

RPC
description 62

 Index 595

server entry 96
server instance

RPC
distinguishing 119, 122
interchangeable instances 99, 117, 203

server state 268
server threads 176
ServerRequestProviderTime Procedure

description 382
output parameters 382

Binding Handle 382
Communication Status 382
Time Response Message 382

ServerRequestProviderTime remote procedure
call 379

ServerRequestProviderTime remote procedure call,
return arguments 380

service model, RPC, description 117
setting

client memory 259
short type 237
sigaction service 333
SIGKILL 332
signal handlers, installing for UNIX signals 332
signals

alternatives to using 333
asynchronous 332
DCE Threads signal handling 332
nonterminating 332
reasons to avoid in a multithreaded program 333
synchronous 332
terminating 331
types of 331

SIGQUIT 332
SIGSTOP 332
SIGTRAP 332
SIGTSTP 332
sigwait service 333
size_is attribute 225, 250
skeletal interface definitions 48
skills, for audience xxiii
small type 237
spawning server threads 176, 260
stack

description 357
stacksize attribute

description 322
starting, threads 319
state transitions, threads, figure 319
static area 357
status

attributes 287
comm_status attribute 291
errors 287
failures 287
fault_status attribute 291

status (continued)
RPC failure 288

status codes
rpc_s_comm_failure 206
rpc_s_name_service_unavailable 113
rpc_s_no_more_bindings 107
rpc_s_server_too_busy 207

store, backing
and IDL encoding services 29
APIs used 27
closing 30
conformant arrays not allowed in 29
data header 27
data in 27
deleting items 32
encoding and decoding 29
example of use 32
freeing data 31
headers, making or retrieving 31
iteration, performing 31
opening 30
overview 27
routines used in 30
user interface 28
using 27

string
attribute, assignment 253
constants 231

string attribute 242
array 253
declaration 241
operation 235
overview 225
parameter 236
type 232

string binding
RPC

description 65
string bindings

using 65, 83
struct type 240
structure

member attribute 240
structure of book xxv
stub 40
stub support routines

for internationalized RPC 146
suffix

_free_inst 293
_free_local 293
_from_local 293
_to_local 293

supported code pages 541
supported code sets

establishing 154

596 Application Development Guide: Core Components

synchronization methods, other 327
synchronization object

condition variable 325
mutex 323
race conditions 335, 336

synchronous programming techniques, using in a
multithreaded program 333

synchronous signals 332
system exceptions 177
system profile, RPC, description 116

T
tag-setting routine 152
Task Control Block (TCB) 358
TCB (Task Control Block) 358
TDF 370
terminating

signals 331
threads 319, 332

terminology
in this book xxvi

third-party authentication 417
thread

attribute 322
avoiding nonreentrant routines 317
canceling 328

asynchronous cancelability 328
general cancelability 328

comparison to z/OS 357
creating 319
deleting 320
description of 315
dynamic executor 208
example 351
exception-returning interface 337
exceptions and descriptions, table of 343
multithreaded programming 317
programming 331
RPC

description 85
scheduling 329

inherit scheduling attribute 322
policy attribute 322
priority attribute 322

starting 319
state transitions, figure 319
states 319
terminating 319
waiting for another to terminate 320

thread reentrant
code 334

thread types
choosing 359
description 358

thread-specific
data

creating 327
thread-specific data

avoiding nonreentrant software 335
thread-specific storage

avoiding nonreentrant software 335
global lock 334

thread, example 349
threading model overview 358
threads

heavy-weight 358
medium-weight 358
memory management 176
memory management for 260

ticket-granting ticket 416
Ticket-Granting Ticket (TGT)

certificate of identity 495
time differential factor (TDF) 370
time format

example 369
Time Representation, DTS 369
Time-Provider Algorithm, description 388
Time-Provider Interface

description 379
external devices 379

Time-Provider Process IDL File
description 382
dtsprovider_cstub.c 382
dtsprovider_sstub.c 382
dtsprovider.h 382

time.h header file 375, 376
timespec Structure Declaration 375
timespec Time Structure 375
timestamps, binary 369
tm Structure Declaration 375
TP client stub 380
TP server stub 380
TPI (time-provider interface) 379
trail file 521

life cycle 521
transfer syntax

RPC
using 62

transmit_as 225
transmit_as attribute 232, 273
transport protocol, description 60
TRY 337
TRY statement 57
type

basic 237
basic data 237
boolean 238
byte 239
char 238
characters 240

 Index 597

type (continued)
complex 273
constructed data 240
customized handle 267
declaration 232
declarator 234
double 238
error_status_t 239
float 238
floating-point 238
handle_t 239
hyper 237
integer 237
long 237
short 237
signals 331
small 237
struct 240
union 241
unsigned integer 237
void 239

type declarations 232
type specifier

operation 235
parameter 237

type specifiers 232, 234, 237
type UUID

RPC
description 60

using 76, 78
type, of a manager EPV 78
typedef declaration 232
types of threads

choosing 359
description 358

U
unexport operation, RPC, description 74
union type 241
unions 241
unions, nonencapsulated

code example 244
unique attribute

declaration 241
type 232
unique pointer 236

unique pointers 256
universal code set 154, 164
universal unique identifier 46
Universal Unique Identifier (UUID)

definition 46
RPC

kinds of 60
RPC interface 46

UNIX signals
installing signal handlers for 332
SIGINT 332
SIGKILL 332
SIGSTOP 332
table of 332

unmarshalling 41
unsigned integer type 237
unsigned32

error status 291
using

a thread attribute object 322
signals 331
synchronization object 335

UTC 369, 379
UUID (Universal Unique Identifier)

See Universal Unique Identifier (UUID)
uuid attribute 225, 226

V
version attribute

description 226
overview 225

version number
of an RPC interface 63
of an RPC protocol 62

void type 239

W
well-known endpoint

RPC, description 67
work crew model 316
work queue, variation of boss/worker model 316
workload balancing 204
Workload Manager (WLM) 204

X
xattrschema object 466

types
access control 466

Z
z/OS ABENDs, caught as exceptions 344
z/OS multitasking, comparison with POSIX

multithreading 357
z/OS tasks 357

598 Application Development Guide: Core Components

 Readers' Comments

z/OS
DCE
Application Development Guide:
Core Components

Publication No. SC24-5905-00

You may use this form to report errors, to suggest improvements, or to express your opinion on
the appearance, organization, or completeness of this book.

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

 Note

Report system problems to your IBM representative or the IBM branch office serving you.
U.S. customers can order publications by calling the IBM Software Manufacturing Solutions at
1-800-879-2755.

In addition to using this postage-paid form, you may send your comments by:

Would you like a reply? YES NO If yes, please tell us the type of response you prefer.

 Electronic address:

 FAX number:

 Mail: (Please fill in your name and address below.)

Name Address

Company or Organization

Phone No.

Date:

FAX 1-607-752-2327 Internet pubrcf@vnet.ibm.com
IBMLink GDLVME(PUBRCF)

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC24-5905-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department G60
International Business Machines Corporation
Information Development
1701 North Street
ENDICOTT NY 13760-5553

Fold and Tape Please do not staple Fold and Tape

SC24-5905-00

IBM

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC24-5905-00

S
pine inform

ation:

IB
M

z/O
S D

C
E

A
pplication D

evelopm
ent G

uide:
C

ore C
om

ponents

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	DCE Application Development Environment
	Unsupported OSF DCE Functions
	OSF DCE Programming Interfaces

	How This Book Is Organized
	Terminology Used in This Book
	Conventions Used in This Book
	Where to Find More Information
	Softcopy Publications
	Internet Sources
	Using LookAt to Look up Message Explanations
	Accessing Licensed Books on the Web

	Part 1. DCE Facilities
	Chapter 1. Introduction to DCE Facilities
	Chapter 2. DCE Host Services
	Types of Applications
	Issues of Distributed Applications
	Managing a Host's Endpoint Map
	Binding to the dced Services
	Host Service Naming in Applications
	The dced Maintains Entry Lists
	Reading All of a Host Service's Data
	Managing Individual dced Entries

	Managing Host Data on a Remote Host
	Kinds of Host Data Stored
	Adding New Host Data
	Modifying Host Data
	Running Programs Automatically When Host Data Changes

	Controlling Servers Remotely
	Two States of Server Management: Configuration and Execution
	Configuring Servers
	Configuring a New DCE Server
	Modifying a Server's Configuration Attributes
	Deleting a DCE Server

	Starting and Stopping Servers
	Enabling and Disabling Services of a Server

	Validating the Security Server
	Managing Server Key Tables

	Chapter 3. The DCE Backing Store
	Data in a Backing Store
	Using A Backing Store
	Header for Data
	The User Interface
	The IDL Encoding Services
	Encoding and Decoding in the Backing Store
	Conformant Arrays Not Allowed

	The Backing Store Routines
	Opening a Backing Store
	Closing a Backing Store
	Storing or Retrieving Data
	Freeing Data
	Making or Retrieving Headers
	Performing Iteration
	Deleting Items from a Backing Store
	Locking and Unlocking a Backing Store

	Example of Backing Store Use

	Part 2. Using the DCE Remote Procedure Call APIs
	Chapter 4. Developing a Simple RPC Application
	The Remote Procedure Call Model
	RPC Application Code
	Stubs
	The RPC Runtime
	RPC Application Components Working Together
	Overview of DCE RPC Development Tasks

	Writing an Interface Definition
	RPC Interfaces Represent Services
	Generating an Interface UUID
	Naming the Interface
	Specifying Interface Attributes
	Import Declarations
	Constant Declarations
	Type Declarations
	Operation Declarations

	Running the IDL Compiler
	Writing the Client Code
	Writing the Server Code
	The greet_server.c Source Code
	Including idl-Generated Headers and Selecting Protocol Sequences
	Registering the Interface
	Obtaining the Server's Binding Handles
	Listening for Calls

	The greet_manager.c Source Code

	Building the greet Programs
	Running the greet Programs

	Chapter 5. RPC Fundamentals
	Direct Implications of Remoteness
	Universal Unique Identifiers
	Communications Protocols
	Binding Information
	Server Binding Information
	Defining a Compatible Server
	How Clients Obtain Server Binding Information
	Binding Information in a Namespace
	Binding Information in Strings

	Client Binding Information for Servers

	Endpoints
	Well-Known Endpoints
	Dynamic Endpoints

	Run time Semantics
	Communications Failures
	Scalability
	RPC Objects

	Chapter 6. Basic RPC Routine Usage
	Overview of the Basic RPC Runtime Routines
	Server Initialization Using the RPC Routines
	Assigning Types to Objects
	Registering Interfaces
	Selecting RPC Protocol Sequences
	Obtaining a List of Server Binding Handles
	Registering Endpoints
	Making Binding Information Accessible to Clients
	Using String Bindings to Provide Binding Information
	Exporting Binding Information

	Listening for Calls

	How Clients Find Servers
	Searching a Namespace
	Using String Bindings to Obtain Binding Information

	Chapter 7. RPC and Other DCE Components
	Threads in RPC Applications
	RPC Threads
	Cancel Operations
	Multithreaded RPC Applications

	Security and RPC: Using Authenticated RPC
	Authentication
	Cross-Cell Authentication
	Protection Levels

	Authorization
	Name-Based Authorization
	DCE Authorization

	Authenticated RPC Routines

	Directory Services and RPC: Using the Namespace
	NSI Directory Service Entries
	NSI Attributes
	Structure of Entry Names
	Server Entries
	Groups
	Profiles
	Guidelines for Constructing Names of Directory Service Entries
	Selecting the Starting Entry
	Environment Variables
	Searching a Namespace for Binding Information
	The Import and Lookup Search Algorithm
	Examples of Searching for Server Entries
	Expiration Age of a Local Copy of Directory Service Data

	Strategies for Using Directory Service Entries
	Using Server Entries
	Using Groups
	Using Profiles

	The Service Model for Defining Servers
	Interchangeable Server Instances
	Distinct Server Instances on a Single Host

	The Resource Model for Defining Servers
	Choosing between Service and Resource Models
	Using Objects and Groups Together
	System-Specific Applications
	Exporting Multiple Object UUIDs to a Single Server Entry
	Exporting Every Object UUID to a Separate Server Entry

	Chapter 8. DCE Data Representation Support Considerations
	The DCE Model
	Data Type Considerations for Users
	Floating-Point Data
	Integer Data
	Character Data
	EBCDIC Variant Characters
	Eliminating the EBCDIC Character Variation Problem
	POSIX Portable Character Set
	Non-POSIX Portable Character Set Data
	z/OS DCE Supported Code Pages

	Double-Byte Character Data

	Internationalization Considerations for DCE Applications
	Localization and Code Page Conversions
	Establishing a Current Locale
	Distributed locale Considerations

	Code Page Considerations
	Homogeneous Code Page Considerations
	Heterogeneous Code Page Considerations

	DCE-specific Considerations
	Code Page Restrictions
	Client Application Data Considerations
	CDS Clerk

	Chapter 9. Writing Internationalized RPC Applications
	Character Sets, Code Sets, and Code Set Conversion
	Remote Procedure Call with Character/Code Set Interoperability
	Building an Application for Character and Code Set Interoperability
	Writing the Interface Definition File
	Writing the Attribute Configuration File
	Writing the Stub Support Routines
	Buffer Sizing Routines
	Code Set Conversion Routines
	Tag-Setting Routine

	Writing the Server Code
	Setting the Server's Locale
	Establishing the Server's Supported Code Sets
	Registering the Server's Supported Code Sets in the Namespace
	Establishing a Cleanup Function for the Namespace
	Sample Server Code

	Writing the Client Code
	Setting the Client's Locale
	Establishing the Compatibility Evaluation Routine
	Sample Client Code

	Writing the Evaluation Routine
	DCE RPC Evaluation Routines
	Writing Customized Evaluation Routines
	Notes about Tag-Setting
	Example Character and Code Sets Evaluation Logic

	Chapter 10. Topics in RPC Application Development
	Memory Management
	Using the Memory Management Defaults
	Using rpc_ss_allocate and rpc_ss_free
	Using rpc_ss_allocate and rpc_ss_free in Manager Code
	Using rpc_ss_allocate and rpc_ss_free in Client Code

	Using Your Own Allocation and Free Routines
	Using Thread Handles in Memory Management
	Spawning Threads
	Transitioning from Client to Server to Client

	Guidelines for Error Handling
	Exceptions
	The fault_status Attribute
	The comm_status Attribute
	Determining Which Method to Use for Handling Exceptions
	Examples of Error Handling
	The Matrix Math Server Example
	The Stock Quote Application Example

	Context Handles
	Context Handles in the Interface
	Context Handles in a Server Manager
	Context Rundown
	Binding and Security Information

	Pipes
	Input Pipes
	Output Pipes
	Pipe Summary

	Nested Calls and Callbacks
	Routing Remote Procedure Calls
	Obtaining an Endpoint
	Buffering Call Requests
	Queuing Incoming Calls
	Dynamic Executor Threads
	Initializing Executor Threads
	Increasing Executor Threads
	Decreasing Executor Threads
	Disabling Dynamic Executor Threads

	Selecting a Manager

	Creating Portable Data Using the IDL Encoding Services
	Memory Management for IDL Encoding Services
	Buffering Styles
	IDL Encoding Services Handles
	Programming Example
	Performing Multiple Operations on a Single Handle
	Determining the Identity of an Encoding

	Chapter 11. Interface Definition Language
	The Interface Definition Language File
	Syntax Notation Conventions
	Typography
	Special Symbols

	IDL Lexical Elements
	Identifiers
	Keywords
	Punctuation Characters
	White Space
	Case Sensitivity

	IDL versus C
	Declarations
	Data Types
	Attributes

	Interface Definition Structure
	Interface Definition Header
	Interface Definition Body

	Overview of IDL Attributes
	Interface Definition Header Attributes
	The uuid Attribute
	The version Attribute
	The endpoint Attribute
	The exceptions Attribute
	The pointer_default Attribute
	The local Attribute
	Rules for Using Interface Definition Header Attributes
	Examples of Interface Definition Header Attributes

	Import Declarations
	Constant Declarations
	Integer Constants
	Boolean Constants
	Character Constants
	String Constants
	NULL Constants

	Type Declarations
	Type Attributes
	Base Type Specifiers
	Constructed Type Specifiers
	Predefined Type Specifiers
	Type Declarator

	Operation Declarations
	Operation Attributes
	Operation Attributes: idempotent, broadcast, and maybe
	Operation Attributes: Memory Management

	Parameter Declarations
	Basic Data Types
	Integer Types
	Floating-Point Types
	The char Type
	The boolean Type
	The byte Type
	The void Type
	The handle_t Type
	The error_status_t Type
	International Characters

	Constructed Data Types
	Structures
	Unions
	Encapsulated Unions
	Nonencapsulated Unions

	Enumerations
	Pipes
	IDL Pipes Example
	Rules for Using Pipes

	Arrays
	Array Bounds
	Conformance in Dimensions Other Than the First
	Array Attributes
	Rules for Using Arrays

	Strings
	Pointers
	Pointer Attributes
	Pointer Attributes in Parameters
	Array Attributes on Pointers
	Pointer Attributes in Function Results
	Pointers in Structure Fields and Union Case
	Resolving a Possible Pointer Ambiguity
	Rules for Using Pointers
	Memory Management for Pointed-to Nodes
	Advanced Memory Management Support
	Use of Thread Handles in Memory Management
	Rules for Using the Memory Management Routines
	Examples Using Pointers

	Customized Handles
	Context Handles
	The context_handle Attribute
	The Context Rundown Procedure
	Creating New Context
	Reclaiming Client Memory Resources for the Context Handle
	Relationship of Context Handles and Binding
	Rules for Using Context Handles
	Examples Using Context Handles

	Associating a Data Type with a Transmitted Type
	IDL Grammar Synopsis

	Chapter 12. Attribute Configuration Language
	Syntax Notation Conventions
	Attribute Configuration File (ACF)
	Naming the ACF
	Compiling the ACF
	ACF Features

	Structure
	ACF Interface Header
	ACF Interface Body
	The include Statement
	The auto_handle Attribute
	The explicit_handle Attribute
	The implicit_handle Attribute
	The comm_status and fault_status Attributes
	The code and nocode Attributes
	The represent_as Attribute
	The enable_allocate Attribute
	The heap Attribute
	The extern_exceptions Attribute
	The encode and decode Attributes
	The cs_char Attribute
	Restrictions

	The cs_stag, cs_drtag, and cs_rtag Attributes
	The cs_tag_rtn Attribute
	The binding_callout Attribute

	Summary of Attributes
	ACF Grammar Synopsis

	Part 3. Using the DCE Threads APIs
	Chapter 13. Introduction to Multithreaded Programming
	Advantages of Using Threads
	Software Models for Multithreaded Programming
	Boss/Worker Model
	Work Crew Model
	Pipelining Model
	Combinations of Models

	Potential Disadvantages with Multithreaded Programming

	Chapter 14. Thread Concepts and Operations
	Thread Operations
	Starting a Thread
	Terminating a Thread
	Waiting for a Thread to Terminate
	Deleting a Thread

	New Primitives
	Attributes Objects
	Creating an Attributes Object
	Deleting an Attributes Object
	Thread Attributes
	Scheduling Policy Attribute
	Scheduling Priority Attribute
	Inherit Scheduling Attribute
	Stacksize Attribute

	Mutex Attributes
	Condition Variable Attributes

	Synchronization Objects
	Mutexes
	Condition Variables
	Other Synchronization Methods

	One-Time Initialization Routines
	Thread-Specific Data
	Thread Cancelation
	Thread Scheduling

	Chapter 15. Programming with Threads
	Using Signals
	Types of Signals
	Terminating Signals
	Nonterminating Signals
	Synchronous Signals
	Asynchronous Signals

	DCE Threads Signal Handling
	The POSIX sigwait() Service
	The POSIX sigaction() Service

	Alternatives to Using Signals

	Nonthreaded Libraries
	Working with Nonthreaded Software
	Changing Nonthreaded Code to Be Thread-Reentrant

	Avoiding Nonreentrant Software
	Global Lock
	Thread-Specific Storage

	Using Synchronization Objects
	Race Conditions
	Deadlocks

	Signaling a Condition Variable

	Chapter 16. Using the DCE Threads Exception-Returning Interface
	Syntax for C
	Using the Exception-Returning Interface
	Operations on Exceptions
	Declaring and Initializing an Exception Object
	Raising an Exception
	Defining a Region of Code over Which Exceptions Are Caught
	Catching a Particular Exception or All Exceptions
	Defining Epilog Actions for a Block
	Importing a System-Defined Error Status into the Program as an Exception

	Rules and Conventions for Modular Use of Exceptions
	DCE Threads Exceptions and Definitions
	z/OS ABENDs Caught as Exceptions
	Catching Specific System or User ABENDs
	Detecting the First Catch of an Exception
	Handling Unexpected Exceptions

	Chapter 17. DCE Threads Example
	Details of Program Logic and Implementation
	Threads Example — Searching for Prime Numbers

	Chapter 18. Comparing POSIX Multithreading to z/OS Multitasking
	Types of Threads
	Choosing the Type of Thread

	Chapter 19. Migrating between UNIX System Services and DCE Threads
	Differences between UNIX System Services and DCE Threads
	Choosing DCE or UNIX System Services Threads
	Mutexes
	Differences between DCE Threads and UNIX System Services Threads
	Changes to Threads APIs
	Specifying Attributes Objects
	Call Attributes Not Supported by UNIX System Services Threads
	Types Not Supported by UNIX System Services Threads
	Mutex Types
	Cancelability Versus Interruptibility
	Semantic Differences
	Miscellaneous Differences

	Part 4. Using the DCE Distributed Time Service APIs
	Chapter 20. Introduction to the Distributed Time Service API
	DTS Time Representation
	Absolute Time Representation
	Examples of Valid Time Formats

	Relative Time Representation

	Time Structures
	The utc Structure
	The tm Structure
	The timespec Structure
	The reltimespec Structure

	DTS API Header Files
	DTS API Routine Functions

	Chapter 21. Time-Provider Interface
	General TPI Control Flow
	ContactProvider Procedure
	ServerRequestProviderTime Procedure

	Time-Provider Process IDL File
	Initializing the Time-Provider Process
	Time-Provider Algorithm
	DTS Synchronization Algorithm
	Running the Time-Provider Process
	Running a User-Written Time Provider Program

	Sources of Additional Information

	Chapter 22. DTS API Routines Programming Example

	Part 5. Using the DCE Security APIs
	Chapter 23. Overview of Security
	Purpose and Organization of Security Section
	About Authenticated RPC
	About the Generic Security Service API
	What Authentication and Authorization Mean
	RACF Authorization using RACF-DCE Interoperability
	Authentication, Authorization, and Data Protection in Brief
	Summary of DCE Security Services and Facilities
	Security Services
	Security Facilities
	Registry Service Interfaces
	Authentication Service Interfaces
	Privilege Service Interfaces

	Interfaces to the Login Facility
	Interfaces to the Extended Registry Attribute Facility
	Interfaces to the Extended Privilege Attribute Facility
	Interfaces to the Key Management Facility
	Interfaces to the ID Map Facility
	Interfaces to the Access Control List Facility
	Interfaces to the Password Management Facility
	Interfaces to RACF-DCE Interoperability

	Relationships Between the Security Service and DCE Applications
	DTS, the Cell Namespace, and Security
	Time and Security
	The Cell Namespace and the Security Namespace

	Using DCE Three Different Ways
	Using the DCE Security Services DLL

	Chapter 24. Authentication
	Background Concepts
	Principals
	Cells and Realms
	The Shared-Secret Authentication Protocol
	Protection Levels
	Authenticated RPC and Protection Levels
	GSSAPI and Protection Levels

	Data Encryption Mechanisms

	A Walkthrough of the Shared Secret Authentication Protocol
	A Walkthrough of User Authentication
	How the Security Client Obtains a Ticket-Granting Ticket
	How the Client Obtains a Privilege-Ticket-Granting Ticket
	The Login Context
	Identities in a Delegation Chain

	A Walkthrough of DCE Application Authentication
	A Walkthrough of DCE Application Authentication Using GSSAPI

	Intercell Authentication
	Authentication Service Surrogates
	The Problem
	The Solution

	Intercell Authentication by Trust Peers

	Chapter 25. Authorization
	DCE Authorization
	Object Types and ACL Types
	ACL Manager Types
	ACLs
	ACL Entries
	Privilege Attribute Entry Types
	Mask Entry Types
	The Extended ACL Entry Type

	Access Checking
	The user_obj Entry Check
	The User Entries Check
	The Group Entries Check
	The other_obj Entry Check
	The foreign_other Entries Check
	The any_other Entry Check

	Examples of ACL Checking
	Example 1
	Example 2
	Example 3

	Name-Based Authorization

	Chapter 26. GSSAPI Credentials
	Using Default Credentials
	Initiate a Security Context
	Accept a Security Context

	Creating New Credential Handles
	Initiating a Security Context with New Credential Handles
	Accepting a Security Context Using New Credential Handles

	Delegating Credentials
	Initiating a Security Context to Delegate Credentials
	Accepting a Security Context with Delegated Credentials

	Chapter 27. The Extended Privilege Attribute Application Program Interface
	Identities of Principals in Delegation
	ACL Entry Types for Delegation
	ACL Checking for Delegation

	Calls to Establish Delegation Chains
	Types of Delegation
	Target and Delegate Restrictions
	The Anonymous Principal
	Target and Delegate Restriction Syntax

	Optional and Required Restrictions
	Compatibility between z/OS and Pre-OS/390® Servers and Clients

	Calls to Extract Privilege Attribute Information
	Opaque Handles for sec_cred Calls

	Disabling Delegation
	Setting Extended Attributes

	Chapter 28. The Registry Application Program Interface
	Binding to a Registry Site
	The Registry Database
	Creating and Maintaining PGO Items
	Creating and Maintaining Accounts
	Registry Properties and Policies
	Registry Properties
	The Registry Authentication Policy
	Organization Policies

	Routines to Return UNIX Structures
	Miscellaneous Registry Routines

	Chapter 29. The Extended Attribute Application Program Interfaces
	Extended Registry Attribute API
	Attribute Schema
	Attribute Types and Instances
	Attribute Type Components
	Attribute Encoding
	ACL Manager Set
	Attribute Flags
	Intercell Action Field
	Attribute Scope
	Trigger Type Flag
	Trigger Binding

	Calls to Manipulate Schema Entries
	The sec_attr_schema_entry_t Data Type
	Creating and Managing Schema Entries
	sec_rgy_attr_sch_create_entry()
	sec_rgy_attr_sch_update_entry()
	sec_rgy_attr_sch_delete_entry()

	Reading Schema Entries
	Using sec_attr_cursor_t with sec_rgy_attr_sch_scan()
	sec_rgy_attr_sch_scan()
	sec_rgy_attr_sch_lookup_by_id() and sec_rgy_attr_sch_lookup_by_name()

	Reading the ACL Manager Types

	Calls to Manipulate Attribute Instances
	The sec_attr_t Data Type
	Creating and Managing Attribute Instances
	sec_rgy_attr_update()
	sec_rgy_attr_test_and_update()
	sec_rgy_attr_delete()

	Reading Attribute Instances
	Using sec_rgy_attr_cursor_t with sec_rgy_attr_lookup_by_id()
	sec_rgy_attr_lookup_by_id()
	sec_rgy_attr_set_lookup_by_id()
	sec_rgy_attr_lookup_by_name()

	Searching for Attribute Instances
	Using sec_attr_srch_cursor_t with sec_rgy_attr_srch Calls
	sec_rgy_attr_srch_names()
	sec_rgy_attr_srch_names_attrs()

	The Attribute Trigger Facility
	Defining an Attribute Trigger/Attribute Association
	Query Triggers
	Update Triggers

	Trigger Binding
	The sec_attr_binding_t Data Type
	The sec_attr_bind_auth_info_t Data Type

	Access Control on Attributes with Triggers

	Calls that Access Attribute Triggers
	Using sec_attr_trig_cursor_t with sec_attr_trig_query()
	sec_rgy_attr_trig_query() and sec_rgy_attr_trig_update()
	priv_attr_triq_query()

	The DCE Attribute API
	Macros to Aid Extended Attribute Programming
	Macros to Access Binding Fields
	Macros to Access Schema Entry Fields
	Macros to Access Attribute Instance Fields
	Binding Data Structure Size Calculation Macros
	Schema Entry Data Structure Size Calculation Macros
	Attribute Instance Data Structure Size Calculation Macros
	Binding Semantic Check Macros
	Schema Entry Semantic Check Macros
	Attribute Instance Semantic Check Macros
	Schema Entry Flag Set and Unset Macros
	Schema Trigger Entry Flag Check Macros

	Utilities to Use with Extended Attribute Calls

	Chapter 30. The Login Application Program Interface
	Establishing Login Contexts
	Validating the Login Context and Certifying the Security Server
	Validating the Login Context Without Certifying the Security Server
	Example of a System Login Program
	Establishing the Initial Context

	Handling Expired Certificates of Identity
	Importing and Exporting Contexts
	Changing a Groupset
	Miscellaneous Login API Functions
	Getting the Current Context
	Getting Information from a Login Context
	Getting Group Information for Local Process Identities
	Releasing and Deleting a Context

	Chapter 31. The Key Management Application Program Interface
	Retrieving a Key
	Changing a Key
	Automatic Key Management
	Deleting Expired Keys
	Deleting a Compromised Key

	Chapter 32. The Access Control List Application Program Interfaces
	The Client-Side API
	Binding to an ACL
	ACL Editors and Browsers
	Testing Access
	Errors

	Guidelines for Constructing ACL Managers
	Extended Naming of Protected Objects
	The ACL Network Interface
	The ACL Library
	ACL Library Capabilities
	The ACL Application Programmer Interface

	Chapter 33. The ID Map Application Program Interface
	Chapter 34. DCE Audit Service
	Features of the DCE Audit Service
	Components of DCE Audit Service
	DCE Audit Service Concepts
	Audit Clients
	Code Point
	Events
	Event Names and Event Numbers
	Event Number Formats
	Example Event Numbers for DCE Servers
	Example Event Numbers for an Application Server
	Administration of Event Numbers

	Event Class
	Event Class Number
	Filters
	Filter Subject Identity

	Audit Records
	Audit Trail File

	Administration and Programming in DCE Audit
	Programmer Tasks
	Administrator Tasks

	Chapter 35. Using the Audit API Routines
	Adding Audit Capability to Distributed Applications
	Opening the Audit Trail
	Initializing the Audit Records
	Adding Event-Specific Information
	Committing an Audit Record
	Closing an Audit Trail File

	Writing Audit Trail Analysis and Examination Tools
	Opening an Audit Trail File for Reading
	Reading the Desired Audit Records into a Buffer
	Transforming the Audit Record into Readable Text
	Discarding the Audit Record
	Closing the Audit Trail File

	Chapter 36. The Password Management Application Programming Interfaces
	The Client-Side API
	Example of a Password Change Program

	The Password Management Network Interface

	Chapter 37. RACF-DCE Interoperability Application Programming Interfaces
	DCE APIs
	z/OS APIs

	Appendix A. POSIX-based DCE Portable Character Set
	Appendix B. IBM Code Pages
	Code Page IBM-1027
	Code Page IBM-1047
	Code Page IBM-037
	Code Page IBM-273
	Code Page IBM-277
	Code Page IBM-278
	Code Page IBM-280
	Code Page IBM-284
	Code Page IBM-285
	Code Page IBM-297
	Code Page IBM-500
	Code Page IBM-871

	Appendix C. Notices
	Trademarks

	Glossary
	Bibliography
	z/OS DCE Publications
	Overview
	Planning
	Administration
	Application Development
	Reference

	z/OS SecureWay® Security Server Publications
	Tool Control Language Publication
	IBM C/C++ Language Publication
	z/OS DCE Application Support Publications
	Encina Publications

	Index

